Embeddings

Andreas Galanis

May 13, 2010

DISCLAIMER

Most of the material presented here is in a straightforward manner adopted by a tutorial by Piotr Indyk at FOCS 2001 on Algorithmic Aspects of Geometric Embeddings.
(1) Definition and Motivation
(2) Embeddings of Graph-induced metrics

- into norms
- into probabilistic trees
(3) Embeddings of norms into norms
- reduction of dimension

Definitions \& Examples

Spaces $\left(X, d_{X}\right)$

- X set of points (finite or infinite).
- Metric distance function $d: X \times X \rightarrow \mathbb{R}_{+}$, i.e.

$$
\begin{array}{ll}
d(x, x)=0, & \forall x \in X \\
d(x, y)=d(y, x), & \forall x, y \in X \\
d(x, y) \leq d(x, z)+d(z, y), & \forall x, y, z \in X
\end{array}
$$

Finite Metrics

- Denote $|X|=n$.
- Described by $\binom{n}{2}$ pairs of distances.
- Visualized by edge-weighted graphs.

Example:

$X=\{a, b, c, d, e\}$					
	a	b	c	d	e
a	0	3	8	6	1
b		0	9	7	2
c			0	2	7
d				0	5
e					0

Infinite Metrics

We will mostly use $X=\mathbb{R}^{k}$ equipped with some Minkowski norm ℓ_{p}.
For $x \in \mathbb{R}^{k}$ its ℓ_{p} length is given by

$$
\|x\|_{p}=\left(\sum_{i=1}^{k}\left|x_{i}\right|^{p}\right)^{1 / p} \text { for } 1 \leq p<\infty
$$

For $x, y \in \mathbb{R}^{k}$, the ℓ_{p}-distance between them is $\|x-y\|_{p}$.
Some special cases:

$$
p=1 \quad \rightarrow \text { Manhattan Distance }
$$

$p=2 \rightarrow$ Euclidean Distance
$p=\infty \rightarrow\|x\|_{\infty}=\max _{1 \leq i \leq k}\left\{\left|x_{i}\right|\right\}$

Unit balls

Embeddings

Given metrics (X, D) and $\left(X^{\prime}, D^{\prime}\right)$ an embedding is a map $f: X \rightarrow X^{\prime}$.

Embedding Finite Metrics to Weighted Graphs

A natural metric distance for weighted graphs is the length of the shortest path between vertices.

Conversely, a finite metric (X, D) can clearly be mapped into a weighted graph G such that:

- Set X to be the vertices of the graph.
- Set the length of $\{i, j\}$ to $D(i, j)$.
- The shortest path metric in G clearly coincides with D.

In fact, we can drop edges in G as long as the shortest path metric is left invariant. The resulting minimal graph is called critical graph.

Example

$$
\begin{array}{l|lllll}
X & X \\
& =\{a, b, c, d, e\} \\
& a & b & c & d & e \\
\hline a & 0 & 3 & 8 & 6 & 1 \\
b & & 0 & 9 & 7 & 2 \\
c & & & 0 & 2 & 7 \\
d & & & & 0 & 5 \\
e & & & & & 0
\end{array}
$$

A Motivating Example

Why Embeddings?

Useful for reducing from "hard" to "easy" spaces.

- Given: a set P of n points in ℓ_{1}^{d}.
- Output the diameter of P, i.e. $\max _{p, q \in P}\|p-q\|_{1}$

- Easy to find in $O\left(d n^{2}\right)$.
- Can be solved in $O\left(n d 2^{d}\right)$ by embedding ℓ_{1}^{d} in $\ell_{\infty}^{2^{d}}$.

CAN WE DO BETTER?

