Randomization in Parallel and Distributed Computing

Paris Koutris

June 4, 2010

Outline

The Liar Game

Parallel Maximal Independent Set

Parallel Perfect Matching

Hot-Potato Routing

The Liar Game

- We have 2 players, Alice and Bob and 3 integers: N, Q, K
- Alice chooses a number m from $1,2, \ldots, N$
- Bob must find m with Q questions of the form: is m in set S ?
- Alice may lie at most K times
- Bob wins when there exists exactly one possible answer according to Alice's answers
- Either Bob or Alice has a perfect strategy!

Example

$\mathrm{N}=4, \mathrm{~K}=1, \mathrm{Q}=5$, Alice chooses $\mathrm{m}=1$
Bob: Is the number in $\{1,2\}$?

Bob: Is the number in $\{1,2\}$?
Alice: YES (Alice lies only once)
Bob: Is the number in $\{2,3\}$?
Alice: NO (Bob knows that Alice tells the truth, and thus 1, 4 are the only candidates)

Bob: Is the number in $\{4\}$?
Alice: NO (BINGO! Bob has won)

Example

$\mathrm{N}=4, \mathrm{~K}=1, \mathrm{Q}=5$, Alice chooses $\mathrm{m}=1$
Bob: Is the number in $\{1,2\}$?
Alice: NO
Bob: Is the number in $\{1,2\}$?
YES (Alice lies only once)
BOB: Is the number in $\{2,3\}$?
NO (Bob knows that Alice tells the truth, and thus 1, 4 are the only candidates)
Bob: Is the number in $\{4\}$?

Alice: NO (BINGO! Bob has won)

EXAMPLE

$$
N=4, K=1, Q=5 \text {, Alice chooses } m=1
$$

Bob: Is the number in $\{1,2\}$?
Alice: NO
Bob: Is the number in $\{1,2\}$?
Alice: YES (Alice lies only once)

Bob: Is the number in $\{4\}$?

Alice: NO (BINGO! Bob has won)

EXAMPLE

$$
N=4, K=1, Q=5 \text {, Alice chooses } m=1
$$

Bob: Is the number in $\{1,2\}$?
Alice: NO
Bob: Is the number in $\{1,2\}$?
Alice: YES (Alice lies only once)
Bob: Is the number in $\{2,3\}$?
Alice: NO (Bob knows that Alice tells the truth, and thus 1, 4 are the only candidates)

EXAMPLE

$$
N=4, K=1, Q=5, \text { Alice chooses } m=1
$$

Bob: Is the number in $\{1,2\}$?
Alice: NO
Bob: Is the number in $\{1,2\}$?
Alice: YES (Alice lies only once)
Bob: Is the number in $\{2,3\}$?
Alice: NO (Bob knows that Alice tells the truth, and thus 1,4 are the only candidates)
Bob: Is the number in $\{4\}$?
Alice: NO (BINGO! Bob has won)

Strategies

Notice that if $K=0$, the best Bob can do is a binary search. If we fix K, Q, what is the largest N such that Bob always has a winning strategy?

Theorem
If $2^{\mathrm{Q}}<\mathrm{N}\left(1+\mathrm{Q}+\ldots+\binom{\mathrm{Q}}{\mathrm{K}}\right)$, then Alice always wins
For $K=1$, we get that $N>\frac{2^{Q}}{1+Q}$

Proof (1)

- Let Alice play the following dummy strategy: flip a coin to decide whether to lie or not
- If Alice lies more than K times, we declare Bob as the winner
- For $1 \leqslant i \leqslant N$ define the indicator variable

$$
X_{i}= \begin{cases}1 & \text { if } \mathfrak{i} \text { is a candidate at the end } \\ 0 & \text { otherwise }\end{cases}
$$

- Let $X=\sum_{i=1}^{N} X_{i}$. Bob wins $\Leftrightarrow X \leqslant 1$
- Fix i. For every question, Bob gets an indication about whether i is the number or not
- i is a candidate at the end only if there have been at most K NO" answers

Proof (1)

- Let Alice play the following dummy strategy: flip a coin to decide whether to lie or not
- If Alice lies more than K times, we declare Bob as the winner
- For $1 \leqslant i \leqslant N$ define the indicator variable

$$
X_{i}= \begin{cases}1 & \text { if } \mathfrak{i} \text { is a candidate at the end } \\ 0 & \text { otherwise }\end{cases}
$$

