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.. Definition of sublinear algorithms

We are familiar with some algorithms that have sublinear
running time: e.g Binary search.

However, algorithms that need preprossesing (in Ω(n) time)
in order to run in sublinear time are now called
”pseudo-sublinear time” algorithms.

.
Definition:
..

.

. ..

.

.

Algorithms which run in o(n) time without preprossesing of
the input are called Sublinear - time Algorithms.

Note that such algorithms do not read the entire input but
only an infinitesimal part of it!
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.. Example 1: Searching in a sorted list

Our goal is to find if x is one of the n elements given in the
input.

We assume that the n elements are stored in a
doubly-linked, each list element has access to the next and
preceding element in the list, and the list is sorted.

We also assume that we have access to all elements in the
list

All n list elements are stored in an array (but the array is
not sorted and we do not impose any order for the array
elements).

We can easily see that it is impossible to do the search in
o(n) time using a deterministic algorithm.

However, if we allow randomization, then we can complete
the search in O(

√
n) expected time
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.
Randomized algorithm
..

.

. ..

.

.

Sample uniformly at random a set S of Θ(
√
n) elements

from the input.

Scan all the elements in S and in O(
√
n) time we can find

the max p ∈ S and the min q ∈ S such that p ≤ x ≤ q.

Traverse the input list starting at p until we find either the
sought key x or we find element q.
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.
Lemma 1
..

.

. ..

.

.

The algorithm above completes the search in expected O(
√
n)

time.

.
Proof
..

.

. ..

.

.

The running time of the algorithm if equal to O(
√
n) plus the

number of the input elements between p and q. Since S
contains Θ(

√
n) elements, the expected number of input

elements between p and q is O(n/|S|) = O(
√
n). This implies

that the expected running time of the algorithm is O(
√
n).
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.. Example 2:Intersection of 2 polygons

.
Problem
..

.

. ..

.

.

Given two convex polygons A and B in R2, each with n vertices,
determine if they intersect, and if so, then find a point in their
intersection.

This problem can be solved in O(n) time, for example, by
observing that it can be described as a linear programming
instance in 2-dimensions.

In fact, within the same time one can either find a point
that is in the intersection of A and B, or find a line L that
separates A from B.

Can we obtain a better running time?
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.. O(
√
n) algorithm

We assume that A and B are given by their doubly-linked lists
of vertices such that each vertex has as its successor the next
vertex of the polygon in the clockwise order.

.
Algorithm
..

.

. ..

.

.

Sample uniformly at random Θ(
√
n) vertices from each A

and B, and let CA and CB be the convex hulls of the
sample point sets for the polygons A and B, respectively.

In O(
√
n) time we can check if CA and CB intersects.
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If they don’t,let

L: the bitangent separating line returned by the algorithm.
a,b: The points in L that belong to A and B, respectively.
a1, a2:the two vertices adjacent to a in A.
PA: We define polygon PA by walking from a to a1 and
then continue walking along the boundary of A until we
cross L again (expected size: O(

√
n)).

To be continued on the whiteboard...

.
Lemma 2
..

.

. ..

.

.

The problem of determining whether two convex n-gons
intersect can be solved in O(

√
n) expected time, which is

asymptotically optimal.
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.. Approximating the Average Degree

Assume we have access to the degree distribution of the vertices
of an undirected connected graph G = (V,E), i.e., for any
vertex v ∈ V we can query for its degree.

.
Problem
..

.

. ..

.

.

Can we achieve a good approximation of the average degree in
G by looking at a sublinear number of vertices?

It seems that approximating the average degree is
equivalent to approximating the average of a set of n
numbers with values between 1 and n - 1, which is not
possible in sublinear time.

But our problem is much easier because the degrees of the
vertices we do not sample depends on the degrees of the
vertices we do sample!
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.
Proposition
..

.

. ..

.

.

