Advanced Algorithms Randomised Algorithms

Graph Algoritms

Georgia Kaouri, NTUA

Conitents

All-Pairs Shortest Paths

- All-pajirs distances
- Boolean product witness matrix
- Determine Shortest Paths

The Min-Cut Problem

- Contraction Algorithm-Fast-Cut
- Karger's Reliability Theorem

Minimum Spanning Trees

- Boriivka's Algorithm
- Linear Time MST Algorithm

All-pairs Shortest Paths

Defis $G(V$, E) undirected, connected graph, $|V|=n$, |티 $=\mathrm{m}$
Adjjacency matrix A \rightarrow Distance matrix D
All-Paijs Shortest Paths (APSP)
$-O\left(n^{3}\right), O\left(m n+n^{2} \log n\right)$
$-\Omega\left(n^{2}\right)$

- All-Pairs Distances (APD)
- What do $A^{2}, A^{3}, \ldots, A^{n}$ express?

Solving APD (deterministically)

$Z<-A^{2}$
Compute matrix A^{\prime} such that $A_{i j}^{\prime}=1$ if and only if $i \neq j$ and $\left(A_{j j}=1\right.$ or $\left.Z_{i j}>0\right)$
If $A_{j}^{\prime}=1$ for all $i \neq j$ then return $D=2 A^{\prime}-A$.
Recursively compute the APD matrix D^{\prime} for the graph G^{\prime} with adjacency matrix A^{\prime}.

- $S<-A D^{\prime}$

Return matrix D with $D_{i j}=2 D_{i j}^{\prime}$ if $S_{i j} \geq D_{i j}^{\prime} Z_{i j}$, otherwise $\mathrm{D}_{\mathrm{i}}=2 \mathrm{D}_{\mathrm{j}}^{\prime}-1$.

Aralysis I

Compute $G^{\prime}(V, E)$, the "square" of $G, i \neq j(i, j) \in E^{\prime}$ iff there exists path of length 1 or 2 between i, j in G.
Easy: $Z=A^{2}, A$ determine A^{\prime} in $O\left(n^{2}\right)$
Observation: G^{\prime} complete iff G has diameter 2 ->
$D=2 A^{\prime}-A$ in $O\left(n^{2}\right)$

- Idea: Compute recursively D from D'
- What is the relationship between D and D^{\prime} ?

Analysis II

PARITY Lemma: For every paij i, j $\in V$

- If D_{j} is even then $D_{j}=2 D_{i j}^{\prime}$
- If $D_{i j}$ is odd then $D_{i j}=2 D_{j}^{\prime}-1$

Lemma: For every pair i, j $\in V$

- For any $k \in\left\ulcorner(i)\right.$: $D_{i j} \leq D_{k}+D_{k j} \rightarrow D_{i j}-1 \leq D_{k j}$ and $D_{k j} \leq D_{k}+D_{i j} \rightarrow D_{k j} \leq 1+D_{i j}$
- There exists a kE厂(i) s.t. $D_{k}=D_{i j}-1$
- Lemma: For every pair i, j $\in V$
- If D_{i} is even then $D_{k j}^{\prime} \geq D_{i j}^{\prime}$ for every $k \in \Gamma(\mathrm{i})$ in G
- If D_{j} is odd then $\mathrm{D}_{\mathrm{kj}}^{\prime} \leq \mathrm{D}_{\mathrm{j}}^{\prime}$ for every $\mathrm{k} \in \Gamma(\mathrm{i})$ in G

Moreover there exists a $\mathrm{k} k \in \Gamma(\mathrm{i})$ s.t. $\mathrm{D}_{k \mathrm{k}}^{\prime}<\mathrm{D}_{\mathrm{j}}^{\prime}$

Analysis III

Summing over all vertices in $\Gamma(i)$ the second part of the inequality is multiplied by d(i)

The APD algorithm solves APD in O(MM(n)logn)

- If G has diameter $\delta \mathrm{G}^{\prime}$ has $\delta / 2$.
$-T(n, \delta)=2 M M(n)+T(n, \delta / 2)+O\left(n^{2}\right)$
$-\delta=1$ G is complete
$-\delta=2 T(n, \delta)=M M(n)+O\left(n^{2}\right)$

Boolean Product Witness Matrix (BPWM)

Suppose A and B are nxn boolean matrices and $P=A B$ is their product under Boolean matrix multiplication. A withess for P_{j} is an index $k \in\{1, \ldots, n\}$ such that $A_{k}=B_{b j}=1$. Observe that $P_{i j}=1$ if and only if it has some witness K.
BPWM for P is a matrix W, where $W_{i j} \in\{1,2, \ldots, n\}$ contains a witness iff $P_{j}=1$
If $A=B$ the adjacency matrix $P_{\mathrm{j}}=1$ iff there exists a path of length 2 in G , therefore a witness k is the intermediate vertex.

