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Disclaimer

Most of the material presented here is in a straightforward manner
adopted by a tutorial by Piotr Indyk at FOCS 2001 on Algorithmic
Aspects of Geometric Embeddings.
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2 Embeddings of graph-induced metrics
into norms
into probabilistic trees

3 Embeddings of norms into norms
reduction of dimension



Definitions & Examples

Spaces (X , dX )

X set of points (finite or infinite).

Metric distance function d : X × X → R+, i.e.

d(x , x) = 0, ∀x ∈ X .
d(x , y) = d(y , x), ∀x , y ∈ X .
d(x , y) ≤ d(x , z) + d(z , y), ∀x , y , z ∈ X .



Finite Metrics

Denote |X | = n.

Described by
(n

2

)
pairs of distances.

Visualized by edge-weighted graphs.

Example:

X = {a, b, c , d , e}
a b c d e

a 0 3 8 6 1
b 0 9 7 2
c 0 2 7
d 0 5
e 0



Infinite Metrics

We will mostly use X = Rk equipped with some Minkowski norm
`p.

For x ∈ Rk its `p length is given by

‖x‖p =

(
k∑

i=1

|xi |p
)1/p

for 1 ≤ p <∞

For x , y ∈ Rk , the `p-distance between them is ‖x − y‖p.

Some special cases:

p = 1 → Manhattan Distance
p = 2 → Euclidean Distance
p =∞ → ‖x‖∞ = max1≤i≤k{|xi |}

Unit balls



Embeddings

Given metrics (X ,D) and (X ′,D ′) an embedding is a map
f : X → X ′.



Embedding Finite Metrics to Weighted
Graphs

A natural metric distance for weighted graphs is the length of the
shortest path between vertices.

Conversely, a finite metric (X ,D) can clearly be mapped into a
weighted graph G such that:

Set X to be the vertices of the graph.

Set the length of {i , j} to D(i , j).

The shortest path metric in G clearly coincides with D.

In fact, we can drop edges in G as long as the shortest path metric
is left invariant. The resulting minimal graph is called critical
graph.



Example

X = {a, b, c , d , e}

a b c d e

a 0 3 8 6 1
b 0 9 7 2
c 0 2 7
d 0 5
e 0



A Motivating Example

Why Embeddings?

Useful for reducing from “hard” to “easy” spaces.

Given: a set P of n points in `d1 .

Output the diameter of P, i.e. maxp,q∈P ‖p − q‖1

Easy to find in O
(
dn2
)
.

Can be solved in O
(
nd2d

)
by embedding `d1 in `2d

∞.



Can we do better?

‖p − q‖1 =
∑d

i=1 εipi −
∑d

i=1 εiqi for some choice of εi ∈ {−1, 1}.

This suggests introducing 2d vectors y ∈ {−1, 1}d and consider
the inner products y · p. Formally for every point p ∈ P:

1 Compute its inner products with each vector y ∈ {−1, 1}d ,
i.e. fy (p) = y · p.

2 Concatenate these coordinates together, i.e.
f (p) = ⊕y∈{−1,1}d fy (p).

max
p,q∈P

‖p − q‖1 = max
p,q∈P

{
k∑

i=1

εipi −
k∑

i=1

εiqi

}
(not soo trivial) = max

p,q∈P
max

y∈{−1,1}d
{fy (p)− fy (q)}

= max
p,q∈P

‖f (p)− f (q)‖∞

Thus it suffices to solve the problem in `2d
∞.



Can we do better?

Solving the problem in `2d
∞ is much easier:

max
x ,y∈S

‖x − y‖∞ = max
x ,y∈S

max
1≤i≤2d

|xi − yi |

= max
1≤i≤2d

max
x ,y∈S

|xi − yi |

1 Solve the 1-dimensional problem in each of the 2d coordinates.

2 Output the maximum over these values.



Properties of the Embedding

Isometric.

Linear.

Deterministic.



Low Distortion Embeddings

A mapping f : PA → PB :

PA: points from metric space with distance D(·, ·).

PB : points from some normed space, e.g. `d2 .

For any p, q ∈ PA

D(p, q)

c
≤ ‖f (p)− f (q)‖ ≤ D(p, q)

Parameter c is called “distortion”.

Clearly c ≥ 1. If c = 1 the embedding is called isometric.



Overview

Embeddings of graph-induced metrics

into norms (Frechet’s theorem, Bourgain’s theorem,
Matousek’s theorem)
into probabilistic trees (Bartal’s theorem)

Embeddings of norms into norms

dimensionality reduction (Johnson-Lindenstrauss lemma)



Graph-induced Metrics into Norms

Let G = (V ,E ). G induces the shortest path metric D(·, ·).