Let d denote the average degree in G = (V,E) and let dS denote
the random variable for the average degree of a set S of s
vertices chosen uniformly at random from V . We will show that
if we set s ≥ β

√
n/ϵO(1) for an appropriate constant β, then

dS ≥ (12 − ϵ) ∗ d with probability at least 1− ϵ
64 .
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.. Approximating the Average Degree

By using Markov inequality we get: dS ≤ (1 + ϵ) ∗ d with
probability at least 1− 1

1+ϵ ≥
ϵ
2 .

.
Algorithm
..

.

. ..

.

.

Pick 8/ϵ sets Si uniformly at random, each of size s, and output
the set with the smallest average degree.

Hence, the probability that all of the sets Si have too high
average degree is at most (1− ϵ

2)
8/ϵ ≤ 1

8 .

The probability that one of them has too small average
degree is at most 8

ϵ ∗
ϵ
64 = 1

8 .

Hence, the output value will satisfy both inequalities with
probability at least 3/4.

This gives us a (2 + ϵ)-approximation algorithm.
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.. Lower bound

Let H be the set of the
√
ϵn vertices with highest degree in

G and let L = V�H be the set of the remaining vertices.

.
Proposition
..

.

. ..

.

.

The sum of the degrees of the vertices in L is at least (12 − ϵ)
times the sum of the degrees of all vertices.

Let dH be the degree of a vertex with the smallest degree
in H.

We assume that all sampled vertices come from the set L.

Let Xi, 1 ≤ i ≤ s, be the random variable for the degree of
the ith vertex from S.
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.. Lower bound

From Hoeffding bounds it follows that:

Pr[
s∑

i=1

xi ≤ (1− ϵ)E[
s∑

i=1

Xi]] ≤ e
−E[

∑s
i=1 Xi]ϵ

2

dH

We know that: d ≥ dH ∗ |H|/n
So, E[Xi] ≥ (12 − ϵ) ∗ dH ∗ |H|/n and by linearity of

expectation: E[

s∑
i=1

Xi] ≥ s ∗ (1
2
− ϵ) ∗ dH ∗ |H|/n

By choosing s appropriately we can have dS ≥ (1− ϵ) ∗ d
with high probability (depending on s).
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.. Minimum spanning trees

Let G = (V,E) be an undirected connected weighted graph
with maximum degree D and integer edge weights from 1, .
. . ,W.

We assume that the graph is given in adjacency list
representation, i.e., for every vertex v there is a list of its at
most D neighbors, which can be accessed from v.

It is possible to select a vertex uniformly at random.
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.. MST cost approximation algorithm

.
Main Idea
..

.

. ..

.

.

Express the cost of a minimum spanning tree as the number of
connected components in certain auxiliary subgraphs of G.

It can be shown that: MST = n−W+
W−1∑
i=1

c(i)

So there is a simple algorithm for the approximation of
MST weight.

Gouleakis Themistoklis Sublinear-time Algorithms



Introduction to sublinear algorithms - examples
Sublinear Time Algorithms for Graph Problems

Problems in metric spaces

Approximating the Average Degree
Minimum spanning trees

.. MST cost approximation algorithm

.
Main Idea
..

.

. ..

.

.

Express the cost of a minimum spanning tree as the number of
connected components in certain auxiliary subgraphs of G.

It can be shown that: MST = n−W+
W−1∑
i=1

c(i)

So there is a simple algorithm for the approximation of
MST weight.

Gouleakis Themistoklis Sublinear-time Algorithms



Introduction to sublinear algorithms - examples
Sublinear Time Algorithms for Graph Problems

Problems in metric spaces

Approximating the Average Degree
Minimum spanning trees

.. MST cost approximation algorithm

.
Main Idea
..

.

. ..

.

.

Express the cost of a minimum spanning tree as the number of
connected components in certain auxiliary subgraphs of G.

It can be shown that: MST = n−W+
W−1∑
i=1

c(i)

So there is a simple algorithm for the approximation of
MST weight.