$\|p-q\|_{1}=\sum_{i=1}^{d} \epsilon_{i} p_{i}-\sum_{i=1}^{d} \epsilon_{i} q_{i}$ for some choice of $\epsilon_{i} \in\{-1,1\}$.
This suggests introducing 2^{d} vectors $y \in\{-1,1\}^{d}$ and consider the inner products $y \cdot p$. Formally for every point $p \in P$:
(1) Compute its inner products with each vector $y \in\{-1,1\}^{d}$, i.e. $f_{y}(p)=y \cdot p$.
(2) Concatenate these coordinates together, i.e.

$$
f(p)=\oplus_{y \in\{-1,1\}^{d}} f_{y}(p) .
$$

$$
\begin{aligned}
\max _{p, q \in P}\|p-q\|_{1} & =\max _{p, q \in P}\left\{\sum_{i=1}^{k} \epsilon_{i} p_{i}-\sum_{i=1}^{k} \epsilon_{i} q_{i}\right\} \\
(\text { not soo trivial }) & =\max _{p, q \in P} \max _{y \in\{-1,1\}^{d}}\left\{f_{y}(p)-f_{y}(q)\right\} \\
& =\max _{p, q \in P}\|f(p)-f(q)\|_{\infty}
\end{aligned}
$$

Thus it suffices to solve the problem in $\ell_{\infty}^{2^{d}}$.

CAN WE DO BETTER?

Solving the problem in $\ell_{\infty}^{2^{d}}$ is much easier:

$$
\begin{aligned}
\max _{x, y \in S}\|x-y\|_{\infty} & =\max _{x, y \in S} \max _{1 \leq i \leq 2^{d}}\left|x_{i}-y_{i}\right| \\
& =\max _{1 \leq i \leq 2^{d}} \max _{x, y \in S}\left|x_{i}-y_{i}\right|
\end{aligned}
$$

(1) Solve the 1-dimensional problem in each of the 2^{d} coordinates.
(2) Output the maximum over these values.

Properties of the Embedding

- Isometric.
- Linear.
- Deterministic.

Low Distortion Embeddings

A mapping $f: P_{A} \rightarrow P_{B}$:

- P_{A} : points from metric space with distance $D(\cdot, \cdot)$.
- P_{B} : points from some normed space, e.g. ℓ_{2}^{d}.
- For any $p, q \in P_{A}$

$$
\frac{D(p, q)}{c} \leq\|f(p)-f(q)\| \leq D(p, q)
$$

Parameter c is called "distortion".
Clearly $c \geq 1$. If $c=1$ the embedding is called isometric.

Overview

- Embeddings of graph-induced metrics
- into norms (Frechet's theorem, Bourgain's theorem, Matousek's theorem)
- into probabilistic trees (Bartal's theorem)
- Embeddings of norms into norms
- dimensionality reduction (Johnson-Lindenstrauss lemma)

Graph-induced Metrics into Norms

Let $G=(V, E) . G$ induces the shortest path metric $D(\cdot, \cdot)$.
We will examine various embeddings of (V, D) into ℓ_{p}^{d}.

- General graphs \rightarrow General Metrics.
- Special graphs (planar, trees, etc.) \rightarrow Special Metrics.

Important parameters we seek to optimize:

- Dimension d.
- Distortion c.

General Finite Metric into ℓ_{p}^{d}

Bourgain (1985), Linial, London and Rabinovitch 1995

Any metric (X, D), and for any $p \geq 1$, can be embedded into ℓ_{p}^{d} with distortion $O(\log n)$ for $d=O\left(\log ^{2} n\right)$.

- Proof yields randomized algorithm with $O\left(n^{2} \log ^{2} n\right)$ running time, can be derandomized.
- Suffices to prove the theorem for $p=1$, the dimension ensures it extends easily for any $p \geq 1$.
- Matousek (1997) proved a stronger version of the theorem with distortion $O\left(\frac{\log n}{p}\right)$ for $1 \leq p<\log n$.

General Finite Metric into ℓ_{∞}^{d}

Matousek's Theorem (1996)

For any $b>0$, any metric (X, D) can be embedded into ℓ_{∞}^{d} with distortion $c=2 b-1$ for $d=O\left(b n^{1 / b} \log n\right)$.

- It implies a weaker version of Bourgain's theorem for $b=O(\log n)$, with distortion $O\left(\log ^{2} n\right)$.
- Somewhat easier to derive, yet uses the same technique.

