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The Liar Game

• We have 2 players, Alice and Bob and 3 integers: N,Q,K

• Alice chooses a number m from 1, 2, . . . ,N

• Bob must find m with Q questions of the form: is m in set S?

• Alice may lie at most K times

• Bob wins when there exists exactly one possible answer
according to Alice’s answers

• Either Bob or Alice has a perfect strategy!
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Example

N = 4, K = 1, Q = 5, Alice chooses m = 1

Bob: Is the number in {1, 2} ?

Alice: NO

Bob: Is the number in {1, 2} ?

Alice: YES (Alice lies only once)

Bob: Is the number in {2, 3} ?

Alice: NO (Bob knows that Alice tells the truth, and thus 1, 4 are
the only candidates)

Bob: Is the number in {4} ?

Alice: NO (BINGO! Bob has won)
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Strategies

Notice that if K = 0, the best Bob can do is a binary search. If we
fix K,Q, what is the largest N such that Bob always has a winning
strategy?

Theorem

If 2Q < N
(

1 +Q+ . . . +
(
Q
K

))
, then Alice always wins

For K = 1, we get that N > 2Q

1+Q
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Proof (1)

• Let Alice play the following dummy strategy: flip a coin to
decide whether to lie or not

• If Alice lies more than K times, we declare Bob as the winner

• For 1 6 i 6 N define the indicator variable

Xi =

{
1 if i is a candidate at the end,

0 otherwise.

• Let X =
∑N
i=1 Xi. Bob wins ⇔ X 6 1

• Fix i. For every question, Bob gets an indication about
whether i is the number or not

• i is a candidate at the end only if there have been at most K
”NO” answers



The Liar Game Parallel Maximal Independent Set Parallel Perfect Matching Hot-Potato Routing

Proof (1)

• Let Alice play the following dummy strategy: flip a coin to
decide whether to lie or not

• If Alice lies more than K times, we declare Bob as the winner

• For 1 6 i 6 N define the indicator variable

Xi =

{
1 if i is a candidate at the end,

0 otherwise.

• Let X =
∑N
i=1 Xi. Bob wins ⇔ X 6 1

• Fix i. For every question, Bob gets an indication about
whether i is the number or not

• i is a candidate at the end only if there have been at most K
”NO” answers



The Liar Game Parallel Maximal Independent Set Parallel Perfect Matching Hot-Potato Routing

Proof (2)

• What is the probability of that?

Pr[#NO 6 K] =

K∑
i=1

Pr[#NO = i] =

K∑
i=1

(
Q

i

)
1

2Q

• Linearity of Expectation: E[X] = N ·
∑K
i=1

(
Q
i

)
1

2Q
> 1

• Pr[Bob wins] = Pr[X 6 1] < 1

• Thus, whatever strategy Bob plays, there exists a sequence of
choices such that Alice wins ⇒ Alice has a winning strategy!
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But how Alice actually wins?

• We analyze only the case K = 1

• Let Sx,i be the ministrategy: Alice chooses x and lies at
question i (if i=0, Alice does not lie)

• Alice has N · (Q+ 1) > 2Q ministrategies

• After each question of Bob, some ministrategies are valid,
other not

• STRATEGY: Alice chooses the answer which maximizes the
number of valid ministrategies

• After each question, Alice has at least half ministrategies left!

• After Q questions, Alice has at least 2 ministrategies (each
with different x)

• OBSERVE: The numbers of the ministrategies are candidates
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Independent Set

• Given a graph G = (V,E), find a subset I ⊆ V such that for
all (u, v) ∈ E: u /∈ I or v /∈ I

• An independent set I is maximal if I can not be augmented to
a larger independent set

• An independent set I is maximum if for all independent sets
I ′, we have that |I| > |I ′|
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How do we find a MIS ?

• Finding a maximum Independent Set is NP-hard

• Finding a maximal Independent Set is simple

• Sequential Algorithm

1. Start with I = ∅ and Q = V

2. While Q is not empty, choose any v ∈ Q

3. Set I = I ∪ {v} and Q = Q \ (v ∪N(v))
4. Output I

• If at step 2 we choose the lexicographically first v, we get the
Lexicographically First MIS (LFMIS)
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What about Parallelization ?

