EMBEDDINGS

Andreas Galanis

May 13, 2010

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Most of the material presented here is in a straightforward manner adopted by a tutorial by Piotr Indyk at FOCS 2001 on *Algorithmic Aspects of Geometric Embeddings*.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

2 Embeddings of graph-induced metrics

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

- into norms
- into probabilistic trees

- **3** Embeddings of norms into norms reduction of dimension

Spaces (X, d_X)

- X set of points (finite or infinite).
- Metric distance function $d: X \times X \to \mathbb{R}_+$, i.e.

$$\begin{array}{ll} d(x,x) = 0, & \forall x \in X. \\ d(x,y) = d(y,x), & \forall x,y \in X. \\ d(x,y) \leq d(x,z) + d(z,y), & \forall x,y,z \in X. \end{array}$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

FINITE METRICS

- Denote |X| = n.
- Described by $\binom{n}{2}$ pairs of distances.
- Visualized by edge-weighted graphs.

Example:

$$X = \{a, b, c, d, e\}$$

$$a \ b \ c \ d \ e$$

$$a \ 0 \ 3 \ 8 \ 6 \ 1$$

$$b \ 0 \ 9 \ 7 \ 2$$

$$c \ 0 \ 2 \ 7$$

$$d \ 0 \ 5$$

$$e \ 0$$

INFINITE METRICS

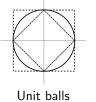
We will mostly use $X = \mathbb{R}^k$ equipped with some Minkowski norm ℓ_p .

For $x \in \mathbb{R}^k$ its ℓ_p length is given by

$$\|x\|_p = \left(\sum_{i=1}^k |x_i|^p\right)^{1/p}$$
 for $1 \le p < \infty$

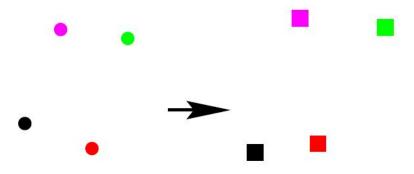
For $x, y \in \mathbb{R}^k$, the ℓ_p -distance between them is $||x - y||_p$. Some special cases:

$$\begin{array}{ll} p=1 & \rightarrow \mbox{ Manhattan Distance} \\ p=2 & \rightarrow \mbox{ Euclidean Distance} \\ p=\infty & \rightarrow \mbox{ } \|x\|_{\infty} = \mbox{max}_{1 \leq i \leq k} \{|x_i|\} \end{array}$$



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Given metrics (X, D) and (X', D') an *embedding* is a map $f: X \to X'$.



▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

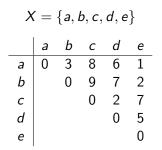
A natural metric distance for weighted graphs is the length of the shortest path between vertices.

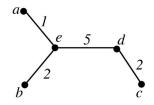
Conversely, a finite metric (X, D) can clearly be mapped into a weighted graph G such that:

- Set X to be the vertices of the graph.
- Set the length of $\{i, j\}$ to D(i, j).
- The shortest path metric in G clearly coincides with D.

In fact, we can drop edges in G as long as the shortest path metric is left invariant. The resulting minimal graph is called *critical* graph.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ





・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

€ 990

A MOTIVATING EXAMPLE

WHY EMBEDDINGS?

Useful for reducing from "hard" to "easy" spaces.

- Given: a set P of n points in ℓ_1^d .
- Output the diameter of P, i.e. $\max_{p,q\in P} \|p-q\|_1$

- Easy to find in $O(dn^2)$.
- Can be solved in $O(nd2^d)$ by embedding ℓ_1^d in $\ell_{\infty}^{2^d}$.

CAN WE DO BETTER?

$$\|p-q\|_1 = \sum_{i=1}^d \epsilon_i p_i - \sum_{i=1}^d \epsilon_i q_i$$
 for some choice of $\epsilon_i \in \{-1, 1\}$.