- Let $X=\sum_{i=1}^{N} X_{i}$. Bob wins $\Leftrightarrow X \leqslant 1$
- Fix i. For every question, Bob gets an indication about whether i is the number or not
- i is a candidate at the end only if there have been at most K "NO" answers

Proof (2)

- What is the probability of that?

$$
\operatorname{Pr}[\# \mathrm{NO} \leqslant \mathrm{~K}]=\sum_{\mathfrak{i}=1}^{\mathrm{K}} \operatorname{Pr}[\# \mathrm{NO}=\mathrm{i}]=\sum_{i=1}^{\mathrm{K}}\binom{\mathrm{Q}}{\mathfrak{i}} \frac{1}{2^{\mathrm{Q}}}
$$

- Linearity of Expectation: $\mathbb{E}[\mathrm{X}]=\mathrm{N} \cdot \sum_{i=1}^{\mathrm{K}}\binom{\mathrm{Q}}{i} \frac{1}{2 \mathrm{Q}}>1$
- $\operatorname{Pr}[$ Bob wins $]=\operatorname{Pr}[X \leqslant 1]<1$
- Thus, whatever strategy Bob plays, there exists a sequence of choices such that Alice wins \Rightarrow Alice has a winning strategy!

Proof (2)

- What is the probability of that?

$$
\mathbb{P r}[\# \mathrm{NO} \leqslant \mathrm{~K}]=\sum_{i=1}^{\mathrm{K}} \operatorname{Pr}[\# \mathrm{NO}=\mathrm{i}]=\sum_{i=1}^{\mathrm{K}}\binom{\mathrm{Q}}{\mathrm{i}} \frac{1}{2^{\mathrm{Q}}}
$$

- Linearity of Expectation: $\mathbb{E}[\mathrm{X}]=\mathrm{N} \cdot \sum_{i=1}^{K}\binom{\mathrm{Q}}{i} \frac{1}{2^{\mathrm{Q}}}>1$
- $\mathbb{P r}[$ Bob wins $]=\mathbb{P r}[X \leqslant 1]<1$
- Thus, whatever strategy Bob plays, there exists a sequence of choices such that Alice wins \Rightarrow Alice has a winning strategy!

But how Alice actually wins?

- We analyze only the case $K=1$
- Let $S_{x, i}$ be the ministrategy: Alice chooses x and lies at question i (if $i=0$, Alice does not lie)
- Alice has $\mathrm{N} \cdot(\mathrm{Q}+1)>2^{\mathrm{Q}}$ ministrategies
- After each question of Bob, some ministrategies are valid, other not
- STRATEGY: Alice chooses the answer which maximizes the number of valid ministrategies
- After each question, Alice has at least half ministrategies left!
- After Q questions, Alice has at least 2 ministrategies (each with different x)
- OBSERVE: The numbers of the ministrategies are candidates

Outline

\square

Parallel Maximal Independent Set

Parallel Perfect Matching

Hot-Potato Routing

Independent Set

- Given a graph $G=(\mathrm{V}, \mathrm{E})$, find a subset $\mathcal{J} \subseteq \mathrm{V}$ such that for all $(u, v) \in E: u \notin \mathcal{J}$ or $v \notin \mathcal{J}$
- An independent set \mathcal{J} is maximal if \mathcal{J} can not be augmented to a larger independent set
- An independent set \mathcal{J} is maximum if for all independent sets \mathcal{J}^{\prime}, we have that $|\mathcal{J}| \geqslant\left|\mathcal{J}^{\prime}\right|$

How do we find a MIS ?

- Finding a maximum Independent Set is NP-hard
- Finding a maximal Independent Set is simple
- Sequential Algorithm

1. Start with $\mathcal{J}=\emptyset$ and $Q=V$
2. While \mathbb{Q} is not empty, choose any $v \in \mathbb{Q}$
3. Set $\mathcal{J}=\mathcal{J} \cup\{v\}$ and $Q=Q \backslash(v \cup N(v))$
4. Output J

- If at step 2 we choose the lexicographically first v, we get the Lexicographically First MIS (LFMIS)

What about Parallelization ?