• If the problem of finding the LFMIS is in NC, then P = NC !!

• But we can find fast any arbitrary MIS (and not necessary
the LFMIS)

• A Simple Parallel Algorithm for the Maximal Independent Set
Problem [Luby ’85]
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Some Ideas

• At each step, find an independent set S in parallel. Add S to I

and remove S ∪N(S)

• We must guarantee a small number of steps

• At each step, guarantee that a constant fraction of remaining
vertices is removed ⇒ Difficult!

• What if we guarantee instead that during each step, the
number of edges incident to S ∪N(S) is large?
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Sketch of the algorithm

• Mark each node independently with some probability

• Mark with a bias towards vertices of low degree ⇒ few edges
with both nodes marked

• Drop the node with the lowest degree so as to get an
Independent Set



The Liar Game Parallel Maximal Independent Set Parallel Perfect Matching Hot-Potato Routing

The Parallel Algorithm

• I← ∅, G the graph

• While G not empty do IN PARALLEL
• Mark each vertex v independently with probability 1

2d(v)

(always mark isolated nodes)
• For every edge with both nodes marked, unmark the node with

the lowest degree (break ties arbitrarily)
• Let S be the set of all marked nodes, I← I ∪ S
• Remove from G the vertices S ∪N(S) and all incident edges
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Outline of the Analysis

• The algorithm always terminates with a valid Maximal
Independent Set

• We have to show that a constant fraction of the remaining
edges is removed during each step

• This is enough to give an expected O(logn) number of steps
for the parallel algorithm. Why?



The Liar Game Parallel Maximal Independent Set Parallel Perfect Matching Hot-Potato Routing

A Random Particle Walk

• Consider a particle on an integer line at position m

• At each step, the particle moves to position m− X, where X
is a random variable in [1,m− 1]

1n

• We know that E[X] > g(m), where g is a non-decreasing
function

• How much does it take for the particle to reach position 1?

Theorem

Let T be the number of steps needed so that the particle reaches
position 1 starting from n. Then, E[T ] 6

∫n
1
dx
g(x)
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Good and Bad

Definition

A vertex v is good if it has at least d(v)/3 neighbors with degree
no more than d(v), otherwise, it is bad.

Definition

An edge (u, v) is bad if both u and v are bad. If at least one of
u, v is good, then it is good.

We will show that:

• The number of good edges is a constant fraction of the edges

• A good edge is deleted with constant probability
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How many are the good edges?

Lemma

The number of good edges is at least |E|/2

bad

3
7

7

bad

bad

4

8

8

9

• Direct each edge to the higher degree vertex

• If (u, v) is bad, both u, v are bad and let (u, v) directed
towards v

• v has at least twice as many outgoing edges as incoming

• We can thus map each incoming bad edge to v to a pair of
outgoing edges

• The number of bad edges can not be more than |E|/2
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Why being a good vertex is good? (1)

Lemma

If v is a good vertex and d(v) > 0, the probability that a vertex in
N(v) gets marked is at least 1 − e−1/6

Proof.

• w ∈ N(v) gets marked with probability 1
2d(w)

• v has at least d(v)/3 neighbors with degree at most d(v),
which are marked with probability at least 1

2d(v)

• Full independence of marking ⇒ probability that none of

these neighbors is marked at most
(

1 − 1
2d(v)

)d(v)/3
6 e−1/6



The Liar Game Parallel Maximal Independent Set Parallel Perfect Matching Hot-Potato Routing

Why being a good vertex is good? (2)

Lemma

If w is marked, it is chosen in S with probability at least 1/2

Proof.