Analysis I

Simple case: unique witness

- multiply column k by k
- read off witness identity

Reduction: If r columns have witnesses, choose each columin with probability p
$\mathrm{R} \leq\{1,2, \ldots, n\}$ random set of cardinality r
What is the probability to find exactly 1 witness?

- urn(w white, n-w black). Choose r balls at random, with n/2 \leq wr $\leq n$. Then
$\operatorname{Pr}\{e x a c t l y$ one ball is chosen $\} \geq 1 / 2 e$
- Try all values of r!!!???

Analysis II

Represent R as a vector with $R_{k}=1$ iff $k \in R$
$A R: A_{k}^{R}=k R_{k} A_{k}$
So we will choose each column with probability 2^{k} s.t $1 \leq 2^{k} \leq n$

O(logn)tries
The probability of finding exactly one witness is: $r 2^{*}\left(1-2^{k}\right)^{\text {ri }} \geq(1 / 2)\left(1 / e^{2}\right)$

- Repeat logn times
- Las Vegas algorithm

All-pairs Shortest Paths

Compute distances with APD
For each i,j find a node keГ(i) on the shortest path (have distance one less)
Keep an array R saying that the distance is
-1
Compute the boolean witness product RA

- How many matrix multiplications should we do?

Analysis

Recall that for every pair i, j $\in V$

- For any kЄГ(i): $D_{j}-1 \leq D_{k j} \leq D_{j}+1$
- For any kEГ (i) with $A_{k}=1$ and $D_{i f}=D_{i j}(\bmod 3)$ is valid candidate foa being a successor of i on the shortest path to j .

Algorithm APSP

Compute the distance matrix $\mathrm{D}=\mathrm{APD}(\mathrm{A})$.
for $s=\{0,1,2\}$ do

- Compute 0-1 matrix $D^{(5)}$ with $D_{i f}^{(9)}=1$ iff $D_{i j}+1=$ $s(\bmod 3)$
- Compute the witness matrix $W^{(\beta)}=B P W M\left(A, D^{\beta}\right)$.
- Compute successor matrix S for G.

Min-Cut Problem

Input: an undirected, connected multigraph $G=(V, E)$
Output: A cut $\left(V_{1}, V_{2}\right.$ where $V_{11} \cup V_{2}=V$ and $V_{1} \cap V_{2}=\varnothing$) such that number of edges between V_{1} and V_{2} is the fewest possible.
Contraction Algorithm
FastCut

Network Reliability

Given a network of n vertices, m edges, each edge has probability of failure p_{e}
What is the probability that the surviving network is disconnected?
The problem is in \#P.
The algorithm works on reliable graphs and computes the probability for the network to be reliable.

More Lemmas

Of all graphs with min cut c, the least reliable is the sycle on n nodes with $c / 2$ edges between adjacent nodes.
If each edge of a graph with min cut c is removed with probability p, the probability that the network fails is at least p and at most $n^{2} p$.

- the c edges in some min cut fail with probability ps
- for the above graphs, the probability that 2 sets of c/2 edges fail is p^{\prime} and there are (n choose 2) pairs of groups of edges
- In a graph with min cut c, there are at most n ${ }^{20}$ cuts with less than ac cycles.

Reliability Theorem

Suppose a graph has min cut c, s-t cut u and each edge fails with probability $p_{t} p^{c}<n^{(2 t e)}$ for some ε. Then the probability that the network becomes disconnected is $\mathrm{O}\left(\mathrm{n}^{8}(1+1 / \varepsilon)\right)$, and the probability that s and t become disconnected is $O\left(n^{1 v 1}(1+1 / \varepsilon)\right)$.
Let $r=2 n-2$ the \#cuts, $c_{1 r} c_{2} \ldots, c_{\text {}}$ their values, with $c=c_{1} \leq c_{2} \leq \ldots \leq c_{\text {, and }} p_{k}=p^{a}$ the probability that all edges in k-th cut fail.

- The probability that G disconnects is $\Sigma \mathrm{p}_{\mathrm{k}}$. Let's bound it from above!

Consider the n^{2} smallest cuts. Each one is larger than c, therefore $p_{k} \leq n^{(2+\varepsilon)}$;
$\Sigma_{\text {(st }} \rho_{k} \leq n^{2} n^{(2+\varepsilon)}=n^{-\varepsilon}$.
Consider the remaining larger cuts. From a previous theorem, there are at most n^{20} cuts of value less than ac, i.e. $\mathrm{c}_{\mathrm{n}^{20}} \geq$ ac. For $\mathrm{k}=\mathrm{n}^{2 \pi}$: $c_{k} \geq[\operatorname{lnk} / 2 \ln (2 n)] c$
And $p_{k} \leq\left(p^{c}\right)^{\wedge}\{\ln k / 2 \ln (2 n)\}=k^{(1+\varepsilon / 2 / 4}$.