We will examine various embeddings of (V ,D) into `dp .

General graphs → General Metrics.

Special graphs (planar, trees, etc.) → Special Metrics.

Important parameters we seek to optimize:

Dimension d .

Distortion c .



General Finite Metric into `d
p

Bourgain (1985), Linial, London and Rabinovitch
1995

Any metric (X ,D), and for any p ≥ 1, can be embedded into `dp
with distortion O (log n) for d = O

(
log2 n

)
.

Proof yields randomized algorithm with O
(
n2 log2 n

)
running

time, can be derandomized.

Suffices to prove the theorem for p = 1, the dimension
ensures it extends easily for any p ≥ 1.

Matousek (1997) proved a stronger version of the theorem

with distortion O
(

log n
p

)
for 1 ≤ p < log n.



General Finite Metric into `d
∞

Matousek’s Theorem (1996)

For any b > 0, any metric (X ,D) can be embedded into `d∞ with
distortion c = 2b − 1 for d = O

(
bn1/b log n

)
.

It implies a weaker version of Bourgain’s theorem for
b = O (log n), with distortion O

(
log2 n

)
.

Somewhat easier to derive, yet uses the same technique.



An Isometric Embedding into `n
∞

Frechet’s Theorem

Any metric (X ,D) can be embedded into `n∞ isometrically.

Let X = {p1, p2, . . . , pn}. Define f (p) = ⊕1≤i≤nD(p, pi ).

We claim that ‖f (pi )− f (pj)‖∞ = D(pi , pj).

Shrinking secured by triangle inequality.

‖f (pi )− f (pj)‖∞ = max
1≤i≤n

|D(p, pi )− D(p, pj)| ≤ D(pi , pj).

Expansion secured by the many dimensions.

‖f (pi )− f (pj)‖∞ = max
1≤i≤n

|D(p, pi )− D(p, pj)| ≥ D(pi , pj).

In fact, the dimension can be reduced to n − 1.
For trees, the dimension can be reduced to O (log n).



Drawbacks of Isometric Embeddings

Generally require high dimension (for example Frechet’s
theorem).

Only `∞ has the universal property of Frechet’s theorem.

C4 cannot be embedded into `2 isometrically for any
dimension!

Thus to obtain general results as Frechet’s theorem, one needs to
employ distortion.



Extensions

Instead of using points as “witnesses”, use sets:

D(p,A) = mina∈A D(p, a).

For carefully chosen sets A1, . . . ,Ad ′

f (p) = ⊕1≤i≤d ′D(p,Ai )

Advantage: can achieve o (n) dimensions.

Disadvantage: introduces distortion.



Ensuring Distortion

Ai=red dots

D(p,Ai ) ≤ rp

D(q,Ai ) ≥ rq

|D(p,Ai )− D(q,Ai )| ≥ rq − rp

To show distortion c , we need rq −
rp ≥ D(p, q)/c .

Note |D(p,Ai )−D(q,Ai )| ≤ D(p, q)
(using triangle inequality).

Find sets Ai with the above properties.



Constructing the sets Ai

Denote by Bp a ball centered at
point p.

Two phases:

Ensure existence of rp, rq such that the volume of Bp is not
much smaller than the volume of Bq, an Bp, Bq disjoint
(volume≡cardinality)

Choose Ai ’s at random with proper density, so that with good
probability it hits Bp and avoids Bq.



Ensuring the existence of balls Bp, Bq

Lemma: For each p, q there exists r such that

|B(p, r)| ≥ |B(q, r + D(p, q)/c)|
n1/b

or vice-versa, and the two balls are disjoint (recall that c = 2b− 1)

If we choose Ai by including each point to Ai with probability
≈ 1/|B(q, r + D(p, q)/c)|, then with probability at least ≈ 1/n1/b:

Ai hits B(p, r).

Ai avoids B(p, r + D(p, q)/c).

To ensure success pick n1/b log n subsets.
The problem is that we do not know neither r nor the cardinality
of B(q, r + D(p, q)/c).



Constructing the sets Ai

Generate Ai ’s using log n different probabilities
n−1/b, n−2/b, n−3/b, . . . to make sure we are OK for all densities.

To ensure success for each density, pick n1/b log n subsets.

Total number of sets (which translates into dimension of
embedding): O(bn1/b log n).



Application on Cut Metrics

Consider a graph G = (V ,E ) and a partition S , S̄ of the set of its
vertices.