• Let H(w) = {v | v ∈ N(w),d(v) > d(w)}, the neighbors of w
with degree greater than d(w)

• w is unmarked only if a vertex in H(w) is marked

• Pr[w /∈ S | w marked] 6
∑
v∈H(w) Pr[v marked | w marked]

• Pairwise independence ⇒
∑
v∈H(w) Pr[v marked]

• Pr[w /∈ S | w marked] 6
∑
v∈H(w)

1
2d(w) 6 1

2
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Why being a good vertex is good? (3)

Lemma

If v is a good vertex, it is removed with probability at least 1−e−1/6

2

• For v to be removed, it is enough that a neighbor gets marked
and then is chosen in S

• A neighbor is marked with probability > 1 − e−1/6

• If a vertex is marked, it is chosen in S with probability at least
1/2

Lemma

If an edge is good, it is deleted with probability at least 1−e−1/6

2
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Pairwise vs Mutual Independence

• Consider the set of events A1,A2, . . . ,An

• The events A1,A2, . . . ,An are mutually independent if
Pr[A1 ∩A2 . . . ∩An] = Pr[A1] · Pr[A2] . . .Pr[An]

• The events A1,A2, . . . ,An are pairwise independent if for
every i, j : Pr[Ai ∩Aj] = Pr[Ai] · Pr[Aj]

• Pairwise independence is weaker than mutual independence
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Parallel MIS Revisited

• The analysis involved only one inequality where mutual
independence of events is used

• We can provide a similar inequality and prove a constant
probability with pairwise independence

• Thus the algorithm needs only pairwise independent random
bits

• Why does this help?
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Derandomization using Pairwise Independence

• Consider a probability space where the sample space consists
of all binary vectors of length n (e.g. {00, 01, 01, 11})

• For any binary vector 〈b0, . . . ,bn−1〉 we define the event
Ei : bi = 1

• Denote pi = Pr[Ei]

• If the events Ei are mutually independent, we need Ω(n)

random bits: one for each bit of the binary vector

• But we want pairwise independence of the events Ei
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Derandomization using Pairwise Independence

• We define a new sample space

• Consider the n× q matrix A (q is a prime between n and 2n)

A[i][j] =

{
1 if 0 6 j 6 bpi · qc− 1 ,

0 otherwise.

• Choose x,y uniformly at random from 0, 1, . . . ,q− 1

• Define a random binary vector as bx,y = 〈b0
x,y, . . . ,bn−1

x,y 〉
where

bix,y = A[i][(x+ y · i) mod q]

• This creates a sample space of q2 binary vectors, where each
vector has probability 1/q2
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Derandomization using Pairwise Independence

Lemma

Pr[Ei] = p ′i = bpi · qc/q

There are exactly q pairs of x,y such that (x+ y · i) ≡ l(modq)

for fixed l. Ei occurs when (x+ y · i)(modq) is between 0 and
bpi · qc− 1. Thus, we have p ′i · q2 binary vectors where Ei occurs.

Lemma

Pr[Ei ∩ Ej] = p ′i · p ′j

For fixed li, lj, there exists exactly one pair x,y such that
(x+ y · i) ≡ li(modq) and (x+ y · j) ≡ lj(modq). The events Ei
and Ej occur both for (p ′iq) · (p ′jq) pairs of li, lj
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Putting all pieces together

• The new sample space has only q2 samples, which is O(n2)

• We can try run all these samples in parallel by using only
polynomially more processors

• We only have to handle the problem that the new probabilities
are not exactly the same (omitted)

• MIS belongs in NC!
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Matchings

• Let G = (V,E) be a graph

• A matching in G is a set of edges M ⊂ E such that no two
edges are incident

• A maximum matching is a matching with maximum number
of edges [c]

• A perfect matching is a matching containing an edge incident
to every vertex of G [b]
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The Tutte Matrix

For simplicity, we will deal with bipartite graphs such that
G = (U,V,E) and U = {u1, . . .un}, V = {v1, . . . , vn}

Definition

The Tutte Matrix A of a bipartite graph G is a n× n matrix such
that

Aij =

{
xij if (ui, vj) ∈ E ,

0 otherwise.

VU
A =

x11 x12 0
x21 0 x23

0 x32 0


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Determinant of the Tutte Matrix

Theorem

det(A) 6= 0⇔ G has a perfect matching

Proof.