This suggests introducing 2^d vectors $y \in \{-1, 1\}^d$ and consider the inner products $y \cdot p$. Formally for every point $p \in P$:

- Compute its inner products with each vector y ∈ {−1,1}^d, i.e. f_y(p) = y · p.
- ② Concatenate these coordinates together, i.e. $f(p) = \bigoplus_{y \in \{-1,1\}^d} f_y(p).$

$$\max_{p,q\in P} \|p-q\|_1 = \max_{p,q\in P} \left\{ \sum_{i=1}^k \epsilon_i p_i - \sum_{i=1}^k \epsilon_i q_i \right\}$$

(not soo trivial) =
$$\max_{p,q\in P} \max_{y\in\{-1,1\}^d} \{f_y(p) - f_y(q)\}$$
$$= \max_{p,q\in P} \|f(p) - f(q)\|_{\infty}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ● ◇◇◇

Thus it suffices to solve the problem in $\ell_{\infty}^{2^d}$.

Solving the problem in $\ell_\infty^{2^d}$ is much easier:

$$\max_{x,y \in S} \|x - y\|_{\infty} = \max_{x,y \in S} \max_{1 \le i \le 2^d} |x_i - y_i|$$
$$= \max_{1 \le i \le 2^d} \max_{x,y \in S} |x_i - y_i|$$

• Solve the 1-dimensional problem in each of the 2^d coordinates.

Output the maximum over these values.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

- Isometric.
- Linear.
- Deterministic.

A mapping $f : P_A \rightarrow P_B$:

- P_A : points from metric space with distance $D(\cdot, \cdot)$.
- P_B : points from some normed space, e.g. ℓ_2^d .
- For any $p, q \in P_A$

$$\frac{D(p,q)}{c} \leq \|f(p) - f(q)\| \leq D(p,q)$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Parameter c is called "distortion".

Clearly $c \ge 1$. If c = 1 the embedding is called isometric.

- Embeddings of graph-induced metrics
 - into norms (Frechet's theorem, Bourgain's theorem, Matousek's theorem)
 - into probabilistic trees (Bartal's theorem)
- Embeddings of norms into norms
 - dimensionality reduction (Johnson-Lindenstrauss lemma)

Let G = (V, E). G induces the shortest path metric $D(\cdot, \cdot)$.

We will examine various embeddings of (V, D) into ℓ_p^d .

- \bullet General graphs \rightarrow General Metrics.
- $\bullet\,$ Special graphs (planar, trees, etc.) $\rightarrow\,$ Special Metrics.

Important parameters we seek to optimize:

- Dimension d.
- Distortion c.

BOURGAIN (1985), LINIAL, LONDON AND RABINOVITCH 1995

Any metric (X, D), and for any $p \ge 1$, can be embedded into ℓ_p^d with distortion $O(\log n)$ for $d = O(\log^2 n)$.

- Proof yields randomized algorithm with $O(n^2 \log^2 n)$ running time, can be derandomized.
- Suffices to prove the theorem for p = 1, the dimension ensures it extends easily for any p ≥ 1.
- Matousek (1997) proved a stronger version of the theorem with distortion $O\left(\frac{\log n}{p}\right)$ for $1 \le p < \log n$.

MATOUSEK'S THEOREM (1996)

For any b > 0, any metric (X, D) can be embedded into ℓ_{∞}^{d} with distortion c = 2b - 1 for $d = O(bn^{1/b} \log n)$.

- It implies a weaker version of Bourgain's theorem for b = O(log n), with distortion O(log² n).
- Somewhat easier to derive, yet uses the same technique.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

FRECHET'S THEOREM

Any metric (X, D) can be embedded into ℓ_{∞}^{n} isometrically.

Let
$$X = \{p_1, p_2, \dots, p_n\}$$
. Define $f(p) = \bigoplus_{1 \le i \le n} D(p, p_i)$.