Gouleakis Themistoklis Sublinear-time Algorithms



Introduction to sublinear algorithms - examples
Sublinear Time Algorithms for Graph Problems

Problems in metric spaces

Approximating the Average Degree
Minimum spanning trees

Gouleakis Themistoklis Sublinear-time Algorithms



Introduction to sublinear algorithms - examples
Sublinear Time Algorithms for Graph Problems

Problems in metric spaces

Approximating the Average Degree
Minimum spanning trees

Gouleakis Themistoklis Sublinear-time Algorithms



Introduction to sublinear algorithms - examples
Sublinear Time Algorithms for Graph Problems

Problems in metric spaces

Approximating the Average Degree
Minimum spanning trees

Gouleakis Themistoklis Sublinear-time Algorithms



Introduction to sublinear algorithms - examples
Sublinear Time Algorithms for Graph Problems

Problems in metric spaces

Approximating the Average Degree
Minimum spanning trees

.
Algorithm
..

.

. ..

.

.

APPROXMSTWEIGHT(G,ε) for i = 1 to W 1 Compute

estimator c(i) for c(i) output MST = n−W+

W−1∑
i=1

c(i)
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.. Approximation algorithm for connected components

.
Algorithm
..

.

. ..

.

.

APPROXCONNECTEDCOMPS(G, s) Input: an arbitrary
undirected graph G
Output: c: an estimation of the number of connected
components of G
Choose s vertices u1, ..., us uniformly at random.
for i = 1 to s do choose X according to Pr[X ≥ k] = 1/k
run breadth-fist-search (BFS) starting at ui until either (1) the
whole connected component containing uihas been explored, or
(2) X vertices have been explored if BFS stopped in case (1)
then bi = 1 else bi = 0

output c =
n

s

s∑
i=1

bi

Gouleakis Themistoklis Sublinear-time Algorithms



Introduction to sublinear algorithms - examples
Sublinear Time Algorithms for Graph Problems

Problems in metric spaces

Approximating the Average Degree
Minimum spanning trees

.. Analysis of the algorithm

Fix an arbitrary connected component C and let |C| denote
the number of vertices in the connected component.

Let c denote the number of connected components in G.

E[bi] =
∑

connectedcomponents

Pr[ui ∈ C] ∗ Pr[X ≥ |C|] =

∑ |C|
n

∗ 1

|C|
=

c

n

By linearity of expectation: E[c] = c.

Var[bi] = E[b2i ]− E[bi]
2 ≤ E[b2i ] = E[bi] =

c
n

The bi are mutually independent and so we have

Pr[|c− E[c]| ≥ λn] ≤ n∗c
s∗λ2∗n2 ≤ 1

λ2∗s
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From this, it follows that one can approximate the number of
connected components within additive error of λ ∗ n in a graph

with maximum degree D in O(s ∗D ∗ logn) = O(
D ∗ logn
λ2 ∗ ϱ

) time

and with probability 1− ϱ.
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.. Metric Steiner tree

.
Steiner tree Problem definition
..

.

. ..

.

.

Given an undirected graph G=(V,E) with nonnegative edge
costs and whose vertices are partitioned into two sets,
R(equired) and S(teiner) find a minimum cost tree in G that
contains all the required vertices and any subset of Steiner
vertices.

.
Metric Steiner tree
..

.

. ..

.

.

If the edge costs satisfy the triangle inequality
(∀u, v,w : cost(u, v) ≤ cost(u,w) + cost(w, v)) we call that :
Metric Steiner tree problem.
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.
Theorem 3.2
..

.

. ..

.

.

There is an approximation factor preserving reduction from the
Steiner tree to the metric Steiner tree problem.

Proof:
.
Construction
..

.

. ..

.

.

Let G’ be K|V|

Define: cost(u,v) (in G’)= cost of the shortest path from u
to v in G (G’ is the metric closure of G).

The sets R,S remain the same.

Also, OPT′ ≤ OPT.
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.
Proof
..

.

. ..

.

.