An Isometric Embedding into ℓ_{∞}^{n}

Frechet's Theorem

Any metric (X, D) can be embedded into ℓ_{∞}^{n} isometrically.
Let $X=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. Define $f(p)=\oplus_{1 \leq i \leq n} D\left(p, p_{i}\right)$.
We claim that $\left\|f\left(p_{i}\right)-f\left(p_{j}\right)\right\|_{\infty}=D\left(p_{i}, p_{j}\right)$.

- Shrinking secured by triangle inequality.

$$
\left\|f\left(p_{i}\right)-f\left(p_{j}\right)\right\|_{\infty}=\max _{1 \leq i \leq n}\left|D\left(p, p_{i}\right)-D\left(p, p_{j}\right)\right| \leq D\left(p_{i}, p_{j}\right)
$$

- Expansion secured by the many dimensions.

$$
\left\|f\left(p_{i}\right)-f\left(p_{j}\right)\right\|_{\infty}=\max _{1 \leq i \leq n}\left|D\left(p, p_{i}\right)-D\left(p, p_{j}\right)\right| \geq D\left(p_{i}, p_{j}\right)
$$

In fact, the dimension can be reduced to $n-1$.
For trees, the dimension can be reduced to $O(\log n)$.

Drawbacks of Isometric Embeddings

- Generally require high dimension (for example Frechet's theorem).
- Only ℓ_{∞} has the universal property of Frechet's theorem.
- C_{4} cannot be embedded into ℓ_{2} isometrically for any dimension!

Thus to obtain general results as Frechet's theorem, one needs to employ distortion.

Extensions

Instead of using points as "witnesses", use sets:

- $D(p, A)=\min _{a \in A} D(p, a)$.
- For carefully chosen sets $A_{1}, \ldots, A_{d^{\prime}}$

$$
f(p)=\oplus_{1 \leq i \leq d^{\prime}} D\left(p, A_{i}\right)
$$

Advantage: can achieve $O(n)$ dimensions.
Disadvantage: introduces distortion.

Ensuring Distortion

$$
A_{i}=\text { red dots }
$$

- $D\left(p, A_{i}\right) \leq r_{p}$
- $D\left(q, A_{i}\right) \geq r_{q}$
$\left|D\left(p, A_{i}\right)-D\left(q, A_{i}\right)\right| \geq r_{q}-r_{p}$
To show distortion c, we need r_{q} $r_{p} \geq D(p, q) / c$.
Note $\left|D\left(p, A_{i}\right)-D\left(q, A_{i}\right)\right| \leq D(p, q)$
(using triangle inequality).
Find sets A_{i} with the above properties.

Constructing the sets A_{i}

> Denote by B_{p} a ball centered at point p.

Two phases:

- Ensure existence of r_{p}, r_{q} such that the volume of B_{p} is not much smaller than the volume of B_{q}, an B_{p}, B_{q} disjoint (volume $=$ cardinality)
- Choose A_{i} 's at random with proper density, so that with good probability it hits B_{p} and avoids B_{q}.

Ensuring the existence of balls B_{p}, B_{q}

Lemma: For each p, q there exists r such that

$$
|B(p, r)| \geq \frac{|B(q, r+D(p, q) / c)|}{n^{1 / b}}
$$

or vice-versa, and the two balls are disjoint (recall that $c=2 b-1$)
If we choose A_{i} by including each point to A_{i} with probability $\approx 1 /|B(q, r+D(p, q) / c)|$, then with probability at least $\approx 1 / n^{1 / b}$:

- A_{i} hits $B(p, r)$.
- A_{i} avoids $B(p, r+D(p, q) / c)$.

To ensure success pick $n^{1 / b} \log n$ subsets.
The problem is that we do not know neither r nor the cardinality of $B(q, r+D(p, q) / c)$.

Constructing the sets A_{i}

Generate A_{i} 's using $\log n$ different probabilities $n^{-1 / b}, n^{-2 / b}, n^{-3 / b}, \ldots$ to make sure we are OK for all densities.