We claim that $\|f(p_i) - f(p_j)\|_{\infty} = D(p_i, p_j).$

• Shrinking secured by triangle inequality.

$$\|f(p_i) - f(p_j)\|_{\infty} = \max_{1 \le i \le n} |D(p, p_i) - D(p, p_j)| \le D(p_i, p_j).$$

• Expansion secured by the many dimensions.

$$\|f(p_i) - f(p_j)\|_{\infty} = \max_{1 \le i \le n} |D(p, p_i) - D(p, p_j)| \ge D(p_i, p_j).$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

In fact, the dimension can be reduced to n - 1. For trees, the dimension can be reduced to $O(\log n)$.

- Generally require high dimension (for example Frechet's theorem).
- \bullet Only ℓ_∞ has the universal property of Frechet's theorem.
 - C_4 cannot be embedded into ℓ_2 isometrically for any dimension!

Thus to obtain general results as Frechet's theorem, one needs to employ distortion.

Instead of using points as "witnesses", use sets:

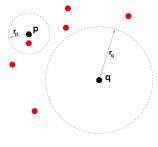
- $D(p, A) = \min_{a \in A} D(p, a).$
- For carefully chosen sets $A_1, \ldots, A_{d'}$

$$f(p) = \oplus_{1 \leq i \leq d'} D(p, A_i)$$

Advantage: can achieve o(n) dimensions.

Disadvantage: introduces distortion.

Ensuring Distortion



 $A_i = red dots$

- $D(p,A_i) \leq r_p$
- $D(q, A_i) \ge r_q$

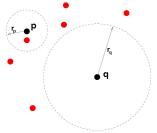
$$|D(p,A_i) - D(q,A_i)| \ge r_q - r_p$$

To show distortion c, we need $r_q - r_p \ge D(p,q)/c$.

Note $|D(p, A_i) - D(q, A_i)| \le D(p, q)$ (using triangle inequality).

Find sets A_i with the above properties.

CONSTRUCTING THE SETS A_i



Denote by B_p a ball centered at point p.

Two phases:

- Ensure existence of r_p, r_q such that the volume of B_p is not much smaller than the volume of B_q, an B_p, B_q disjoint (volume≡cardinality)
- Choose A_i's at random with proper density, so that with good probability it hits B_p and avoids B_q.

Lemma: For each p, q there exists r such that

$$|B(p,r)| \geq \frac{|B(q,r+D(p,q)/c)|}{n^{1/b}}$$

or vice-versa, and the two balls are disjoint (recall that c = 2b - 1) If we choose A_i by including each point to A_i with probability $\approx 1/|B(q, r + D(p, q)/c)|$, then with probability at least $\approx 1/n^{1/b}$:

- A_i hits B(p, r).
- A_i avoids B(p, r + D(p, q)/c).

To ensure success pick $n^{1/b} \log n$ subsets.

The problem is that we do not know neither r nor the cardinality of B(q, r + D(p, q)/c).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Generate A_i 's using log *n* different probabilities $n^{-1/b}, n^{-2/b}, n^{-3/b}, \dots$ to make sure we are OK for all densities.

To ensure success for each density, pick $n^{1/b} \log n$ subsets.

Total number of sets (which translates into dimension of embedding): $O(bn^{1/b} \log n)$.

Application on Cut Metrics

Consider a graph G = (V, E) and a partition S, \overline{S} of the set of its vertices.

A cut metric is such that:

$$d(x,y) = \left\{ egin{array}{cc} 0 & ext{if both } x,y \in S ext{ or } x,y \in ar{S} \ 1 & ext{otherwise} \end{array}
ight.$$

In sparsest cuts problems we wish to optimize over the cut metric. This induces a linear integer program. Instead:

- $\bullet\,$ Relax the problem to an arbitrary metric taking values for [0,1]
- Embed the resulting into ℓ_1 using Bourgain's Theorem.
- The ℓ_1 metric can be decomposed efficiently into a convex combination of cut metrics.