- If the problem of finding the LFMIS is in NC, then $\mathrm{P}=\mathrm{NC}$!!
- But we can find fast any arbitrary MIS (and not necessary the LFMIS)
- A Simple Parallel Algorithm for the Maximal Independent Set Problem [Luby '85]

Some Ideas

- At each step, find an independent set S in parallel. Add S to \mathcal{J} and remove $S \cup N(S)$
- We must guarantee a small number of steps
- At each step, guarantee that a constant fraction of remaining vertices is removed \Rightarrow Difficult!
- What if we guarantee instead that during each step, the number of edges incident to $S \cup N(S)$ is large?

Sketch of the algorithm

- Mark each node independently with some probability
- Mark with a bias towards vertices of low degree \Rightarrow few edges with both nodes marked
- Drop the node with the lowest degree so as to get an Independent Set

The Parallel Algorithm

- $\mathrm{I} \leftarrow \emptyset, \mathrm{G}$ the graph
- While G not empty do IN PARALLEL
- Mark each vertex v independently with probability $\frac{1}{2 \mathrm{~d}(v)}$ (always mark isolated nodes)
- For every edge with both nodes marked, unmark the node with the lowest degree (break ties arbitrarily)
- Let S be the set of all marked nodes, I $\leftarrow \mathrm{I} \cup \mathrm{S}$
- Remove from G the vertices $S \cup N(S)$ and all incident edges

Outline of the Analysis

- The algorithm always terminates with a valid Maximal Independent Set
- We have to show that a constant fraction of the remaining edges is removed during each step
- This is enough to give an expected $O(\log n)$ number of steps for the parallel algorithm. Why?

A Random Particle Walk

- Consider a particle on an integer line at position m
- At each step, the particle moves to position $m-X$, where X is a random variable in $[1, m-1$]

- We know that $\mathbb{E}[X] \geqslant g(m)$, where g is a non-decreasing function
- How much does it take for the particle to reach position 1 ?

Theorem

Let T be the number of steps needed so that the particle reaches position 1 starting from n. Then, $\mathbb{E}[\mathrm{T}] \leqslant \int_{1}^{\mathrm{n}} \frac{\mathrm{dx}}{\mathrm{g}(\mathrm{x})}$

Good and Bad

Definition

A vertex v is good if it has at least $\mathrm{d}(v) / 3$ neighbors with degree no more than $\mathrm{d}(v)$, otherwise, it is bad.

Definition

An edge (u, v) is bad if both u and v are bad. If at least one of u, v is good, then it is good.

We will show that:

- The number of good edges is a constant fraction of the edges
- A good edge is deleted with constant probability

How many are the good edges?

Lemma

The number of good edges is at least $|\mathrm{E}| / 2$

- Direct each edge to the higher degree vertex
- If (u, v) is bad, both u, v are bad and let (u, v) directed towards v
- v has at least twice as many outgoing edges as incoming
- We can thus map each incoming bad edge to v to a pair of outgoing edges
- The number of bad edges can not be more than $|\mathrm{E}| / 2$

Why being a good vertex is good? (1)

LEMMA

If v is a good vertex and $\mathrm{d}(v)>0$, the probability that a vertex in $\mathrm{N}(v)$ gets marked is at least $1-e^{-1 / 6}$

Proof.

- $w \in \mathrm{~N}(v)$ gets marked with probability $\frac{1}{2 \mathrm{~d}(w)}$
- v has at least $\mathrm{d}(v) / 3$ neighbors with degree at most $\mathrm{d}(v)$, which are marked with probability at least $\frac{1}{2 \mathrm{~d}(v)}$
- Full independence of marking \Rightarrow probability that none of these neighbors is marked at most $\left(1-\frac{1}{2 \mathrm{~d}(v)}\right)^{\mathrm{d}(v) / 3} \leqslant e^{-1 / 6}$

Why being a good vertex is good?

Lemma

If w is marked, it is chosen in S with probability at least $1 / 2$

Proof.