• det(A) =
∑
π sgn(π) ·

∏n
i=1Aiπ(i), where the sum is over

all permutations π of {1, 2, . . . ,n}

• Each monomial corresponds to a unique possible perfect
matching in G

• The monomial is non-zero off the matching exists in G

• Every pair of monomials differs in at least two variables
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Decision version of Perfect Matching

• det(A) is a polynomial with n2 variables

• Use the Schwartz-Zippel algorithm for Polynomial Identity
Testing to check whether det(A) = 0

• Computing the determinant is used as a subroutine

• A n× n determinant can be computed in O(log2 n) time
using polynomially many processors

Lemma

Deciding whether a graph G has a perfect matching is in RNC
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Finding a Perfect Matching Sequentially

• Notice that if edge e belongs to a perfect matching, then for
the graph G ′ = G \ e we have that det(A ′) 6= 0

• Sequential Matching

1. Pick an arbitrary edge (i, j) of G
2. Check whether G ′ = G \ {i, j} has a perfect matching
3. IF YES, add edge (i, j) to the matching M and G← G ′

4. ELSE G← G \ {(i, j)}.
5. While M is not a perfect matching, repeat 1
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Finding a Perfect Matching: Ideas

• Not parallelizable: G may have many perfect matchings, the
processors must be coordinated to search for the same
matching!

• IDEA: isolate a perfect matching and then employ the
algorithm

• HOW? assign random weights and look for the minimum
weight matching
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Isolating Lemma

Lemma (Isolating Lemma)

Let S = {e1, . . . , em} and S1, . . . ,Sk ⊆ S. Let each element ei ∈ S
have a weight wi picked u.a.r. from {0, 1, . . . , 2m− 1}. Define the
weight of Sj as w(Sj) =

∑
ei∈Sj wi. Then

Pr[∃ a unique set Si of minimum weight] > 1/2

A counterintuitive lemma: We may have as many as 2m sets, but
we have only 2m2 different weights!
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Isolating Lemma: Proof (1)

• We say that an element e ∈ S is ambiguous if
minSj|e∈Sj w(Sj) = minSj|e/∈Sj w(Sj)

• If no bad element exists, then there exists a unique minimum
weight set

• We have to bound the probability that a bad element exists

• Principle of Deferred Decisions: suppose that we
have chosen random weights for all elements except ei

• Then, W− = minSj|ei/∈Sj w(Sj) is already fixed

• Consider W+ = minSj|ei∈Sj w(Sj) with wi = 0
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Isolating Lemma: Proof (2)

• There is at most one value of wi such that W− = W+ +wi

• Thus, Pr[ei is bad] 6 1/2m

• Union Bound

Pr[∃ a bad element] 6
m∑
i=1

Pr[ei is bad] 6
m∑
i=1

1

2m
=

1

2
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The Parallel Algorithm

• For each edge (ui, vj) pick a random weight wij from
{0, 1, . . . , 2|E| − 1}

• The sets Sj denote all the perfect matchings in G

• Isolating Lemma: there is exists a unique minimum weight
perfect matching with probability > 1/2

• Assign the values xij = 2wij to the variables in A to obtain
matrix D

Lemma

If G has a unique minimum weight perfect matching M0 of weight
W0, then det(D) 6= 0 and the largest power of 2 that divides
det(D) is 2W0

det(D) =
∑
π

sgn(π) ·
n∏
i=1

2wiπ(i) =
∑
M

±2w(M)
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The Parallel Algorithm

• Pick IN PARALLEL random weights wij for each edge

• Compute IN PARALLEL det(D) and W0

• for each edge (ui, vj) do IN PARALLEL
• Compute det(Dij) (we remove row i and column j from D)

• Compute rij = det(Dij)
2wij

2W0

• If rij is ODD, add (ui, vj) to M

• Check whether M is a valid perfect matching
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Correctness

