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All-pairs Shortest PathsAll-pairs Shortest Paths

• Def: G(V, E) undirected, connected graph, |V|=n, Def: G(V, E) undirected, connected graph, |V|=n, 
|E|=m|E|=m

• Adjacency matrix A -> Distance matrix DAdjacency matrix A -> Distance matrix D
• All-Pairs Shortest Paths (APSP)All-Pairs Shortest Paths (APSP)

– O(nO(n33), O(mn+n), O(mn+n22logn)logn)
– Ω(Ω(nn22))

• All-Pairs Distances (APD)All-Pairs Distances (APD)

• What do AWhat do A22, A, A33, …, A, …, Ann express? express?



    

Solving APD (deterministically)Solving APD (deterministically)

• Z <-  AZ <-  A22

• Compute matrix A’ such that A’Compute matrix A’ such that A’ijij=1 if and only if  i ≠ j and =1 if and only if  i ≠ j and 
(A(Aijij=1 or Z=1 or Zijij>0)>0)

• If A’If A’ijij=1 for all i ≠ j then return D = 2A’-A.=1 for all i ≠ j then return D = 2A’-A.

• Recursively compute the APD matrix D’ for the graph G’ Recursively compute the APD matrix D’ for the graph G’ 
with adjacency matrix A’.with adjacency matrix A’.

• S <- AD’S <- AD’

• Return matrix D with  DReturn matrix D with  Dijij=2D’=2D’ij  ij  if Sif Sijij≥D’≥D’ijijZZii ii , otherwise , otherwise 
DDijij=2D’=2D’ijij-1.-1.



    

Analysis IAnalysis I

• Compute G’(V, E’), the “square” of G, iCompute G’(V, E’), the “square” of G, i≠j (i, j)≠j (i, j)ЄЄE’ E’ 
iff there exists path of length 1 or 2 between i, j iff there exists path of length 1 or 2 between i, j 
in G.in G.

• Easy: Z=AEasy: Z=A22, A determine A’ in O(n, A determine A’ in O(n22))

• Observation: G’ complete iff G has diameter 2 -> Observation: G’ complete iff G has diameter 2 -> 
D=2A’-A in O(nD=2A’-A in O(n22))

• Idea: Compute recursively D from D’Idea: Compute recursively D from D’

• What is the relationship between D and D’?What is the relationship between D and D’?



    

Analysis IIAnalysis II

• PARITY Lemma: For every pair i, j PARITY Lemma: For every pair i, j ЄЄ V V
– If DIf Dijij  is even then D is even then Dijij=2D’=2D’ijij
– If DIf Dijij  is odd then D is odd then Dijij=2D’=2D’ijij-1-1

• Lemma: For every pair i, j Lemma: For every pair i, j ЄЄ V V
– For any kFor any kЄЄΓ(Γ(ii)): D: Dijij≤≤DDikik+D+Dkjkj     ->->    DDijij-1-1≤≤DDkjkj  and D and Dkjkj ≤D≤Dkiki +D+Dijij     ->->      DDkjkj ≤1+D≤1+Dij  ij  

  

– There exists a There exists a kkЄЄΓ(Γ(ii)) s.t.  s.t. DDjkjk=D=Dijij-1-1

• Lemma: For every pair i, j Lemma: For every pair i, j ЄЄ V V
– If DIf Dijij  is even then D’ is even then D’kjkj ≥D’≥D’ij   ij   for every for every kkЄЄΓ(Γ(ii)) in G in G

– If DIf Dijij  is odd then D’ is odd then D’kjkj ≤D’≤D’ij   ij   for every for every kkЄЄΓ(Γ(ii)) in G in G
Moreover there exists a k kMoreover there exists a k kЄЄΓ(Γ(ii)) s.t.  s.t. D’D’kjkj <D’<D’ij ij 



    

Analysis IIIAnalysis III

• Summing over all vertices in Summing over all vertices in ΓΓ(i) the second part (i) the second part 
of the inequality is multiplied by d(i)of the inequality is multiplied by d(i)

• The APD algorithm solves APD in O(MM(n)logn)The APD algorithm solves APD in O(MM(n)logn)
– If G has diameter If G has diameter δ δ G’ has G’ has δδ/2./2.
– T(n,T(n, δ δ)=2MM(n) + T(n,)=2MM(n) + T(n,δ/2δ/2) + O(n) + O(n22))
– δ=1 δ=1 G is completeG is complete
– δ=δ=2 T(n,2 T(n, δ δ)=MM(n) + O(n)=MM(n) + O(n22))