- Let $\mathrm{H}(w)=\{v \mid v \in \mathrm{~N}(w), \mathrm{d}(v) \geqslant \mathrm{d}(w)\}$, the neighbors of w with degree greater than $\mathrm{d}(w)$
- w is unmarked only if a vertex in $\mathrm{H}(w)$ is marked
- $\operatorname{Pr}[w \notin S \mid w$ marked $] \leqslant \sum_{v \in \mathrm{H}(w)} \operatorname{Pr}[v$ marked $\mid w$ marked $]$
- Pairwise independence $\Rightarrow \sum_{v \in \mathrm{H}(w)} \operatorname{Pr}[v$ marked $]$
- $\operatorname{Pr}[w \notin \mathrm{~S} \mid w$ marked $] \leqslant \sum_{v \in \mathrm{H}(w)} \frac{1}{2 \mathrm{~d}(w)} \leqslant \frac{1}{2}$

Why being a good vertex is good? (3)

Lemma

If v is a good vertex, it is removed with probability at least $\frac{1-e^{-1 / 6}}{2}$

- For v to be removed, it is enough that a neighbor gets marked and then is chosen in S
- A neighbor is marked with probability $\geqslant 1-e^{-1 / 6}$
- If a vertex is marked, it is chosen in S with probability at least $1 / 2$

Lemma

If an edge is good, it is deleted with probability at least $\frac{1-\mathrm{e}^{-1 / 6}}{2}$

Pairwise vs Mutual Independence

- Consider the set of events $A_{1}, A_{2}, \ldots, A_{n}$
- The events $A_{1}, A_{2}, \ldots, A_{n}$ are mutually independent if $\operatorname{Pr}\left[A_{1} \cap A_{2} \ldots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2}\right] \ldots \operatorname{Pr}\left[A_{n}\right]$
- The events $A_{1}, A_{2}, \ldots, A_{n}$ are pairwise independent if for every $i, j: \operatorname{Pr}\left[A_{i} \cap A_{j}\right]=\operatorname{Pr}\left[A_{i}\right] \cdot \operatorname{Pr}\left[A_{j}\right]$
- Pairwise independence is weaker than mutual independence

Parallel MIS Revisited

- The analysis involved only one inequality where mutual independence of events is used
- We can provide a similar inequality and prove a constant probability with pairwise independence
- Thus the algorithm needs only pairwise independent random bits
- Why does this help?

Derandomization using Pairwise Independence

- Consider a probability space where the sample space consists of all binary vectors of length n (e.g. $\{00,01,01,11\}$)
- For any binary vector $\left\langle\mathrm{b}_{0}, \ldots, \mathrm{~b}_{\mathrm{n}-1}\right\rangle$ we define the event $E_{i}: b_{i}=1$
- Denote $p_{i}=\operatorname{Pr}\left[E_{i}\right]$
- If the events E_{i} are mutually independent, we need $\Omega(n)$ random bits: one for each bit of the binary vector
- But we want pairwise independence of the events E_{i}

Derandomization using Pairwise Independence

- We define a new sample space
- Consider the $n \times q$ matrix $A(q$ is a prime between n and $2 n)$

$$
A[i][j]= \begin{cases}1 & \text { if } 0 \leqslant j \leqslant\left\lfloor p_{i} \cdot q\right\rfloor-1 \\ 0 & \text { otherwise } .\end{cases}
$$

- Choose x, y uniformly at random from $0,1, \ldots, q-1$
- Define a random binary vector as $b_{x, y}=\left\langle b_{x, y}^{0}, \ldots, b_{x, y}^{n-1}\right\rangle$ where

$$
b_{x, y}^{i}=A[i][(x+y \cdot i) \bmod q]
$$

- This creates a sample space of q^{2} binary vectors, where each vector has probability $1 / q^{2}$

Derandomization using Pairwise Independence

Lemma
$\operatorname{Pr}\left[\mathrm{E}_{\mathrm{i}}\right]=\mathrm{p}_{\mathrm{i}}^{\prime}=\left\lfloor\mathrm{p}_{\mathrm{i}} \cdot \mathrm{q}\right\rfloor / \mathrm{q}$
There are exactly q pairs of x, y such that $(x+y \cdot i) \equiv l(\operatorname{modq})$ for fixed l. E_{i} occurs when $(x+y \cdot i)(\operatorname{modq})$ is between 0 and $\left\lfloor p_{i} \cdot q\right\rfloor-1$. Thus, we have $p_{i}^{\prime} \cdot q^{2}$ binary vectors where E_{i} occurs.

