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Introduction

- The Black Hole Search is the task of locating all black holes
in a network by exploring it with mobile agents.

- Given the map of the network and the starting node we want
to design the fastest Black Hole Search.
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The Black Hole Search problem

• Black hole: a node containing a stationery process that
destroys all mobile agents visiting the node, without leaving
any trace.

• Agents try to identify the black hole and then avoid it.

• At most one black hole in the network.

• Exactly two agents starting from the same node.

• The network is synchronous, i.e. there is an upper bound on
the time needed by an agent for traversing any edge (assume
1 unit).
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Model and Terminology

• Network: a connected, undirected graph G (V ,E ). No
multiple edges. No self loops.

• B ( V : the set of black holes in G .

• V \ B: safe nodes in G .

• Starting node s ∈ V \ B (the only one known to be safe).

• |B| ≤ 1 (one or no black holes in G ).

• Two agents (Agent-1,Agent-2).

• Agents communicate only when they are in the same node.

• Synchronous network.
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Formalizing the problem

MINIMUM COST BHS PROBLEM or BHS

Instance: a connected undirected graph G (V ,E ) and a node
s ∈ V .

Solution: an exploration scheme EG ,s = (X,Y) for G and s,
X = 〈x0, x1, . . . , xT 〉, Y = 〈y0, y1, . . . , yT 〉 two equal-length
sequences of nodes in G . The exploration scheme must satisfy
some costraints given below. T is the length of EG ,s .

Measure: the cost of the BHS based on EG ,s .
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- Agent-1 and Agent-2 follow the paths defined by X and Y,
respectively.

- When an agent deduces the existence of a black hole and its
exact location, aborts the exploration and returns to s
traversing safe nodes.

- Exploration is deterministic and the scheme is calculated
before the exploration starts.

- The agents must follow the sequences until one realizes that
the other has died.
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Some definitions

• Given an exploration scheme EG ,s , for each i = 0, 1, . . . ,T ,
the set

Si =

{ ⋃i
j=0{xj} ∪

⋃i
j=0{yj}, if xi = yi

Si−1, otherwise.

is called the explored territory at step i .
A node v is explored at step i if v ∈ Si or unexplored
otherwise.
Note that Sj−1 ⊆ Sj .

• Meeting step is every step 0 ≤ j ≤ T such that Sj 6= Sj−1.

• For each meeting step we have xi = yi and that node is called
a meeting point.

• A sequence of steps 〈j + 1, . . . , k〉 where j and k are two
consecutive meetings is called a phase of length k − j .
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Note that:

• A node may have been visited by an agent but becomes
explored only when the agents meet.

• The explored territory is defined for an exploration scheme
EG ,s , not for the BHS based on it: it doesn’t take into
account the possible existence of a black hole.
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The Constraints

EG ,s = (X,Y) is a feasible exploration scheme for G and s if the
following constraints are satisfied:

Constraint 1: x0 = y0 = s, xT = yT .

Constraint 2: for each i = 0, . . . ,T − 1, either xi+1 = xi or
(xi , xi+1) ∈ E and similarly for the yi ’s.

Constraint 3:
⋃T

i=0{xi} ∪
⋃T

i=0{yi} = V .

Constraint 4: for each phase 〈j + 1, . . . , k〉,
(a) |{xj+1, . . . , xk} \ Sj | ≤ 1 and |{yj+1, . . . , yk} \ Sj | ≤ 1; and
(b) {xj+1, . . . , xk} \ Sj 6= {yj+1, . . . , yk} \ Sj .
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In other words...

Constraint 1: both agents start from the same node s and end at
the same node.
Constraint 2: during each step, an agent can either wait in the
node v where it was, or move to a node adjacent to v .
Constraint 3: each node in V is visited at least once by at least
one agent during the exploration.
Constraint 4: during each phase, an agent can visit at most one
unexplored node (a) and the two agents cannot visit the same
unexplored node during the same phase (b).

Also, observe that:

- S0 = {s}, by Constraint 1, and

- ST = V , by Constraints 1 and 3.
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Lemma 1

If k ≥ 1 is a meeting step for EG ,s , then xk = yk ∈ Sk−1.

Proof:
If j is the last meeting step before k , then Sj = Sj+1 = . . . = Sk−1
and by definition, xk = yk ∈ Sk . Now, if xk = yk /∈ Sk−1 = Sj ,
then, it is in both {xj+1, . . . , xk} \ Sj and {yj+1, . . . , yk} \ Sj and
Constraint 4 is violated.