A cut metric is such that:

d(x , y) =

{
0 if both x , y ∈ S or x , y ∈ S̄
1 otherwise

In sparsest cuts problems we wish to optimize over the cut metric.
This induces a linear integer program. Instead:

Relax the problem to an arbitrary metric taking values for
[0, 1]

Embed the resulting into `1 using Bourgain’s Theorem.

The `1 metric can be decomposed efficiently into a convex
combination of cut metrics.

Output the most suitable cut metric of these decompositions.

Bourgain’s theorem can be used to obtain the best known bounds
on such kind of problems, with an O(log n) factor in the
approximation ratio.



Extensions

Volume respecting embeddings [Feige ’98]:

Stricter notion of embedding

Ensures low distortion of k-dimensional “volumes”:

Volume for a finite metric?
Largest among all of its contractions in Rk−1.
Specializes to ordinary embedding for k = 2.
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Embeddings of graph-induced metrics

into norms (Frechet’s theorem, Bourgain’s theorem,
Matousek’s theorem)
into probabilistic trees (Bartal’s theorem)

Embeddings of norms into norms

dimensionality reduction (Johnson-Lindenstrauss lemma)



Probabilistic Metrics

Probabilistic metric is a convex combination of metrics:

T1,T2, . . . ,Tk are metrics, i.e. Ti = (X ,Di ).

α1, . . . , αk > 0:
∑

i αi = 1.

The probabilistic metric M = (X , D̄) is defined as:

D̄(p, q) =
∑
i

αiDi (p, q)

Fix p, q and select Ti according to the weights αi . Then

E[Di (p, q)] = D̄(p, q)



Probabilistic Embeddings

Given

a metric MY = (Y ,D)

a probabilistic metric MX = (X , D̄) defined by
Ti = (X ,Di ), i = 1, . . . , k

a mapping f : Y → X is a probabilistic embedding of MY into MX

with distortion c if for any p, q ∈ Y :

f expands by at most a factor of c on the average, i.e.

D̄(f (p), f (q)) ≤ cD(p, q)

f never contracts, i.e, for each i = 1, . . . , k

Di (f (p), f (q)) ≥ D(f (p), f (q))

Note the similarity with the general definition of embeddings (scale
by 1/c) but also the stronger second condition.



Embeddings into probabilistic trees

When each Ti is a tree (i.e. its critical graph is a tree).

Why

embed intro probabilistic trees?

Any cycle metric embeds into a tree metric with Ω(n) distortion.
[Rabinovitch-Raz, Gupta’01]

Much better results for probabilistic trees (for any metric).

AKPW’91: 2O(
√

log n log log n) distortion.

Bartal’96, Bartal’98: O(log2 n) and O(log n log log n)
distortion.

FRT’04: O(log n) distortion. (Tight)

Many algorithmic applications, mostly on metrical task systems.



A weak version of Bartal’s theorem

We will prove O(log3 n · log ∆) distortion, where ∆ is the diameter
of the original metric.

Embed M = (Y ,D) into ld∞ with distortion O(log n) and
dimension d = O(log2 n).

Multiply final distortion by O(log n).

Probabilistically partition the ld∞ space into clusters of
different diameters.

Stitch the clusters together into a tree.



Probabilistic partitions

`-partition: any partition of Y into clusters of diameter ≤ `.
(r , ρ)-partition: a distribution over r · ρ-partitions, such that
for any p, q ∈ Y , the probability that p, q go to different
clusters is at most D(p, q)/r .

In ld∞, (r , d)-partitions are easy
to get by randomly shifting a
grid of side r · d .

Probability of a cut between p and q ≤ d · D(p, q)

dr
.



Probabilistic Tree Construction

Construction of a random tree. Initially r = ∆.

Generate an r · d-partition P from a (r , ρ)-partition.
Within any cluster Yi of P, generate a random tree Ti with
root ui using r ′ ← r/2
Create new node u and connect u to ui ’s using edges of
length r · d/2.



Probabilistic Tree Construction - Example



Probabilistic Tree Construction - Example



Probabilistic Tree Construction - Example



Probabilistic Tree Construction - Example



Contraction

No contraction, since:

Consider any cluster Y of
diameter ≤ rd .

Adding new node u with
distance rd/2 to all points
in Y cannot increase the
distance.



Distortion

One factor log n comes from embedding into ld∞.

One factor comes from log ∆ levels in the tree.

One factor log2 n comes from d .