- Therefore $\Sigma_{k>n^{2}} p_{k} \leq \Sigma \Sigma_{k>n_{2}} k^{(1+\varepsilon / 2)} \approx O\left(n^{-\varepsilon} / \varepsilon\right)$

An Approximation Algorithm

E_{i} is the set of edges in the i-th small cut.
Assign a boolean variable x_{e} to each edge e, with x_{e} true if edge e fails. x_{e} are independent and true with probability p.
i-th cut fails: $F=\cap_{0 \in t} x_{e}$.
Some small cut fails: $F=\cup F$.
We wish to know the probability that F is true!

- Fis in DNF with n^{20} clauses and at least c variables per clause.
- Karp, Luby and Madras \{KLM89\} estimated the truth probability in this formula, thus the failure probability.

Minimum Spanning Trees

$G(V, E)$ connected graph with edge weights wi: $E \rightarrow R$ with n vertices and m edges.
A spanning tree is an acyclic graph of G that includes every vertex in G and is connected.
We wish to compute the minimum spanning tree (MST).

Borivka's Phase

Contract simultaneously the min weight edges incident on each of the vertices in G.
Implementation:

- mark the edges to be contracted
- determine the "new" connected components
- replace the "new" connected components with a single vertex
- eliminate self loops and multiple edges created
- Runs in O(mlogn) time

Heavy and Light Edges

Fix a forest on G and any pair of vertices $u, v e V$.
$w_{F}(u, v)$ denotes the max weight of any edge on the path $P(u, v)$ if it exists, ∞ otherwise
Edge (u, v) is F-heavy if $w(u, v)>W_{F}(u, v)$
$F-l i g h t$ if $w(u, v) \leq W_{F}(u, v)$
If an edge is F-heavy, it does not lie in the MST.

- An F-light edge can be used to improve the MST.
- A verification algorithm for MST takes a candidate MST, checks that only F-light edges are used and accepts if they are, returns the F-light edges if they aren't.

Random Graphs

A ranglom graph $\mathrm{G}(\mathrm{p})$ is obtained by graph G by including independantly each edge of G in $\mathrm{G}(\mathrm{p})$ with probability p.
$G(p)$ has n vertices and $m p$ expected edges.
We expect that very few edges in G are F-light.
Random variable X has the negative binomial distribution with parameters n and p, if it corresponds to the number of independent trials required for n successes when each trial has probability of success p.

- X stochastically dominates Y if for all $z \in R$ $\operatorname{Pr}[X>Z] \geq \operatorname{Pr}[Y>z]$.
- If X stochastically dominates Y then $E[X] \geq E[Y]$.

F-light edges are few...

Let F be the min spanning forest in $G(p)$. Then the number of F-light edges in G is stochastically dominated by a random Variable X that has the negative binomial distribution with parameters n and p. The expected number of edges in G is at most n / p.

- $e_{1}, e_{2}, \ldots, e_{m}$ the edges in increasing weight
- Construct the MSForest F online while choosing edges for $G(p)$.
- At step if if edge e_{i} is chosen for $G(p)$, it is a candidate for F.
- Edge e_{i} is added to F iff it connects previously disconnected components.
- Note that
- Whether an edge in F if F-light depends on the coin
- edges are never removed
- e_{i} is F-light at the end iff it is F-light at the beginning of step i.
k-1 edges have been added to F. Phase k begins and ends when k edges belong to F.
An F-light edge is added in F only if the coin says so, but phase k ends when such an edge is added.
Therefore, during this phase we have some F-light edges that are chosen with probability $p \rightarrow>$ F-light edges have the negative binomial distribution with parameter p.
In total F grows from 0 to s : continue to flip the coin until n HEADS have appeared. The random variable that expresses the total number of coin flips has the negative binomial distribution with parameters n, p.
- Therefore, the expected number of F-light edges is bounded by n / p.

Linear-Time MST Algorithm

Use 3 applications of Boruivka's Phase to compute G_{1} with at most n/8 vertices and let C be the set of contracted edges. If G is empty return $F=C$.
Let $G_{2}=G_{1}(p)$, with $p=1 / 2$
Recursively apply MST, compute minimum spanning forest F_{2} for graph G_{2}.

- Use a verification algorithm to identify F_{2}-heavy edges in G_{1} and delete them to obtain graph G_{3}.
- Recursively apply MST to compute the minimum spanning forest F_{3} for graph G_{3}.
- return forest $\mathrm{F}=\mathrm{CUF}_{3}$.

The expected running time of MST is $O(n+m)$

$T(n, m)=T(n / 8, m / 2)+T(n / 8, n / 4)+c(n+m):$

- Borivka's Phase O(n+m)
- $G 2$ has $n / 8$ vertices and $m / 2$ expected edges runs in $O(n+m)$
- find min spanning forest in $G 2$ in expected time $T(n / 8, m / 2)$
- verification takes $\mathrm{O}(\mathrm{n}+\mathrm{m})$ and produces G 3 with at most $\mathrm{n} / 8$ vertices and expected $n / 4$ edges
- find the min spanning forest of G 3 has expected cost $T(n / 8, n / 4)$
- Return the final forest in $O(n)$
- Thank you...