Let T’ be a Steiner tree in G’.

Replace each edge of T’ with the corresponding path of
equal cost in T.

Delete some edges to obtain a tree T.

As we can see,∀T′∃T such that cost(T) ≤ cost(T′). So,
OPT ≤ OPT′.

Finally OPT=OPT’. And this is an approximation factor
preserving reduction.
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.. MST-based algorithm

.
Theorem 3.3
..
.
. ..

.

.The cost of an MST on R is within 2*OPT.

.
Proof
..

.

. ..

.

.

Consider a Steiner tree of cost OPT. By doubling its edges
we obtain an Eulerian graph connecting all vertices of R
and, possibly, some Steiner vertices.

Find an Euler tour of this graph.

Next obtain a Hamiltonian cycle on the vertices of R by
traversing the Euler tour and short-cutting Steiner vertices
and previously visited vertices of R.
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Because of triangle inequality, the shortcuts do not increase
the cost of the tour. If we delete one edge of this
Hamiltonian cycle, we obtain a path that spans R and has
cost at most 2 OPT. This path is also a spanning tree on
R. Hence, the MST on R has cost at most 2 OPT.
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.
Tight Example
..

.

. ..

.

.

For a tight example, consider a graph with n required vertices
and one Steiner vertex. An edge between the Steiner vertex and
a required vertex has cost 1, and an edge between two required
vertices has cost 2 (not all edges of cost 2 are shown below). In
this graph, any MST on R has cost 2(n− 1), while OPT = n
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.. TSP

.
Travelling salesman problem (TSP)
..

.

. ..

.

.

Given a complete graph with non-negative edge costs, find a
minimum cost cycle visiting every vertex exactly once.

.
Theorem 3.6
..

.

. ..

.

.

For any polynomial time computable function α(n), TSP
cannot be approximated within a factor of α(n), unless P = NP.
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Assume, for a contradiction, that there is a factor α(n)
polynomial time approximation algorithm, A, for the general
TSP problem. We will show that A can be used for deciding the
Hamiltonian cycle problem (which is NP hard) in polynomial
time, thus implying P = NP.

.
Proof
..

.

. ..

.

.

The central idea is a reduction from the Hamiltonian cycle
problem to TSP, that transforms a graph G on n vertices
to an edge-weighted complete graph G’ on n vertices such
that:

if G has a Hamiltonian cycle, then the cost of an optimal
TSP tour in G’ is n
if G does not have a Hamiltonian cycle, then an optimal
TSP tour in G’ is of cost ≥ α(n) ∗ n.

The reduction is simple. Assign a weight of 1 to edges of
G, and a weight of α(n) ∗ n to non-edges, to obtain G’.
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.. A simple factor 2 algorithm

The lower bound we will use for obtaining this factor is the cost
of an MST in G.

.
Algorithm: Metric TSP factor 2
..

.

. ..

.

.

...1 Find an MST, T, of G.

...2 Double every edge of the MST to obtain an Eulerian graph.

...3 Find an Eulerian tour, T , on this graph.

...4 Output the tour that visits vertices of G in the order of
their first appearance in T . Let C be this tour.
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.
Theorem 3.8
..

.

. ..

.

.

Algorithm 3.7 is a factor 2 approximation algorithm for metric
TSP.

.
Proof
..

.

. ..

.

.

As noted above, cost(T) ≤ OPT. Since T’ contains each edge of
T twice, cost(T’) = 2*cost(T). Because of triangle inequality,
after the short-cutting step, cost(C) ≤ cost(T′). Combining
these inequalities we get that cost(C) ≤ 2OPT.
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T twice, cost(T’) = 2*cost(T). Because of triangle inequality,
after the short-cutting step, cost(C) ≤ cost(T′). Combining
these inequalities we get that cost(C) ≤ 2OPT.
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.
Tight Example
..

.

. ..

.

.