Lemma

$\operatorname{Pr}\left[E_{i} \cap E_{j}\right]=p_{i}^{\prime} \cdot p_{j}^{\prime}$
For fixed l_{i}, l_{j}, there exists exactly one pair x, y such that $(x+y \cdot \mathfrak{i}) \equiv l_{i}(\bmod q)$ and $(x+y \cdot \mathfrak{j}) \equiv l_{j}(\bmod q)$. The events E_{i} and E_{j} occur both for $\left(p_{i}^{\prime} q\right) \cdot\left(p_{j}^{\prime} q\right)$ pairs of l_{i}, l_{j}

Putting ALL PIECES TOGETHER

- The new sample space has only q^{2} samples, which is $O\left(n^{2}\right)$
- We can try run all these samples in parallel by using only polynomially more processors
- We only have to handle the problem that the new probabilities are not exactly the same (omitted)
- MIS belongs in NC!

Outline

The Liar Game

Parallel Maximal Independent Set

Parallel Perfect Matching

Hot-Potato Routing

MATCHINGS

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph
- A matching in G is a set of edges $M \subset E$ such that no two edges are incident
- A maximum matching is a matching with maximum number of edges [c]
- A perfect matching is a matching containing an edge incident to every vertex of G [b]

(c)

The Tutte Matrix

For simplicity, we will deal with bipartite graphs such that
$G=(U, V, E)$ and $U=\left\{u_{1}, \ldots u_{n}\right\}, V=\left\{v_{1}, \ldots, v_{n}\right\}$

DEfinition

The Tutte Matrix A of a bipartite graph G is a $\mathfrak{n} \times \mathfrak{n}$ matrix such that

$$
A_{i j}= \begin{cases}x_{i j} & \text { if }\left(u_{i}, v_{j}\right) \in E \\ 0 & \text { otherwise }\end{cases}
$$

$$
A=\left(\begin{array}{ccc}
x_{11} & x_{12} & 0 \\
x_{21} & 0 & x_{23} \\
0 & x_{32} & 0
\end{array}\right)
$$

Determinant of the Tutte Matrix

Theorem

$\operatorname{det}(A) \neq 0 \Leftrightarrow G$ has a perfect matching

Proof.

- $\operatorname{det}(A)=\sum_{\pi} \operatorname{sgn}(\pi) \cdot \prod_{i=1}^{n} A_{i \pi(i)}$, where the sum is over all permutations π of $\{1,2, \ldots, n\}$
- Each monomial corresponds to a unique possible perfect matching in G
- The monomial is non-zero off the matching exists in G
- Every pair of monomials differs in at least two variables

Decision version of Perfect Matching

- $\operatorname{det}(A)$ is a polynomial with n^{2} variables
- Use the Schwartz-Zippel algorithm for Polynomial Identity Testing to check whether $\operatorname{det}(A)=0$
- Computing the determinant is used as a subroutine
- A $\mathfrak{n} \times n$ determinant can be computed in $O\left(\log ^{2} \mathfrak{n}\right)$ time using polynomially many processors

Lemma

Deciding whether a graph G has a perfect matching is in RNC

Finding a Perfect Matching Sequentially

- Notice that if edge e belongs to a perfect matching, then for the graph $\mathrm{G}^{\prime}=\mathrm{G} \backslash e$ we have that $\operatorname{det}\left(A^{\prime}\right) \neq 0$
- Sequential Matching

1. Pick an arbitrary edge (i, j) of G
2. Check whether $G^{\prime}=G \backslash\{i, j\}$ has a perfect matching
3. IF YES, add edge $(\mathbf{i}, \mathfrak{j})$ to the matching M and $G \leftarrow \mathrm{G}^{\prime}$
4. ELSE $\mathrm{G} \leftarrow \mathrm{G} \backslash\{(\mathrm{i}, \mathfrak{j})\}$.
5. While M is not a perfect matching, repeat 1

Finding a Perfect Matching: Ideas

- Not parallelizable: G may have many perfect matchings, the processors must be coordinated to search for the same matching!
- IDEA: isolate a perfect matching and then employ the algorithm
- HOW? assign random weights and look for the minimum weight matching

Isolating Lemma

Lemma (Isolating Lemma)

Let $S=\left\{e_{1}, \ldots, e_{m}\right\}$ and $S_{1}, \ldots, S_{k} \subseteq S$. Let each element $e_{i} \in S$ have a weight w_{i} picked u.a.r. from $\{0,1, \ldots, 2 m-1\}$. Define the weight of S_{j} as $w\left(\mathrm{~S}_{\mathrm{j}}\right)=\sum_{e_{i} \in \mathrm{~S}_{\mathrm{j}}} w_{i}$. Then

$$
\operatorname{Pr}\left[\exists \text { a unique set } S_{i} \text { of minimum weight }\right] \geqslant 1 / 2
$$

A counterintuitive lemma: We may have as many as 2^{m} sets, but we have only $2 \mathrm{~m}^{2}$ different weights!