    

Boolean Product Witness Matrix Boolean Product Witness Matrix 
(BPWM)(BPWM)
• Suppose A and B are nSuppose A and B are n××n boolean matrices and P=AB is n boolean matrices and P=AB is 

their product under Boolean matrix multiplication.their product under Boolean matrix multiplication.
• A A witnesswitness for P for Pijij  is an index k  is an index k ∈∈ {1,…,n} such that  {1,…,n} such that 

AAikik=B=Bkjkj =1. Observe that P=1. Observe that Pijij=1 if and only if it has some =1 if and only if it has some 
witness k.witness k.

• BPWM for P is a matrix W, where WBPWM for P is a matrix W, where WijijЄЄ{1,2,…,n} {1,2,…,n} 
ccontains a witness  iff Pontains a witness  iff Pijij=1=1

• If A=B the adjacency matrix PIf A=B the adjacency matrix Pijij=1 iff there exists a path =1 iff there exists a path 
of length 2 in G, therefore a witness k is the of length 2 in G, therefore a witness k is the 
intermediate vertex.intermediate vertex.



    

Analysis IAnalysis I

• Simple case: unique witnessSimple case: unique witness
– multiply column k by kmultiply column k by k
– read off witness identityread off witness identity

• Reduction: If r columns have witnesses, choose each Reduction: If r columns have witnesses, choose each 
column with probability pcolumn with probability p

• RR≤{1,2,…,n} random set of cardinality r ≤{1,2,…,n} random set of cardinality r 
• What is the probability to find exactly 1 witness?What is the probability to find exactly 1 witness?

– urn(w white, n-w black). Choose r balls at random, with n/2 urn(w white, n-w black). Choose r balls at random, with n/2 ≤≤  
wr wr ≤ ≤ n. Thenn. Then

Pr{exactly one ball is chosen}Pr{exactly one ball is chosen}≥1/2e≥1/2e

• Try all values of r!!!???Try all values of r!!!???



    

Analysis IIAnalysis II

• Represent R as a vector with RRepresent R as a vector with Rkk=1 iff k=1 iff kЄЄRR

• AR: AAR: ARR
ikik=kR=kRkkAAikik

• So we will choose each column with So we will choose each column with 
probability 2probability 2-k-k  s.t 1≤2 s.t 1≤2kk≤n        O(logn)tries≤n        O(logn)tries

• The probability of finding exactly one The probability of finding exactly one 
witness is: r 2witness is: r 2-k-k  (1-2 (1-2-k-k ))r-1r-1  ≥ (1/2)(1/e ≥ (1/2)(1/e22))

• Repeat logn timesRepeat logn times
• Las Vegas algorithmLas Vegas algorithm



    

All-pairs Shortest PathsAll-pairs Shortest Paths

• Compute distances with APDCompute distances with APD
• For each i,j find a node kFor each i,j find a node kЄЄΓΓ(i) on the (i) on the 

shortest path (have distance one less)shortest path (have distance one less)
• Keep an array R saying that the distance is Keep an array R saying that the distance is 

-1-1
• Compute the boolean witness product RACompute the boolean witness product RA
• How many matrix multiplications should How many matrix multiplications should 

we do?we do?



    

AnalysisAnalysis

• Recall that for every pair i, j Recall that for every pair i, j ЄЄ V V
– For any kFor any kЄЄΓ(Γ(ii))::  DD ijij-1-1≤≤DDkjkj≤D≤D ijij+1+1

– For For any kany kЄЄΓ(Γ(ii)) with A with A ikik=1 and D=1 and Dkjkj=D=D ijij (mod3) is  (mod3) is 
valid candidate foa being a successor of i on valid candidate foa being a successor of i on 
the shortest path to j.the shortest path to j.



    

Algorithm APSPAlgorithm APSP

• Compute the distance matrix D=APD(A).Compute the distance matrix D=APD(A).

• for s={0,1,2} dofor s={0,1,2} do
– Compute 0-1 matrix DCompute 0-1 matrix D(s)(s) with D with Dkjkj

(s)(s)=1 iff D=1 iff Dkjkj+1 = +1 = 
s (mod 3)s (mod 3)

– Compute the witness matrix Compute the witness matrix 
WW(s)(s)=BPWM(A,D=BPWM(A,D(s)(s)).).