Lemma 2

Each phase of EG ,s has length at least two.

Proof:
If there were a phase of length 1, there would be two adjacent
meeting steps j , j + 1. But j + 1 is a meeting iff Sj+1 ) Sj and, by
Lemma 1, xj+1 = yj+1 ∈ Sj and hence Sj+1 = Sj .
Contradiction.



Introduction Model and Terminology NP-hardness of BHS An approximation algorithm for the BHS

Phases of length 2

Consider a phase of length two, 〈j + 1, j + 2〉 at the end of which
the explored territory icreases by 2 nodes.

If m is the meeting point at step j , Agent-1 and Agent-2 visit
unexplored nodes adjacent to m, v1, v2 respectively, at step j+1.
Then, at step j + 2 the agents meet:

• in m (b-split(m, v1, v2)), or

• in a node m′ 6= m, adjacent to v1, v2 (a-split(m, v1, v2,m
′)).
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Execution time

Execution time:

- If B = ∅, the execution time is T plus the shortest path from
xT = yT to s.

- If B = {b}, execution time equals j plus the shortest path
from xj = yj to s not including b.
(j is the first step such that b ∈ Sj .)

In the first case, both agents have to perform the full exploration
and get back to s to report there is no black hole in G .

In the second case, one agent doesn’t show up at meeting point
xj = yj so the other knows the exact location of b, as the agents
visit only one unexplored node during a phase. Then the surviving
agent returns to s.
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Cost

Cost: The worst execution time of EG ,s , over all possible values of
B.

We allow a malicious adversary which exactly knows G and EG ,s to
place b, or not place it.

Examples:

• For a tree, the case B = ∅ gives the maximum execution time.

• For a n-node ring graph, if B = ∅, then the execution time is
3n +O(1). But if vn−1 is the black hole, then execution time
is 4n +O(1).
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NP-hardness of Black Hole Search

To prove the NP-hardness of BHS, we provide a reduction from an
NP-complete problem to the decision version of BHS.

Hamiltonian cycle problem for cubic planar graphs (cpHP)

Instance: a cubic planar 2-edge connected graph G (V ,E ) and an
edge (x , y) ∈ E .
Question: does G contain a Hamiltonian cycle that includes edge
(x , y)?

The cpHP problem without the requirement that the Hamiltonian
path passes through a given edge is NP-complete and so this one
is also NP-complete because of a simple reduction.
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Decision Black Hole Search problem for planar graphs (dBHS)

Instance: a planar graph G ′ = (V ′,E ′), a starting node s ∈ V ′

and a positive integer X .
Question: does there exist an exploration scheme EG ′,s for G ′

starting from s, such that the BHS based on EG ′,s has cost at most
X?
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Reduction from cpHC to dBHS
G = (V ,E ) and (x , y) an instance for cpHC.
We construct the corresponding instance of the dBHS problem.

1. Replace edge (x , y) in G with edges (x , s), (s, y), s a new
node. Get graph G .

2. F the set of the faces of G . Identify each f ∈ F with the
sequence of the consecutive edges adjacent to f .

3. For each f and each edge (v ,w) adjacent to f , add a new

node z
(v ,w)
f and two edges (v , z

(v ,w)
f ), (w , z

(v ,w)
f ).

4. For each f = 〈e1, e2, . . . , e3〉 ∈ F , add the shortcut edges
(ze1f , ze2f ), (ze2f , ze3f ), . . . , (z

eq
f , ze1f ).

5. For each v ∈ V ∪ {s} \ {x} add a new node vF (flag node)
and edge (v , vF ).

6. Obtain G ′. Set X = n′ − 1 = 5n + 2, where
n′ = n + 1 + 2(e + 1) + n = 5n + 3 the number of nodes in
G ′, n, e nodes and edges in G respectively (e = 3

2n).
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v w

z
(v ,w)
f ′′

z
(v ,w)
f ′

f ′′

f ′

Each edge e in G is adjecent to exactly two faces f ′, f ′′. The
nodes zef ′ , z

e
f ′′ added are called twin nodes for e.

G ′ is planar and can be constructed in linear time.

The nodes in G ′ inherited from G are called original nodes.
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In Lemma 3 a useful property of G ′ is stated.

Lemma 3

Let 〈u, v ,w〉 be a path in graph G. Then there is a path
〈u, z ′, z ′′,w〉 in G ′ bypassing node v (i.e. v /∈ {z , z ′}).