Isolating Lemma: Proof (1)

- We say that an element $e \in S$ is ambiguous if $\min _{S_{j} \mid e \in S_{j}} w\left(S_{j}\right)=\min _{S_{j} \mid e \notin S_{j}} w\left(S_{j}\right)$
- If no bad element exists, then there exists a unique minimum weight set
- We have to bound the probability that a bad element exists
- Principle of Deferred Decisions: suppose that we have chosen random weights for all elements except e_{i}
- Then, $W^{-}=\min _{S_{j} \mid e_{i} \notin S_{j}} w\left(S_{j}\right)$ is already fixed
- Consider $W^{+}=\min _{S_{j} \mid e_{i} \in S_{j}} w\left(S_{j}\right)$ with $w_{i}=0$

Isolating Lemma: Proof (2)

- There is at most one value of w_{i} such that $W^{-}=W^{+}+w_{i}$
- Thus, $\operatorname{Pr}\left[e_{\mathrm{i}}\right.$ is bad $] \leqslant 1 / 2 \mathrm{~m}$
- Union Bound

$$
\operatorname{Pr}[\exists \text { a bad element }] \leqslant \sum_{i=1}^{m} \operatorname{Pr}\left[e_{i} \text { is bad }\right] \leqslant \sum_{i=1}^{m} \frac{1}{2 m}=\frac{1}{2}
$$

The Parallel Algorithm

- For each edge $\left(u_{i}, v_{j}\right)$ pick a random weight $w_{i j}$ from $\{0,1, \ldots, 2|\mathrm{E}|-1\}$
- The sets S_{j} denote all the perfect matchings in G
- Isolating Lemma: there is exists a unique minimum weight perfect matching with probability $\geqslant 1 / 2$
- Assign the values $x_{i j}=2^{w_{i j}}$ to the variables in A to obtain matrix D

Lemma

If G has a unique minimum weight perfect matching M_{0} of weight W_{0}, then $\operatorname{det}(\mathrm{D}) \neq 0$ and the largest power of 2 that divides $\operatorname{det}(\mathrm{D})$ is $2^{W_{0}}$

$$
\operatorname{det}(D)=\sum_{\pi} \operatorname{sgn}(\pi) \cdot \prod_{i=1}^{n} 2^{w_{i \pi(i)}}=\sum_{M} \pm 2^{w(M)}
$$

The Parallel Algorithm

- Pick IN PARALLEL random weights $w_{i j}$ for each edge
- Compute IN PARALLEL $\operatorname{det}(\mathrm{D})$ and W_{0}
- for each edge $\left(u_{i}, v_{j}\right)$ do IN PARALLEL
- Compute $\operatorname{det}\left(\mathrm{D}_{\mathrm{ij}}\right)$ (we remove row i and column \mathfrak{j} from D)
- Compute $r_{i j}=\operatorname{det}\left(D_{i j}\right) \frac{2^{w_{i j}}}{2 w_{0}}$
- If $\mathrm{r}_{i j}$ is ODD, add $\left(u_{i}, v_{j}\right)$ to M
- Check whether M is a valid perfect matching

Correctness

Lemma

The algorithm outputs a perfect matching with probability at least $1 / 2$

- With probability $\geqslant 1 / 2$, a unique minimum weight perfect matching exists
- $\operatorname{det}\left(\mathrm{D}_{\mathfrak{i j}}\right)$ corresponds to the perfect matchings in $\mathrm{G} \backslash\{\mathfrak{i}, \mathfrak{j}\}$
$\operatorname{det}\left(D_{i j}\right)=\sum_{M \in \mathcal{M}(G \backslash\{i, j\})} \pm 2^{w(M)}=2^{-w_{i j}} \sum_{M \cup(i, j) \in \mathcal{M}(G)} \pm 2^{w(M \cup(i, j))}$
- If the minimum weight matching is unique, $\mathrm{r}_{i j}$ is odd iff $(i, j) \in M_{0}$

A few Notes

- We can convert the algorithm to a Las Vegas algorithm
- We can also adapt the algorithm to work for general graphs
- It is an open question whether there is a deterministic fast parallel algorithm for perfect matchings

Outline

The Liar Game

Parallel Maximal Independent Set

Parallel Perfect Matching

Hot-Potato Routing

What is Hot-potato Routing?