• Output the most suitable cut metric of these decompositions. Bourgain's theorem can be used to obtain the best known bounds on such kind of problems, with an $O(\log n)$ factor in the approximation ratio. Volume respecting embeddings [Feige '98]:

- Stricter notion of embedding
- Ensures low distortion of k-dimensional "volumes":
 - Volume for a finite metric?
 - Largest among all of its contractions in \mathbb{R}^{k-1} .
 - Specializes to ordinary embedding for k = 2.

- Embeddings of graph-induced metrics
 - into norms (Frechet's theorem, Bourgain's theorem, Matousek's theorem)
 - into probabilistic trees (Bartal's theorem)
- Embeddings of norms into norms
 - dimensionality reduction (Johnson-Lindenstrauss lemma)

Probabilistic metric is a convex combination of metrics:

• $T_1, T_2, ..., T_k$ are metrics, i.e. $T_i = (X, D_i)$.

•
$$\alpha_1, \ldots, \alpha_k > 0$$
: $\sum_i \alpha_i = 1$.

• The probabilistic metric $M = (X, \overline{D})$ is defined as:

$$ar{D}(p,q) = \sum_i lpha_i D_i(p,q)$$

Fix p, q and select T_i according to the weights α_i . Then

$$\mathbb{E}[D_i(p,q)] = \bar{D}(p,q)$$

PROBABILISTIC EMBEDDINGS

Given

- a metric $M_Y = (Y, D)$
- a probabilistic metric $M_X = (X, \overline{D})$ defined by $T_i = (X, D_i), i = 1, ..., k$

a mapping $f: Y \to X$ is a probabilistic embedding of M_Y into M_X with distortion c if for any $p, q \in Y$:

• f expands by at most a factor of c on the average, i.e.

 $\overline{D}(f(p), f(q)) \leq cD(p, q)$

• f never contracts, i.e, for each $i = 1, \ldots, k$

$$D_i(f(p), f(q)) \geq D(f(p), f(q))$$

- ロ ト - 4 回 ト - 4 □

Note the similarity with the general definition of embeddings (scale by 1/c) but also the stronger second condition.

When each T_i is a tree (i.e. its critical graph is a tree).

WHY embed intro probabilistic trees?

Any cycle metric embeds into a tree metric with $\Omega(n)$ distortion. [Rabinovitch-Raz, Gupta'01]

Much better results for probabilistic trees (for any metric).

- AKPW'91: $2^{O(\sqrt{\log n \log \log n})}$ distortion.
- Bartal'96, Bartal'98: $O(\log^2 n)$ and $O(\log n \log \log n)$ distortion.
- FRT'04: $O(\log n)$ distortion. (Tight)

Many algorithmic applications, mostly on metrical task systems.

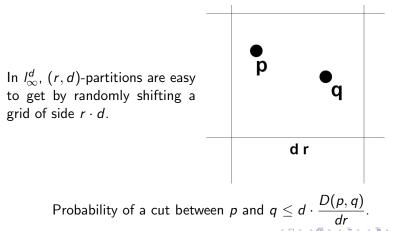
We will prove $O(\log^3 n \cdot \log \Delta)$ distortion, where Δ is the diameter of the original metric.

- Embed M = (Y, D) into I_{∞}^{d} with distortion $O(\log n)$ and dimension $d = O(\log^2 n)$.
- Multiply final distortion by $O(\log n)$.
- Probabilistically partition the I_{∞}^d space into clusters of different diameters.

• Stitch the clusters together into a tree.

PROBABILISTIC PARTITIONS

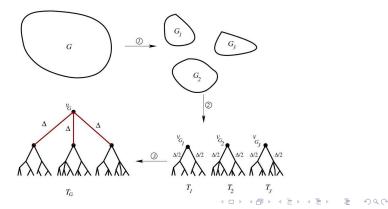
- $\ell\text{-partition:}$ any partition of Y into clusters of diameter $\leq \ell.$
- (r, ρ)-partition: a distribution over r · ρ-partitions, such that for any p, q ∈ Y, the probability that p, q go to different clusters is at most D(p, q)/r.