Proof:
The degree of each node in G is at most 3 (as G was obtained
from G by replacing an edge and adding a node and G is a cubic
graph). So, there must be a face f ∈ F to which both edges (u, v)
and (v ,w) are adjacent. By the construction og G ′ the sequence

〈u, z(u,v)f , z
(v ,w)
f ,w〉 is a path in G ′.
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The following Lemmas prove that graph G has a Hamiltonian cycle
passing through edge (x , y) iff there there is an exploration scheme
for G ′ and the starting node s with cost at most X = 5n + 2.

Lemma 4

If G has a Hamiltonian cycle that includes (x , y), then there exists
an exploration scheme E∗G ′,s on G ′ from s such that the BHS based
on it has cost at most 5n + 2.

Lemma 5

If there exists an exploration scheme EG ′,s on G ′ starting from s
such that the cost of BHS based on it is at most 5n + 2, then G
has a Hamiltonian cycle that includes edge (x , y).
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Proof of Lemma 4 (1)

Let {v1 = y , e1, v2, . . . , en−1, vn = x , en, v1 = y} be a Hamiltonian
cycle in G that includes (x , y). Consider the following exploration
scheme E∗G ′,s :

1. b-split(s, sF , y).

2. a-split(s, z1, z2, y), z1, z2 the twin nodes of (s, y).

3. for each vi of the Hamiltonian cycle (i = 1, . . . , n − 1):

3.1 let vj be the third neighbor of vi (other than vi−1, vi+1); if
j > i then b-split(vi , z1, z2), z1, z2 the twin nodes of (vi , vj).

3.2 b-split(vi , v
F
i , vi+1).

3.3 a-split(vi , z1, z2, vi+1), z1, z2 the twin nodes of (vi , vi+1).

4. a-split(x , z1, z2, s), z1, z2 the twin nodes of (x , s).
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Let {v1 = y , e1, v2, . . . , en−1, vn = x , en, v1 = y} be a Hamiltonian
cycle in G that includes (x , y). Consider the following exploration
scheme E∗G ′,s :

1. b-split(s, sF , y).

2. a-split(s, z1, z2, y), z1, z2 the twin nodes of (s, y).

3. for each vi of the Hamiltonian cycle (i = 1, . . . , n − 1):

3.1 let vj be the third neighbor of vi (other than vi−1, vi+1); if
j > i then b-split(vi , z1, z2), z1, z2 the twin nodes of (vi , vj).

3.2 b-split(vi , v
F
i , vi+1).

3.3 a-split(vi , z1, z2, vi+1), z1, z2 the twin nodes of (vi , vi+1).

4. a-split(x , z1, z2, s), z1, z2 the twin nodes of (x , s).
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Proof of Lemma 4 (1)

Let {v1 = y , e1, v2, . . . , en−1, vn = x , en, v1 = y} be a Hamiltonian
cycle in G that includes (x , y). Consider the following exploration
scheme E∗G ′,s :

1. b-split(s, sF , y).

2. a-split(s, z1, z2, y), z1, z2 the twin nodes of (s, y).

3. for each vi of the Hamiltonian cycle (i = 1, . . . , n − 1):

3.1 let vj be the third neighbor of vi (other than vi−1, vi+1); if
j > i then b-split(vi , z1, z2), z1, z2 the twin nodes of (vi , vj).

3.2 b-split(vi , v
F
i , vi+1).

3.3 a-split(vi , z1, z2, vi+1), z1, z2 the twin nodes of (vi , vi+1).

4. a-split(x , z1, z2, s), z1, z2 the twin nodes of (x , s).
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Proof of Lemma 4 (2)

Length of E∗G ′,s :

a-split and b-split phases have length 2 and increase the explored
territory by 2 nodes, thus the number of phases is (5n + 2)/2 and
so E∗G ′,s has length 5n + 2. This number is also the exploration
time for E∗G ′,s when B = ∅, (E∗G ′,s ends in s).

This is also the cost of the BHS, i.e. there is no allocation of the
black hole that yields a larger exploration time.
Observe that the set of the meeting points in E∗G ′,s is
{vi : 1 ≤ i ≤ n} ∪ {s}.
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Proof of Lemma 4 (3)

Claim: Consider the meeting step when the agents are to meet at
a node vi , (1 ≤ i ≤ n). If a black hole has just been discovered,
then the remaining exploration time for this case is not greater
than the remaining exploration time for the case B = ∅.

Proof:

• If b is the flag node vFi or one of the twin edges of (vi−1, vi )
or (vi , vj), then the surviving agent can reach s by following
the remaining part of the Hamiltonian cycle. Remaining cost
at most: n + 1− i .