Distortion

Fix points p, q ∈ Y . The pair p, q:

is separated by (∆, d)-partition with probability D(p,q)
∆ ⇒ with

probability at most D(p,q)
∆ level 1 contributes a total of tree

distance d ·∆.

is separated by (∆/2, ρ)-partition with probability D(p,q)
∆/2 ⇒

with probability at most D(p,q)
∆/2 level 1 contributes a total of

tree distance d ·∆/2.

. . .

Expected distance:

Per level: D(p,q)
∆/2i

· d ·∆/2i = d · D(p, q)

Summing over all levels: O(d log ∆) · D(p, q).



Applications on Online/Approximation
Algorithms

Usually good guarantees for tree metrics. Thus for a metric M:

Replace M by a random tree T .

Solve the problem in T using the “good” algorithm.

Interpret it as a solution in M

Competitive/Approximation ratio: Guarantee for trees × distortion
of the embedding.



Overview

Embeddings of graph-induced metrics

into norms (Frechet’s theorem, Bourgain’s theorem,
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Reduction of Dimension in `2

Consider the space Rd with the Euclidean distance.

Is it possible

to embed a high dimensional pointset into a lower dimensional
pointset with low distortion?

Not intuitively clear that this is possible.

Results are somewhat surprising at first glance.



JL-embeddings

Johnson and Lindenstrauss ’84: For every set P of n points in Rd ,
then for every ε > 0 and k ≥ k0 = O(ε−2 log n), there exists
f : Rd → Rk such that for all u, v ∈ P:

(1− ε) ‖u − v‖2 ≤ ‖f (u)− f (v)‖2 ≤ (1 + ε) ‖u − v‖2

Original proof used heavy geometrical approximation tools.

Frankl and Meahara ’88: project onto k random orthonormal
vectors.

Indyk and Motwani ’98: project onto k independent,
spherically symmetric random vectors.

Pick each vector coordinate from a normal distribution
independently.
The squared length of the embedded vector follows the
chi-square distribution.

Dasgupta and Gupta ’99: same as the previous approach, but
makes use of symmetry.



Analysis

Pick k vectors, where each coordinate is taken from a normal
distribution with mean 0 and variance 1.

Project the n points onto a random k-dimensional hyperplane,
i.e. for each point v in the original space, define f (v) to be√

d
k v ′ where v ′ is the projection of v onto the hyperplane.

We need to analyze the distribution of the random variable
‖f (u)− f (v)‖2

‖u − v‖2
. Wlog ‖u − v‖2 = 1.

The distribution of ‖f (u)− f (v)‖2 is the same as that of a random
unit vector projected onto a fixed k-dimensional hyperplane.

Thus, pick a random point on the unit d-dimensional sphere and
project it onto the hyperplane defined by the first k coordinates.



Analysis

Picking a random point on the unit d-dimensional sphere:

Generate vector X = (X1, . . . ,Xd), where each Xi follows
N(0, 1).

Scale to obtain Z = 1
‖X‖(X1, . . . ,Xd)

Project onto the first k coordinates to obtain
Y = 1

‖X‖(X1, . . . ,Xk). Thus, it suffices to analyze

L = ‖Y ‖2 =
X 2

1 + . . .+ X 2
k

X 2
1 + . . .+ X 2

d

By symmetry µ = E[L] = k
d .



Analysis

We need to show concentration around the mean. Using
Chernoff-type reasoning, it can be proved that

Pr[L ≤ (1− ε)µ] ≤ exp

(
−ε2k

4

)
Pr[L ≥ (1 + ε)µ] ≤ exp

(
−k

2

(
ε2

2
− ε2

3

))
Thus, for k > 4 ln n

ε2

2
− ε2

3

, we have that

Pr[|L− µ| > εµ] ≤ 2exp(−2 ln n) =
2

n2

Union bound for all
(n

2

)
pairs, yields that the embedding has the

required property with probability ≥ 1
n .



Further Refinements

The value of k is tight as far as the previous analysis is concerned.

An interesting proof of the theorem was given by Achlioptas ’04,
where the vectors’ coordinates are picked by the distributions:

r =

{
+1 with probability 1/2
−1 with probability 1/2

and

r =
√

3×


+1 with probability 1/6
0 with probability 1/6
−1 with probability 1/6

Analysis is more difficult since spherical symmetry is dropped.



For Further Reading

Uriel Feige. Approximating the bandwidth via volume
respecting embeddings.

Anumam Gupta.Algorithmic Applications of Metric
Embeddings (course).

Piotr Indyk and Jiri Matousek.Low distortion embeddings of
finite metric spaces (book chapter).
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