Lemma

The algorithm outputs a perfect matching with probability at least
1/2

• With probability > 1/2, a unique minimum weight perfect
matching exists

• det(Dij) corresponds to the perfect matchings in G \ {i, j}

det(Dij) =
∑

M∈M(G\{i,j})

±2w(M) = 2−wij
∑

M∪(i,j)∈M(G)

±2w(M∪(i,j))

• If the minimum weight matching is unique, rij is odd iff
(i, j) ∈M0
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A few Notes

• We can convert the algorithm to a Las Vegas algorithm

• We can also adapt the algorithm to work for general graphs

• It is an open question whether there is a deterministic fast
parallel algorithm for perfect matchings
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What is Hot-potato Routing?

• No buffering of packets

• Any packet arriving at a node other than its destination must
immediately be forwarded to another node (would you not
want to get rid of a hot potato?)

• Advantages: algorithms perform very well in practice,
simple hardware (e.g. optical networks)

• Drawback: hard theoretical analysis
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The Model

• A n× n rectangular mesh

• Synchronous network: at each step, at most one packet is
routed to each link

• Batch Routing: at time 0, each node sends a packet to a
specified destination node

• Batch Permutation
• Random Destinations
• General Batch problem
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A Greedy Approach

• Greedy: Packets prefer links towards the destination nodes

• When routed
• Good links: bring the packet closer to destination
• Bad links: further away from destination (deflected packet)

• We need to specify two things:
• How do the packets move?
• How do we resolve conflicts of preference?
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The Algorithm (Sketch)

• Packets have 3 states with decreasing priority

1. running
2. excited
3. normal

• Initially, all packets are normal and routed greedily: a node is
forwarded to a good link, unless a node with higher priority
has the same preference (ties break arbitrarily)

• Each time a packet gets deflected, it has a small probability p
of getting excited: it tries to take one of the two shortest
”one-bend” paths to its destination (home run)

• If the home run is interrupted, the nodes comes back to
normal
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Normal State

Packets are routed greedily towards one of the two links that bring
them closer to the destination node
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Deflected Packets

• A packet may be deflected when a packet with higher priority
uses the same link

• With a small probability p, the packet gets excited
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Home Run

• An excited packet follows u.a.r one of the two ”one bend”
paths towards the destination node

• Then, it changes to running state

• If interrupted by a higher priority packet, returns to normal
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Analysis

• What is the probability of a packet completing a home run?

• We consider a powerful adversary: the adversary is allowed to
place the other packets at nodes in the mesh, choose their
destinations and deflect them at will in order to get them
”excited”

• Intuition: The adversary has limited ammunition to make the
home run fail
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Excited vs Excited

An excited node does not conflict with another excited node with
probability at least (1 − p)3
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Excited vs Running

• A packet π gets excited at (x,y) at time t
• A node holds no excited packet with probability p ′ = (1 − p)4

• π may be interrupted by a running packet excited at time
t− d at node (x,y+ d) ⇒ at most n− 1 such packets,
probability of no conflict at least p ′ · p ′n−1 = (1 − p)4n
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Running vs Running
• A running packet π conflicts another running packet only

during the bend
• π may be interrupted by a running packet having destination

at the same row ⇒ n− 1 such packets, each excited with
probability p

• probability of no conflict at least (1 − p)n
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Summing Up

• The probability of completing a home run is

2 · 1

2
· (1 − p)3 · (1 − p)4n · (1 − p)n

• for p = 1/n, the probability is constant c

• each time a packet gets deflected, it reaches the destination
with probability p · c = c/n

• thus, the expected number of deflections of a packet is O(n)

• if a packet is deflected x times, then it will reach its
destination in at most 2x+ 2n− 2 steps

Lemma

A packet reaches the destination in expected O(n) steps
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More To Do

• If we allow the probability p to vary with time, we can show
that

Lemma

With high probability, all packets reach their destination nodes in
at most O(n lnn) steps

• For the general batch problem, if m is the maximum
row/column congestion of destination nodes, then

Lemma

With high probability, all packets reach their destination nodes in
at most O(m lnn) steps
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The End

Thank You !
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