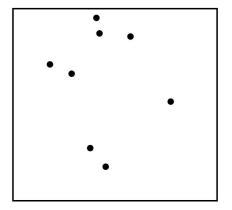
PROBABILISTIC TREE CONSTRUCTION

Construction of a random tree. Initially $r = \Delta$.

- Generate an $r \cdot d$ -partition P from a (r, ρ) -partition.
- Within any cluster Y_i of P, generate a random tree T_i with root u_i using r' ← r/2
- Create new node u and connect u to u_i's using edges of length r ⋅ d/2.

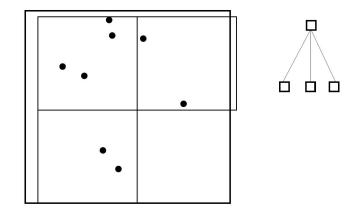


PROBABILISTIC TREE CONSTRUCTION - EXAMPLE



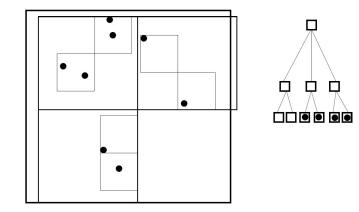
▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

PROBABILISTIC TREE CONSTRUCTION - EXAMPLE



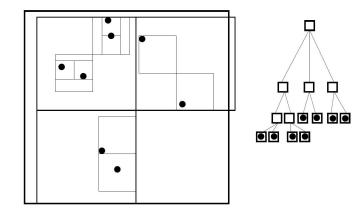
◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへ(?)

PROBABILISTIC TREE CONSTRUCTION - EXAMPLE



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

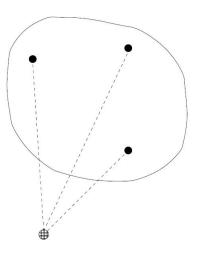
PROBABILISTIC TREE CONSTRUCTION - EXAMPLE



▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

No contraction, since:

- Consider any cluster Y of diameter ≤ rd.
- Adding new node *u* with distance *rd*/2 to all points in *Y* cannot increase the distance.



▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● ● ● ●

• One factor log *n* comes from embedding into I_{∞}^d .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

- \bullet One factor comes from $\log\Delta$ levels in the tree.
- One factor $\log^2 n$ comes from d.

Fix points $p, q \in Y$. The pair p, q:

- is separated by (Δ, d)-partition with probability D(p,q)/Δ ⇒ with probability at most D(p,q)/Δ level 1 contributes a total of tree distance d · Δ.
- is separated by (Δ/2, ρ)-partition with probability ^{D(p,q)}/_{Δ/2} ⇒
 with probability at most ^{D(p,q)}/_{Δ/2} level 1 contributes a total of
 tree distance d · Δ/2.

• . . .

Expected distance:

- Per level: $\frac{D(p,q)}{\Delta/2^{i}} \cdot d \cdot \Delta/2^{i} = d \cdot D(p,q)$
- Summing over all levels: $O(d \log \Delta) \cdot D(p, q)$.

Applications on Online/Approximation Algorithms

Usually good guarantees for tree metrics. Thus for a metric M:

- Replace M by a random tree T.
- Solve the problem in T using the "good" algorithm.
- Interpret it as a solution in M

Competitive/Approximation ratio: Guarantee for trees \times distortion of the embedding.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Embeddings of graph-induced metrics
 - into norms (Frechet's theorem, Bourgain's theorem, Matousek's theorem)
 - into probabilistic trees (Bartal's theorem)
- Embeddings of norms into norms
 - dimensionality reduction (Johnson-Lindenstrauss lemma)

Consider the space \mathbb{R}^d with the Euclidean distance.

IS IT POSSIBLE

to embed a high dimensional pointset into a lower dimensional pointset with low distortion?

Not intuitively clear that this is possible.

Results are somewhat surprising at first glance.