A tight example for this algorithm is given by a complete graph
on n vertices with edges of cost 1 and 2. We present the graph
for n = 6 below, where thick edges have cost 2 and remaining
edges have cost 1. For arbitrary n the graph has 2n-2 edges of
cost 1, with these edges forming the union of a star and an n 1
cycle; all remaining edges have cost 2.
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Suppose that the MST found by the algorithm is the spanning
star created by edges of cost 1. Moreover, suppose that the
Euler tour constructed in Step 3 visits vertices in order shown
next for n = 6:
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.. Improving the factor to 3/2

.
Algorithm - factor 3/2
..

.

. ..

.

.

Find an MST of G, say T.

Compute a minimum cost perfect matching, M, on the set
of odd-degree vertices of T. Add M to T and obtain an
Eulerian graph.

Find an Euler tour, T , of this graph.

Output the tour that visits vertices of G in order of their
first appearance in T . Let C be this tour.
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.
Lemma 3.11
..

.

. ..

.

.

Let V′ ⊆ V be the set of odd-degree vertices of G ( |V′| is even)
and let M be a minimum cost perfect matching on V’. Then,
cost(M) ≤ OPT/2.

.
Proof
..

.

. ..

.

.

Let τ :optimal TSP tour. Let τ ′ be the tour on V’ obtained by
short-cutting τ . By the triangle inequality, cost(τ ′) ≤ cost(τ).
Now, τ ′ is the union of two perfect matchings on V’, each
consisting of alternate edges of τ . Thus, the cheaper of these
matchings has cost ≤ cost(τ ′)/2 ≤ OPT/2
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. ..
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. ..

.

.

Let τ :optimal TSP tour. Let τ ′ be the tour on V’ obtained by
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.
Theorem 3.12
..

.

. ..

.

.

Algorithm 3.10 achieves an approximation guarantee of 3/2 for
metric TSP.

.
Proof
..

.

. ..

.

.

The cost of the Euler tour,
cost(T′) ≤ cost(T) + cost(M) ≤ OPT+ 1

2OPT = 3
2OPT, where

the first inequality follows by using the two lower bounds on
OPT. Using the triangle inequality, cost(C) ≤ cost(T), and the
theorem follows.
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.
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.
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.

. ..
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.
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.
Tight Example
..

.

. ..

.

.

A tight example for this algorithm is given by the following
graph on n vertices, with n odd:
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.. Introduction

Approximation algorithms for clustering problems in
metric spaces typically have Ω(n2) running time.

Surprisingly, these lower bounds do not necessarily hold
when one wants to estimate the cost of an optimal solution.

There is a constant factor approximation algorithm for the
metric uncapacitated facility location problem with
uniform costs and in which every point can open a facility,
that runs in O(nlog2n)time, that is, in time sublinear in
the input size.
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.. Problem Definition

.
(Metric) Minimum Facility Location Problem
..

.

. ..

.

.

We are given a metric (P,D), and a subset F ⊆ P of facilities.
For each facility v ∈ F, we are given a non-negative cost f(v),
and for each point u ∈ P, a nonnegative demand d(u). The
problem consists of finding a set F′ ⊆ F, so as to minimize I=∑
v∈F′

f(v) +
∑
u∈P

d(u) ∗D(u,F′) where D(u, F’) = minv∈FD(u, v).

We will focus on the variant of the facility location problem
with F = P and with uniform costs and demands.

That is,∀v ∈ F, f(v) = c for some c ≥ 0,
and ∀u ∈ P, d(u) = 1.

We can assume that c = 1, if we re-scale the given metric.

Thus,I= minF′⊆P{|F′|+
∑
u∈P

D(u,F′)}
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.. Preliminaries

Let (P,D) be a metric with a point set P = p1, ..., pn. For
any point pi ∈ P, and ∀r ≥ 0, we denote by B(pi, r) the set
of points in P which are at distance at most r from pi. For
each i, 1 ≤ i ≤ n, let ri > 0 be the number satisfying∑
p∈B(pi,ri)

(ri −D(pi, p)) = 1.