- No buffering of packets
- Any packet arriving at a node other than its destination must immediately be forwarded to another node (would you not want to get rid of a hot potato?)

- ADVANTAGES: algorithms perform very well in practice, simple hardware (e.g. optical networks)

What is Hot-potato Routing?

- No buffering of packets
- Any packet arriving at a node other than its destination must immediately be forwarded to another node (would you not want to get rid of a hot potato?)

- Advantages: algorithms perform very well in practice, simple hardware (e.g. optical networks)
- Drawback: hard theoretical analysis

The Model

- A $n \times n$ rectangular mesh

- Synchronous network: at each step, at most one packet is routed to each link
- Batch Routing: at time 0, each node sends a packet to a specified destination node
- Batch Permutation
- Random Destinations
- General Batch problem

A Greedy Approach

- Greedy: Packets prefer links towards the destination nodes
- When routed
- Good links: bring the packet closer to destination
- Bad links: further away from destination (deflected packet)
- We need to specify two things:
- How do the packets move?
- How do we resolve conflicts of preference?

The Algorithm (Sketch)

- Packets have 3 states with decreasing priority

1. RUNNING
2. EXCITED
3. NORMAL

- Initially, all packets are normal and routed greedily: a node is forwarded to a good link, unless a node with higher priority has the same preference (ties break arbitrarily)
- Each time a packet gets deflected, it has a small probability p of getting excited: it tries to take one of the two shortest "one-bend" paths to its destination (home run)
- If the home run is interrupted, the nodes comes back to normal

Normal State

Packets are routed greedily towards one of the two links that bring them closer to the destination node

Deflected Packets

- A packet may be deflected when a packet with higher priority uses the same link
- With a small probability p, the packet gets excited

Home Run

- An excited packet follows u.a.r one of the two "one bend" paths towards the destination node
- Then, it changes to running state

- If interrupted by a higher priority packet, returns to normal

Analysis

- What is the probability of a packet completing a home run?
- We consider a powerful adversary: the adversary is allowed to place the other packets at nodes in the mesh, choose their destinations and deflect them at will in order to get them "excited"
- Intuition: The adversary has limited ammunition to make the home run fail

Excited vs Excited

An excited node does not conflict with another excited node with probability at least $(1-p)^{3}$

Excited vs Running

- A packet π gets excited at (x, y) at time t
- A node holds no excited packet with probability $p^{\prime}=(1-p)^{4}$
- π may be interrupted by a running packet excited at time $t-d$ at node $(x, y+d) \Rightarrow$ at most $n-1$ such packets, probability of no conflict at least $p^{\prime} \cdot p^{\prime n-1}=(1-p)^{4 n}$

Running vs Running

- A running packet π conflicts another running packet only during the bend
- π may be interrupted by a running packet having destination at the same row $\Rightarrow \mathrm{n}-1$ such packets, each excited with probability p
- probability of no conflict at least $(1-p)^{n}$

Summing Up

- The probability of completing a home run is

$$
2 \cdot \frac{1}{2} \cdot(1-p)^{3} \cdot(1-p)^{4 n} \cdot(1-p)^{n}
$$

- for $p=1 / n$, the probability is constant c
- each time a packet gets deflected, it reaches the destination with probability $p \cdot c=c / n$
- thus, the expected number of deflections of a packet is $O(n)$
- if a packet is deflected x times, then it will reach its destination in at most $2 x+2 n-2$ steps

Lemma

A packet reaches the destination in expected $\mathrm{O}(\mathrm{n})$ steps

More To Do

- If we allow the probability p to vary with time, we can show that

Lemma

With high probability, all packets reach their destination nodes in at most $\mathrm{O}(\mathrm{n} \ln \mathrm{n})$ steps

- For the general batch problem, if m is the maximum row/column congestion of destination nodes, then

LEMMA

With high probability, all packets reach their destination nodes in at most $\mathrm{O}(\mathrm{m} \ln \mathrm{n})$ steps

The End

Thank You!