To ensure success for each density, pick $n^{1 / b} \log n$ subsets.
Total number of sets (which translates into dimension of embedding): $O\left(b n^{1 / b} \log n\right)$.

Application on Cut Metrics

Consider a graph $G=(V, E)$ and a partition S, \bar{S} of the set of its vertices.

A cut metric is such that:

$$
d(x, y)=\left\{\begin{array}{lr}
0 & \text { if both } x, y \in S \text { or } x, y \in \bar{S} \\
1 & \text { otherwise }
\end{array}\right.
$$

In sparsest cuts problems we wish to optimize over the cut metric. This induces a linear integer program. Instead:

- Relax the problem to an arbitrary metric taking values for [0, 1]
- Embed the resulting into ℓ_{1} using Bourgain's Theorem.
- The ℓ_{1} metric can be decomposed efficiently into a convex combination of cut metrics.
- Output the most suitable cut metric of these decompositions. Bourgain's theorem can be used to obtain the best known bounds on such kind of problems, with an $O(\log n)$ factor in the approximation ratio.

Extensions

Volume respecting embeddings [Feige '98]:

- Stricter notion of embedding
- Ensures low distortion of k-dimensional "volumes":
- Volume for a finite metric?
- Largest among all of its contractions in \mathbb{R}^{k-1}.
- Specializes to ordinary embedding for $\mathrm{k}=2$.

Overview

- Embeddings of graph-induced metrics
- into norms (Frechet's theorem, Bourgain's theorem, Matousek's theorem)
- into probabilistic trees (Bartal's theorem)
- Embeddings of norms into norms
- dimensionality reduction (Johnson-Lindenstrauss lemma)

Probabilistic Metrics

Probabilistic metric is a convex combination of metrics:

- $T_{1}, T_{2}, \ldots, T_{k}$ are metrics, i.e. $T_{i}=\left(X, D_{i}\right)$.
- $\alpha_{1}, \ldots, \alpha_{k}>0: \sum_{i} \alpha_{i}=1$.
- The probabilistic metric $M=(X, \bar{D})$ is defined as:

$$
\bar{D}(p, q)=\sum_{i} \alpha_{i} D_{i}(p, q)
$$

Fix p, q and select T_{i} according to the weights α_{i}. Then

$$
\mathbb{E}\left[D_{i}(p, q)\right]=\bar{D}(p, q)
$$

Probabilistic Embeddings

Given

- a metric $M_{Y}=(Y, D)$
- a probabilistic metric $M_{X}=(X, \bar{D})$ defined by

$$
T_{i}=\left(X, D_{i}\right), i=1, \ldots, k
$$

a mapping $f: Y \rightarrow X$ is a probabilistic embedding of M_{Y} into M_{X} with distortion c if for any $p, q \in Y$:

- f expands by at most a factor of c on the average, i.e.

$$
\bar{D}(f(p), f(q)) \leq c D(p, q)
$$

- f never contracts, i.e, for each $i=1, \ldots, k$

$$
D_{i}(f(p), f(q)) \geq D(f(p), f(q))
$$

Note the similarity with the general definition of embeddings (scale by $1 / c$) but also the stronger second condition.

Embeddings into probabilistic Trees

When each T_{i} is a tree (i.e. its critical graph is a tree).

WHY

embed intro probabilistic trees?
Any cycle metric embeds into a tree metric with $\Omega(n)$ distortion. [Rabinovitch-Raz, Gupta'01]
Much better results for probabilistic trees (for any metric).

- AKPW'91: $2^{O(\sqrt{\log n \log \log n})}$ distortion.
- Bartal'96, Bartal'98: $O\left(\log ^{2} n\right)$ and $O(\log n \log \log n)$ distortion.
- FRT'04: $O(\log n)$ distortion. (Tight)

Many algorithmic applications, mostly on metrical task systems.