We can easily see that ∀i : 1 ≤ i ≤ n, we have 1
n ≤ ri ≤ 1
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.
Lemma 1
..

.

. ..

.

.

For every i, with 1 ≤ i ≤ n, we have 1
|B(pi,ri)| ≤ ri ≤ 2

|B(pi,ri/2)| .

.
Proof
..

.

. ..

.

.

By the definition of ri, we have
∑

p∈B(pi,ri)

(ri −D(pi, p)) = 1,

which implies
∑

p∈B(pi,ri)

ri ≥ 1, and thus ri ≥ 1/|B(pi, ri)|. The

other inequality follows directly from the following:

1 =
∑

p∈B(pi,ri)

(ri −D(pi, p)) ≥
∑

p∈B(pi,ri/2)

(ri −D(pi, p)) ≥

|B(pi, ri/2)| ∗ ri/2.
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.
MP Algorithm
..

.

. ..

.

.

...1 Compute the value of ri for every pi ∈ P.

...2 Sort the input such that r1 ≤ r2 ≤ ... ≤ rn.

...3 For i = 1 to n: if there is no open facility in B(pi, 2ri) then
open the facility at pi.

This simple algorithm will return a set of open facilities for
which the total cost is at most 3 times the minimum.
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.
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..

.

. ..

.

.
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.. Cost Estimation

.
Lemma 2
..

.

. ..

.

.

1

4
COPT ≤ 4

∑
pi∈P

ri ≤ 6COPT.

Proof:
.
Lower bound
..

.

. ..

.

.

Since in the MP algorithm for every pi ∈ P there is an open
facility within distance at most 2 ri (for if not, then the
algorithm would open the facility at pi), we get that

2
∑
pi∈P

ri ≥ Cc
MP.

It remains to show that
∑
pi∈P

ri is an upper bound for Cf
MP.
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We first observe that every pi ∈ P is contained in at most
one ball B(pj, rj), for some pj ∈ FMP.
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So,
∑
pi∈P

ri ≥
∑

pj∈FMP

∑
pk∈B(pj,rj)

rk.

Next, we observe that if pj ∈ FMP and pk ∈ B(pj, rj), then
we must have rj ≤ 2rk.
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.. Lower bound

∑
pi∈P

ri ≥
∑

pj∈FMP

∑
pk∈B(pj,rj)

rk ≥
∑

pj∈FMP

∑
pk∈B(pj,rj)

rj
2
=

1

2

∑
pj∈FMP

rj|B(pj, rj)| ≥
1

2

∑
pj∈FMP

1 =
1

2
Cf
MP (using Lemma 1)

Thus, we have: 2 ∗
∑
pi∈P

ri ≥
Cc
MP

2
+

Cf
MP

2
≥ CMP

2
≥ COPT

2
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.. Estimating ri in time O(rinlogn)

There is a constant factor approximation algorithm
(randomized with high probability) of the above complexity.

.
Lemma 3
..

.

. ..

.

.

Let j0 be the maximum integer j, with 1 ≤ j ≤ logn, such that
|B(pi, 2−j)| ≥ 2j. Then, we have 2−(j0+1) ≤ ri ≤ 2−j0+1.

.
Proof
..
.
. ..

.

.Use Lemma 1...

.
Algorithm
..

.

. ..

.

.

Our algorithm to estimate j0 runs as follows:

Set j=logn.

Decrease j by one until for the first time :|B(pi, 2−j)| ≥ 2j
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.
Approximation of |B(pi, 2−j)|
..

.

. ..

.

.

At each step, we pick uniformly at random, and with
replacement, Kj = c2−jnlogn sample points

Let Nj be the number of sample points that are inside the
ball B(pi, 2

−j).

Return βj = nNj/Kj as the estimator of |B(pi, 2−j)|.
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.. Quality of the estimator

.
Lemma 4
..

.

. ..

.

.

If j ≥ j0 + 2, then Pr[βj ≥ 2j] < 1/poly(n).