• Compute successor matrix S for G.Compute successor matrix S for G.



    

Min-Cut ProblemMin-Cut Problem

• Input: an undirected, connected Input: an undirected, connected 
multigraph multigraph G = G = ((VV,,EE))  

• Output: A cut (Output: A cut (VV11,,VV2 2 where where VV1∩1∩ ∪∪  VV2 2 = = V V  and  and 
VV11  ∩∩  VV22 =  = ∅∅) such that number of edges ) such that number of edges 
between between VV11 and  and VV22 is the fewest possible. is the fewest possible.

• Contraction AlgorithmContraction Algorithm
• FastCutFastCut



    

Network ReliabilityNetwork Reliability

• Given a network of n vertices, m edges, Given a network of n vertices, m edges, 
each edge has probability of failure peach edge has probability of failure pee

• What is the probability that the surviving What is the probability that the surviving 
network is disconnected?network is disconnected?

• The problem is in #P.The problem is in #P.
• The algorithm works on reliable graphs The algorithm works on reliable graphs 

and computes the probability for the and computes the probability for the 
network to be reliable.network to be reliable.

http://people.csail.mit.edu/karger/karger300.jpg


    

More LemmasMore Lemmas

• Of all graphs with min cut c, the least reliable is the Of all graphs with min cut c, the least reliable is the 
cycle on n nodes with c/2 edges between adjacent cycle on n nodes with c/2 edges between adjacent 
nodes.nodes.

• If each edge of a graph with min cut c is removed with If each edge of a graph with min cut c is removed with 
probability p, the probability that the network fails is at probability p, the probability that the network fails is at 
least pleast pcc and at most n and at most n22ppcc..
– the c edges in some min cut fail with probability pthe c edges in some min cut fail with probability pcc

– for the above graphs, the probability that 2 sets of c/2 edges fail for the above graphs, the probability that 2 sets of c/2 edges fail 
is pis pcc and there are (n choose 2) pairs of groups of edges and there are (n choose 2) pairs of groups of edges

• In a graph with min cut c, there are at most nIn a graph with min cut c, there are at most n2α2α  cuts with cuts with 
less than less than ααc cycles.c cycles.



    

Reliability TheoremReliability Theorem

• Suppose a graph has min cut c, s-t cut u and Suppose a graph has min cut c, s-t cut u and 
each edge fails with probability p, peach edge fails with probability p, pcc<n<n-(2+-(2+εε)) for  for 
some some ε. ε. Then the probability that the network Then the probability that the network 
becomes disconnected is O(nbecomes disconnected is O(n--εε(1+1/(1+1/εε)), and the )), and the 
probability that s and t become disconnected is probability that s and t become disconnected is 
O(nO(n-u/c-u/c(1+1/(1+1/εε)).)).

• Let r=2Let r=2nn-2 the #cuts, c-2 the #cuts, c11,c,c22,…,c,…,crr their values, with  their values, with 
c=cc=c11≤c≤c22≤…≤c≤…≤cr r and pand pkk=p=pcckk the probability that all  the probability that all 
edges in k-th cut fail. edges in k-th cut fail. 
– The probability that G disconnects is The probability that G disconnects is ΣΣppkk. Let’s bound . Let’s bound 

it from above!it from above!



    

• Consider the nConsider the n22 smallest cuts. Each one is larger than c,  smallest cuts. Each one is larger than c, 
therefore ptherefore pkk≤n≤n-(2+-(2+ εε))::

ΣΣk≤nk≤n 22ppkk≤n≤n22nn-(2+-(2+ εε))= = nn--εε..

• Consider the remaining larger cuts. From a Consider the remaining larger cuts. From a 
previous theorem, there are at most previous theorem, there are at most nn2α2α   cuts of cuts of 
value less than value less than ααc, i.e. cc, i.e. cnn22αα≥≥ααc. For k=c. For k=  n n2α2α  :   :  
cckk≥[lnk/2ln(2n)]≥[lnk/2ln(2n)] c c

And   pAnd   pkk≤(p≤(pcc)^{)^{lnk/2ln(2n)lnk/2ln(2n)}=k}=k-(1+-(1+ εε/2)/2) ..