A weak version of Bartal's theorem

We will prove $O\left(\log ^{3} n \cdot \log \Delta\right)$ distortion, where Δ is the diameter of the original metric.

- Embed $M=(Y, D)$ into l_{∞}^{d} with distortion $O(\log n)$ and dimension $d=O\left(\log ^{2} n\right)$.
- Multiply final distortion by $O(\log n)$.
- Probabilistically partition the I_{∞}^{d} space into clusters of different diameters.
- Stitch the clusters together into a tree.

Probabilistic Partitions

- ℓ-partition: any partition of Y into clusters of diameter $\leq \ell$.
- (r, ρ)-partition: a distribution over $r \cdot \rho$-partitions, such that for any $p, q \in Y$, the probability that p, q go to different clusters is at most $D(p, q) / r$.
$\ln I_{\infty}^{d},(r, d)$-partitions are easy to get by randomly shifting a grid of side $r \cdot d$.

Probability of a cut between p and $q \leq d \cdot \frac{D(p, q)}{d r}$.

Probabilistic Tree Construction

Construction of a random tree. Initially $r=\Delta$.

- Generate an $r \cdot d$-partition P from a (r, ρ)-partition.
- Within any cluster Y_{i} of P, generate a random tree T_{i} with root u_{i} using $r^{\prime} \leftarrow r / 2$
- Create new node u and connect u to u_{i} 's using edges of length $r \cdot d / 2$.

Probabilistic Tree Construction - Example

\square

Probabilistic Tree Construction - Example

Probabilistic Tree Construction - Example

Probabilistic Tree Construction - Example

Contraction

No contraction, since:

- Consider any cluster Y of diameter $\leq r d$.
- Adding new node u with distance $r d / 2$ to all points in Y cannot increase the distance.

Distortion

- One factor $\log n$ comes from embedding into I_{∞}^{d}.
- One factor comes from $\log \Delta$ levels in the tree.
- One factor $\log ^{2} n$ comes from d.

Distortion

Fix points $p, q \in Y$. The pair p, q :

- is separated by (Δ, d)-partition with probability $\frac{D(p, q)}{\Delta} \Rightarrow$ with probability at most $\frac{D(p, q)}{\Delta}$ level 1 contributes a total of tree distance $d \cdot \Delta$.
- is separated by $(\Delta / 2, \rho)$-partition with probability $\frac{D(p, q)}{\Delta / 2} \Rightarrow$ with probability at most $\frac{D(p, q)}{\Delta / 2}$ level 1 contributes a total of tree distance $d \cdot \Delta / 2$.

Expected distance:

- Per level: $\frac{D(p, q)}{\Delta / 2^{i}} \cdot d \cdot \Delta / 2^{i}=d \cdot D(p, q)$
- Summing over all levels: $O(d \log \Delta) \cdot D(p, q)$.

Applications on Online/ Approximation Algorithms

Usually good guarantees for tree metrics. Thus for a metric M :

- Replace M by a random tree T.
- Solve the problem in T using the "good" algorithm.
- Interpret it as a solution in M

Competitive/Approximation ratio: Guarantee for trees \times distortion of the embedding.

Overview

- Embeddings of graph-induced metrics
- into norms (Frechet's theorem, Bourgain's theorem, Matousek's theorem)
- into probabilistic trees (Bartal's theorem)
- Embeddings of norms into norms
- dimensionality reduction (Johnson-Lindenstrauss lemma)

Reduction of Dimension in ℓ_{2}

Consider the space \mathbb{R}^{d} with the Euclidean distance.

IS IT POSSIBLE

to embed a high dimensional pointset into a lower dimensional pointset with low distortion?

Not intuitively clear that this is possible.
Results are somewhat surprising at first glance.