.
Proof
..

.

. ..

.

.

Since j ≥ j0 + 2, it follows that B(pi, 2
−j) ⊆ B(pi, 2

−(j0+1)). Let
q be the probability that a randomly chosen sample point is in
B(pi, 2

−j). We have q ≤ |B(pi, 2−(j0+1))|/n. By the choice of j0,
we have |B(pi, 2−(j0+1))| < 2j0+1, and thus q < 2j0+1/n ≤ 2j−1/n.
The expected number of sample points that fall inside B(pi, 2

−j)
is E[Nj] = qKj <

clogn
2 . Applying the Chernoff bound, we obtain

Pr[βj ≥ 2j] = Pr[Nj ≥ clogn] < 1/poly(n) .
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Lemma 6
..

.

. ..

.

.

The described procedure estimates the value of ri to within a
constant factor in time O(ri n log n), with high probability.

.
Proof
..

.

. ..

.

.

Let j′0 be the estimated value of j0. By Lemmas 4 and 5, it
follows that with high probability, j0 ≤ j′0 ≤ j0 + 1. If we use the
value r′i = 2−j′0 as an estimation of ri, then by Lemma 3 we
obtain that ri/4 ≤ ri ≤ 2ri. Moreover, with high probability, the

running time of the procedure is at most

logn∑
j=0

O(Kj) =

O(rinlogn).
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.. Estimating the cost of the facility location problem

To approximate the cost of the facility location problem it

suffices to estimate the sum:
∑
i

ri of the radii r1, ..., rn of

the points p1, ..., pn.

A standard approach to this problem would be to sample a
set of s points (for a suitable s), determine (possibly
approximately) their radii, and then output n times their
average radius as an approximation for

∑
i ri.

But, in order to guarantee that we get a constant factor
approximation we need to sample s = Ω(n) points.

This is due to the fact that the average radius can be as
small as 1/n.
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So, we will use : Adaptive sampling:

We start with a constant size sample of points and
determine their average radius.

If our sample is too small we double it and continue until
we have found a sample of sufficient size.

For the analysis we will parameterize the sample size s by
the average value of the ri. Combining this with the
running time of the adaptive algorithm leads to a sublinear
algorithm.
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.. Estimating the Sum of the Radii

Let us first assume that we know the cost of the solution c,
and we sample a set of s points independently and
uniformly at random.

s = Θ(nc logn)

Estimation of each ri: O(rin ∗ logn)
E[time] = s*E[one step] =s∗ E[one step] =
sO( 1n

∑
i rinlogn) = O(nlog2n).

Let xi, for i ∈ 1, 2, ..., s, be the radii of the sample points
taken by the algorithm.

E[Xi] =
∑

j rj
n
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Let S =
∑s

i=1 xi and hence,

E[S] =
s∗
∑

i ri
n =

Θ(n
c
logn)

∑
i ri

n = Θ(
∑

i ri
c ∗ logn) = Θ(logn).

S will be used as an estimator of s
n

∑
i ri

From Hoeffding inequality and 0 ≤ xi ≤ 1:

Pr[S ≥ (1 + ε)E[S]] ≤ e−
ε2E[S]

2(1+ε/3)

Pr[S ≥ (1− ε)E[S]] ≤ e−
ε2E[S]

2

Pr[|S− E[S]| ≥ εE[S]] ≤ 2e−Θ(ε2E[S]) − 2e−Θ(ε2logn)
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.. Removing the assumption

In fact, we don’t know the cost c before. So, we do adaptive
sampling:

.
Algorithm
..

.

. ..

.

.

We start in the first phase by guessing c = n
(underestimation of the cost).

If S < s
nc, then we start a new phase with estimated cost

c/2, and so on.

If S ≥ s
nc, we return S*n/s as the approximation of the

cost.
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The probability that the algorithm ends in a bad phase
(when S far away from s

n ∗ c is low, because
Pr[S ≥ (1 + ε) ∗ E[S]] <1/poly(n), as shown above.