• Therefore  Therefore  ΣΣk>k> nn22ppkk≤≤Σ ΣΣ Σk>k> nn22kk-(1+-(1+ εε/2)/2) ≈O(n≈O(n--εε/ε/ε))



    

An Approximation AlgorithmAn Approximation Algorithm

• EE ii is the set of edges in the i-th small cut. is the set of edges in the i-th small cut.
• Assign a boolean variable xAssign a boolean variable xee to each edge e, with x to each edge e, with xee true  true 

if edge e fails. xif edge e fails. xee are independent and true with  are independent and true with 
probability p. probability p. 

• i-th cut fails: Fi-th cut fails: F ii= = ∩∩e<Ee<Eii  xxee..

• Some small cut fails: F=Some small cut fails: F=∪∪ iiFF ii..
• We wish to know the probability that F is true!We wish to know the probability that F is true!
• F is in DNF with F is in DNF with nn2α2α  clauses and at least c variables per clauses and at least c variables per 

clause.clause.
• Karp, Luby and Madras {KLM89} estimated the truth Karp, Luby and Madras {KLM89} estimated the truth 

probability in this formula, thus the failure probability.probability in this formula, thus the failure probability.



    

Minimum Spanning TreesMinimum Spanning Trees

• G(V,E) connected graph with edge weights G(V,E) connected graph with edge weights 
w:E -> R with n vertices and m edges.w:E -> R with n vertices and m edges.

• A spanning tree is an acyclic graph of G A spanning tree is an acyclic graph of G 
that includes every vertex in G and is that includes every vertex in G and is 
connected.connected.

• We wish to compute the minimum We wish to compute the minimum 
spanning tree (MST).spanning tree (MST).



    

BorBorůůvka’s Phasevka’s Phase

• Contract simultaneously the min weight edges Contract simultaneously the min weight edges 
incident on each of the vertices in G.incident on each of the vertices in G.

• Implementation:Implementation:
– mark the edges to be contractedmark the edges to be contracted
– determine the “new” connected componentsdetermine the “new” connected components
– replace the “new” connected components with a replace the “new” connected components with a 

single vertexsingle vertex
– eliminate self loops and multiple edges createdeliminate self loops and multiple edges created

• Runs in O(mlogn) timeRuns in O(mlogn) time



    

Heavy and Light EdgesHeavy and Light Edges

• Fix a forest on G and any pair of vertices u,vFix a forest on G and any pair of vertices u,vєєV.V.

• wwFF(u,v) denotes the max weight of any edge on the path P(u,v) (u,v) denotes the max weight of any edge on the path P(u,v) 
if it exists, ∞ otherwiseif it exists, ∞ otherwise

• Edge (u,v) is F-heavy if w(u,v)>wEdge (u,v) is F-heavy if w(u,v)>wFF(u,v)(u,v)

F-light if w(u,v)≤wF-light if w(u,v)≤wFF(u,v)(u,v)

• If an edge is F-heavy, it does not lie in the MST.If an edge is F-heavy, it does not lie in the MST.
• An F-light edge can be used to improve the MST.An F-light edge can be used to improve the MST.
• A verification algorithm for MST takes a candidate MST, checks A verification algorithm for MST takes a candidate MST, checks 

that only F-light edges are used and accepts if they are, returns that only F-light edges are used and accepts if they are, returns 
the F-light edges if they aren’t.the F-light edges if they aren’t.



    

Random GraphsRandom Graphs

• A random graph G(p) is obtained by graph G by A random graph G(p) is obtained by graph G by 
including independantly each edge of G in G(p) with including independantly each edge of G in G(p) with 
probability p. probability p. 

• G(p) has n vertices and mp expected edges.G(p) has n vertices and mp expected edges.
• We expect that very few edges in G are F-light.We expect that very few edges in G are F-light.
• Random variable X has the negative binomial distribution Random variable X has the negative binomial distribution 

with parameters n and p, if it corresponds to the number with parameters n and p, if it corresponds to the number 
of independent trials required for n successes when each of independent trials required for n successes when each 
trial has probability of success p.trial has probability of success p.

• X stochastically dominates Y if for all zX stochastically dominates Y if for all zєєR R 
Pr[X>z]≥Pr[Y>z].Pr[X>z]≥Pr[Y>z].

• If If X stochastically dominates Y then E[X] X stochastically dominates Y then E[X] ≥ E[Y].≥ E[Y].