JL-EMBEDDINGS

Johnson and Lindenstrauss '84: For every set P of n points in \mathbb{R}^{d}, then for every $\epsilon>0$ and $k \geq k_{0}=O\left(\epsilon^{-2} \log n\right)$, there exists $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ such that for all $u, v \in P$:

$$
(1-\epsilon)\|u-v\|^{2} \leq\|f(u)-f(v)\|^{2} \leq(1+\epsilon)\|u-v\|^{2}
$$

- Original proof used heavy geometrical approximation tools.
- Frankl and Meahara '88: project onto k random orthonormal vectors.
- Indyk and Motwani '98: project onto k independent, spherically symmetric random vectors.
- Pick each vector coordinate from a normal distribution independently.
- The squared length of the embedded vector follows the chi-square distribution.
- Dasgupta and Gupta '99: same as the previous approach, but makes use of symmetry.

Analysis

- Pick k vectors, where each coordinate is taken from a normal distribution with mean 0 and variance 1.
- Project the n points onto a random k-dimensional hyperplane, i.e. for each point v in the original space, define $f(v)$ to be $\sqrt{\frac{d}{k}} v^{\prime}$ where v^{\prime} is the projection of v onto the hyperplane.
We need to analyze the distribution of the random variable $\frac{\|f(u)-f(v)\|^{2}}{\|u-v\|^{2}}$. Wlog $\|u-v\|^{2}=1$.

The distribution of $\|f(u)-f(v)\|^{2}$ is the same as that of a random unit vector projected onto a fixed k-dimensional hyperplane.

Thus, pick a random point on the unit d-dimensional sphere and project it onto the hyperplane defined by the first k coordinates.

Analysis

Picking a random point on the unit d-dimensional sphere:

- Generate vector $X=\left(X_{1}, \ldots, X_{d}\right)$, where each X_{i} follows $N(0,1)$.
- Scale to obtain $Z=\frac{1}{\|X\|}\left(X_{1}, \ldots, X_{d}\right)$

Project onto the first k coordinates to obtain
$Y=\frac{1}{\|X\|}\left(X_{1}, \ldots, X_{k}\right)$. Thus, it suffices to analyze

$$
L=\|Y\|^{2}=\frac{X_{1}^{2}+\ldots+X_{k}^{2}}{X_{1}^{2}+\ldots+X_{d}^{2}}
$$

By symmetry $\mu=\mathbb{E}[L]=\frac{k}{d}$.

Analysis

We need to show concentration around the mean. Using Chernoff-type reasoning, it can be proved that

$$
\begin{aligned}
& \operatorname{Pr}[L \leq(1-\epsilon) \mu] \leq \exp \left(\frac{-\epsilon^{2} k}{4}\right) \\
& \operatorname{Pr}[L \geq(1+\epsilon) \mu] \leq \exp \left(-\frac{k}{2}\left(\frac{\epsilon^{2}}{2}-\frac{\epsilon^{2}}{3}\right)\right)
\end{aligned}
$$

Thus, for $k>\frac{4 \ln n}{\frac{\epsilon^{2}}{2}-\frac{\epsilon^{2}}{3}}$, we have that

$$
\operatorname{Pr}[|L-\mu|>\epsilon \mu] \leq 2 \exp (-2 \ln n)=\frac{2}{n^{2}}
$$

Union bound for all $\binom{n}{2}$ pairs, yields that the embedding has the required property with probability $\geq \frac{1}{n}$.

Further Refinements

The value of k is tight as far as the previous analysis is concerned.
An interesting proof of the theorem was given by Achlioptas '04, where the vectors' coordinates are picked by the distributions:

$$
r= \begin{cases}+1 & \text { with probability } 1 / 2 \\ -1 & \text { with probability } 1 / 2\end{cases}
$$

and

$$
r=\sqrt{3} \times \begin{cases}+1 & \text { with probability } 1 / 6 \\ 0 & \text { with probability } 1 / 6 \\ -1 & \text { with probability } 1 / 6\end{cases}
$$

Analysis is more difficult since spherical symmetry is dropped.

For Further Reading

- Uriel Feige. Approximating the bandwidth via volume respecting embeddings.
- Anumam Gupta.Algorithmic Applications of Metric Embeddings (course).
- Piotr Indyk and Jiri Matousek.Low distortion embeddings of finite metric spaces (book chapter).