Since we need to have at least one facility in a solution, we
have c ≥ 1, therefore we have at most a logarithmic
number of phases.

Note that we only get a constant slowdown by running
these phases to guess c (at most 2 times the last phase).

.
Theorem
..

.

. ..

.

.

There exists a constant factor approximation algorithm for the
uniform case of the Minimum Facility Location problem which
runs in time O(nlog2n) with high probability.

Gouleakis Themistoklis Sublinear-time Algorithms



Introduction to sublinear algorithms - examples
Sublinear Time Algorithms for Graph Problems

Problems in metric spaces

Metric Steiner tree
Metric TSP
Uniform facility location

The probability that the algorithm ends in a bad phase
(when S far away from s

n ∗ c is low, because
Pr[S ≥ (1 + ε) ∗ E[S]] <1/poly(n), as shown above.

Since we need to have at least one facility in a solution, we
have c ≥ 1, therefore we have at most a logarithmic
number of phases.

Note that we only get a constant slowdown by running
these phases to guess c (at most 2 times the last phase).

.
Theorem
..

.

. ..

.

.

There exists a constant factor approximation algorithm for the
uniform case of the Minimum Facility Location problem which
runs in time O(nlog2n) with high probability.

Gouleakis Themistoklis Sublinear-time Algorithms



Introduction to sublinear algorithms - examples
Sublinear Time Algorithms for Graph Problems

Problems in metric spaces

Metric Steiner tree
Metric TSP
Uniform facility location

The probability that the algorithm ends in a bad phase
(when S far away from s

n ∗ c is low, because
Pr[S ≥ (1 + ε) ∗ E[S]] <1/poly(n), as shown above.

Since we need to have at least one facility in a solution, we
have c ≥ 1, therefore we have at most a logarithmic
number of phases.

Note that we only get a constant slowdown by running
these phases to guess c (at most 2 times the last phase).

.
Theorem
..

.

. ..

.

.

There exists a constant factor approximation algorithm for the
uniform case of the Minimum Facility Location problem which
runs in time O(nlog2n) with high probability.

Gouleakis Themistoklis Sublinear-time Algorithms



Introduction to sublinear algorithms - examples
Sublinear Time Algorithms for Graph Problems

Problems in metric spaces

Metric Steiner tree
Metric TSP
Uniform facility location

The probability that the algorithm ends in a bad phase
(when S far away from s

n ∗ c is low, because
Pr[S ≥ (1 + ε) ∗ E[S]] <1/poly(n), as shown above.

Since we need to have at least one facility in a solution, we
have c ≥ 1, therefore we have at most a logarithmic
number of phases.

Note that we only get a constant slowdown by running
these phases to guess c (at most 2 times the last phase).

.
Theorem
..

.

. ..

.

.

There exists a constant factor approximation algorithm for the
uniform case of the Minimum Facility Location problem which
runs in time O(nlog2n) with high probability.

Gouleakis Themistoklis Sublinear-time Algorithms



Introduction to sublinear algorithms - examples
Sublinear Time Algorithms for Graph Problems

Problems in metric spaces

Metric Steiner tree
Metric TSP
Uniform facility location

.. Lower bounds

Estimating the Cost in the General Case of the Uniform
Minimum Facility Location Problem Requires Ω(n2) Time
(Even for Randomized Algorithms).

Suppose that we relax the restriction: F=P.

.
Theorem 2
..

.

. ..

.

.

For any ϱ ≥ 1, every approximation algorithm (even a
randomized one) with approximation ratio ϱ for the cost of the
Minimum Facility Location problem as defined above requires
time Ω(n2).
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.
Proof
..

.

. ..

.

.

We show the existence of two instances of the metric spaces
which are undistinguishable by any o(n2)-time algorithms and
such that the cost of the Minimum Facility Location in one
instance is greater ϱ times than the one in the other instance
(for every ϱ).
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