• If b is node vi+1, then there is a path of length 4 in G ′ from
vi to vi+2 bypassing vi+1 (Lemma 3). The surviving agent can
use this safe path and then follow the remaining part of the
Hamiltonian cycle. Remaining cost at most: n + 2− i .

• If B = ∅, remaining cost at least 2(n + 1− i).
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Proof of Lemma 5 (1)

Each phase of EG ′,s has length at least two (Lemma 2) and cannot
explore more than two unexplored nodes. G ′ has 5n + 2 unexplored
nodes so EG ′,s must end in s, and each of its phases must be either
an a-split or a b-split.

Let ME be the sequence of the meeting points for EG ′,s at the end
of each a-split, excluding s.
Each meeting point vi ∈ ME must have degree at least 5:

- one neighbor for the initial exploration of vi ,

- two unexplored neighbors for the a-split that ends in vi ,

- two unexplored neighbors for the a-split that leaves vi .

Thus, only the original nodes of G ′ can be in ME , since flag nodes
have 1 neighbor and twin nodes have 4.
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Proof of Lemma 5 (2)

Claim: The nodes x and y must be the two endpoints of ME ,
node s cannot be in ME and each node v in G must be in ME .

Proof:
s is the only initially safe node so the first phase must be a b-split
from s. The first a-split in EG ′,s is from s to x or y and the last
one starts from y or x and ends in s.
Now, if s is an indermediate meeting point, then we need another
a-split to s. But each of these (four) phases require two
unexplored neighbors, thus s must have degree 8. Contradiction,
as s has degree 7.
Finally, for each v in G , its flag node vF has to be explored with a
b-split having as meeting point v . Thus v must be in ME .
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Proof of Lemma 5 (3)

ME defines a Hamiltonian cycle on G :

(a) each node of G appears at most once in ME ;

(b) if vi , vj are consecutive in ME , then (vi , vj) must be in G .

Proof of (a):

A node vi ∈ ME needs:

- at least one neighbor for its initial exploration,

- two unexplored neighbors, for each occurence of vi in ME , for
the a-split that ends in it,

- two more unexplored neighbors for the a-split that leaves vi .

- one more neighbor for the exploration of its flag node (b-split).

If vi occurs k times in ME then it must have at least
1 + 4k + 2 = 3 + 4k neighbors. But each original node in G ′ has
only 10 neighbors so k ≤ 1.
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Proof of Lemma 5 (4)

Proof of (b):

According to the structure of G ′, a-splits with original nodes as
meeting points can either:

• explore two twin nodes of an original node, or

• explore two original nodes (big a-split).
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An approximation algorithm for the BHS problem in
arbitrary networks

The idea: Find a spanning tree in G and explore the graph by
traversing its edges.
(e.g. Both agents traverse the tree together in depth-first order.
One explores a new node while p the other waits in the parent of
p.)
This approach guarantees an approximation ratio of 4:

- any exploration of an n-node needs at least n − 1 steps,

- exploring an n-node tree with the above needs (4(n − 1)− 2l)
steps, l the number of leaves.
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For this approach we need:

1. A good exploration scheme for trees.

2. An algorithm for constructing a ”good” spanning tree of G .

STE (Spanning-Tree Exploration) algorithm returns, for a given
graph G and a starting node s, the exploration scheme for the tree
computed by algorithm Generate-Tree(G,s).

STE algorithm guarantees an approximation ratio of at most 33
8 .
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Exploration schemes for trees

Let T be an n-node tree rooted at s, n ≥ 2.
Idea for the scheme:

• p internal node with x children

• two groups: bx/2c, dx/2e
• agents follow the depth-first traversal of internal nodes

• when Agent-1 comes to a new node, it visits all its children in
group 1

• Agent-2 visits the children in group 2.
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Types of nodes

We classify all nodes of T except s:

• type-1 nodes: the leaves;

• type-3 nodes: the internal nodes with at least one sibling;

• type-4 nodes: the internal nodes without siblings.

xt : the number of type-t nodes.
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Lemma

T a tree rooted at s with n ≥ 2. The exploration scheme
ET = (XT ,YT ) for T is feasible, can be constructed in linear time
and its cost is at most

x1 + 3x3 + 4x4 + 1.

The heuristic algorithm Generate-Tree(G,s) computes a spanning
tree TG of a given graph G = (V ,E ), which tries to achieve a
relatively small value of x1 + 3x3 + 4x4 + 1.
To achieve that, the algorithm tries to avoid creating type-4 nodes.
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Thank You!!!
¨̂
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