JL-EMBEDDINGS

Johnson and Lindenstrauss '84: For every set P of n points in \mathbb{R}^d , then for every $\epsilon > 0$ and $k \ge k_0 = O(\epsilon^{-2} \log n)$, there exists $f : \mathbb{R}^d \to \mathbb{R}^k$ such that for all $u, v \in P$:

$$(1-\epsilon) ||u-v||^2 \le ||f(u)-f(v)||^2 \le (1+\epsilon) ||u-v||^2$$

- Original proof used heavy geometrical approximation tools.
- Frankl and Meahara '88: project onto k random orthonormal vectors.
- Indyk and Motwani '98: project onto k independent, spherically symmetric random vectors.
 - Pick each vector coordinate from a normal distribution independently.
 - The squared length of the embedded vector follows the chi-square distribution.
- Dasgupta and Gupta '99: same as the previous approach, but makes use of symmetry.

ANALYSIS

- Pick k vectors, where each coordinate is taken from a normal distribution with mean 0 and variance 1.
- Project the *n* points onto a random *k*-dimensional hyperplane, i.e. for each point *v* in the original space, define f(v) to be $\sqrt{\frac{d}{k}v'}$ where *v'* is the projection of *v* onto the hyperplane.

We need to analyze the distribution of the random variable $\frac{\|f(u) - f(v)\|^2}{\|u - v\|^2}.$ Wlog $\|u - v\|^2 = 1.$

The distribution of $||f(u) - f(v)||^2$ is the same as that of a random unit vector projected onto a fixed *k*-dimensional hyperplane.

Thus, pick a random point on the unit d-dimensional sphere and project it onto the hyperplane defined by the first k coordinates.

Picking a random point on the unit *d*-dimensional sphere:

- Generate vector $X = (X_1, ..., X_d)$, where each X_i follows N(0, 1).
- Scale to obtain $Z = \frac{1}{\|X\|}(X_1, \dots, X_d)$

Project onto the first k coordinates to obtain $Y = \frac{1}{\|X\|}(X_1, \dots, X_k)$. Thus, it suffices to analyze

$$L = \|Y\|^2 = \frac{X_1^2 + \ldots + X_k^2}{X_1^2 + \ldots + X_d^2}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

By symmetry $\mu = \mathbb{E}[L] = \frac{k}{d}$.

We need to show concentration around the mean. Using Chernoff-type reasoning, it can be proved that

$$\begin{split} &\Pr[L \leq (1-\epsilon)\mu] \leq \exp\left(\frac{-\epsilon^2 k}{4}\right) \\ &\Pr[L \geq (1+\epsilon)\mu] \leq \exp\left(-\frac{k}{2}\left(\frac{\epsilon^2}{2} - \frac{\epsilon^2}{3}\right)\right) \end{split}$$

Thus, for $k > \frac{4 \ln n}{\frac{\epsilon^2}{2} - \frac{\epsilon^2}{3}}$, we have that $\Pr[|L - \mu| > \epsilon\mu] \le 2\exp(-2\ln n) = \frac{2}{n^2}$

Union bound for all $\binom{n}{2}$ pairs, yields that the embedding has the required property with probability $\geq \frac{1}{n}$.

The value of k is tight as far as the previous analysis is concerned.

An interesting proof of the theorem was given by Achlioptas '04, where the vectors' coordinates are picked by the distributions:

$$r = \left\{ egin{array}{cc} +1 & ext{with probability } 1/2 \ -1 & ext{with probability } 1/2 \end{array}
ight.$$

and

$$r = \sqrt{3} \times \left\{ egin{array}{cc} +1 & \mbox{with probability 1/6} \\ 0 & \mbox{with probability 1/6} \\ -1 & \mbox{with probability 1/6} \end{array}
ight.$$

Analysis is more difficult since spherical symmetry is dropped.

- Uriel Feige. Approximating the bandwidth via volume respecting embeddings.
- Anumam Gupta. *Algorithmic Applications of Metric Embeddings* (course).
- Piotr Indyk and Jiri Matousek. Low distortion embeddings of finite metric spaces (book chapter).