    

F-light edges are few…F-light edges are few…
• Let F be the min spanning forest in G(p). Then the number of Let F be the min spanning forest in G(p). Then the number of 

F-light edges in G is stochastically dominated by a random F-light edges in G is stochastically dominated by a random 
variable X that has the negative binomial distribution with variable X that has the negative binomial distribution with 
parameters n and p. The expected number of edges in G is at parameters n and p. The expected number of edges in G is at 
most n/p.most n/p.
– ee11, e, e22, …, e, …, emm the edges in increasing weight the edges in increasing weight

– Construct the MSForest F online while choosing edges for G(p). Construct the MSForest F online while choosing edges for G(p). 
– At step i if edge eAt step i if edge eii is chosen for G(p), it is a candidate for F.  is chosen for G(p), it is a candidate for F. 

– Edge eEdge eii is added to F iff it connects previously disconnected  is added to F iff it connects previously disconnected 
components.components.

– Note thatNote that
• Whether an edge in F if F-light depends on the coinWhether an edge in F if F-light depends on the coin
• edges are never removededges are never removed

• eeii is F-light at the end iff it is F-light at the beginning of step i. is F-light at the end iff it is F-light at the beginning of step i.



    

• k-1 edges have been added to F. Phase k begins and k-1 edges have been added to F. Phase k begins and 
ends when k edges belong to F.ends when k edges belong to F.

• An F-light edge is added in F only if the coin says so, but An F-light edge is added in F only if the coin says so, but 
phase k ends when such an edge is added.phase k ends when such an edge is added.

• Therefore, during this phase we have some F-light edges Therefore, during this phase we have some F-light edges 
that are chosen with probability p -> F-light edges have that are chosen with probability p -> F-light edges have 
the negative binomial distribution with parameter p.the negative binomial distribution with parameter p.

•   In total F grows from 0 to s: continue to flip the coin In total F grows from 0 to s: continue to flip the coin 
until n HEADS have appeared. The random variable that until n HEADS have appeared. The random variable that 
expresses the total number of coin flips has the negative expresses the total number of coin flips has the negative 
binomial distribution with parameters n, p.binomial distribution with parameters n, p.

• Therefore, the expected number of F-light edges is Therefore, the expected number of F-light edges is 
bounded by n/p.bounded by n/p.



    

Linear-Time MST AlgorithmLinear-Time MST Algorithm

• Use 3 applications of BorUse 3 applications of Borůůvka’s Phase to compute Gvka’s Phase to compute G11 with at  with at 
most n/8 vertices and let C be the set of contracted edges. If most n/8 vertices and let C be the set of contracted edges. If 
G is empty return F=C.G is empty return F=C.

• Let GLet G22=G=G11(p), with p=1/2(p), with p=1/2

• Recursively apply MST, compute minimum spanning forest FRecursively apply MST, compute minimum spanning forest F22  
for graph Gfor graph G22..

• Use a verification algorithm to identify FUse a verification algorithm to identify F22-heavy edges in G-heavy edges in G11  
and delete them to obtain graph Gand delete them to obtain graph G33..

• Recursively apply MST to compute the minimum spanning Recursively apply MST to compute the minimum spanning 
forest Fforest F33 for graph G for graph G33..

• return forest F=Creturn forest F=C∪∪FF33..



    

The expected running time of MST The expected running time of MST 
is O(n+m)is O(n+m)
• T(n,m)=T(n/8,m/2)+T(n/8,n/4)+c(n+m):T(n,m)=T(n/8,m/2)+T(n/8,n/4)+c(n+m):

– BorBorůůvka’s Phase O(n+m)vka’s Phase O(n+m)
– G2 has n/8 vertices and m/2 expected edges runs in O(n+m)G2 has n/8 vertices and m/2 expected edges runs in O(n+m)
– find min spanning forest in G2 in expected time T(n/8,m/2)find min spanning forest in G2 in expected time T(n/8,m/2)
– verification takes O(n+m) and produces G3 with at most n/8 verification takes O(n+m) and produces G3 with at most n/8 

vertices and expected n/4 edgesvertices and expected n/4 edges
– find the min spanning forest of G3 has expected cost T(n/8,n/4)find the min spanning forest of G3 has expected cost T(n/8,n/4)
– Return the final forest in O(n)Return the final forest in O(n)

• Thank you…Thank you…


