Advanced Algorithms – Randomised Algorithms

Graph Algoritms

Georgia Kaouri, NTUA

Contents

All-Pairs Shortest Paths All-pairs distances Boolean product witness matrix **Determine Shortest Paths** The Min-Cut Problem Contraction Algorithm-Fast-Cut - Karger's Reliability Theorem Minimum Spanning Trees Borůvka's Algorithm Linear Time MST Algorithm

All-pairs Shortest Paths

Def: G(V, E) undirected, connected graph, |V|=n, |E|=m
Adjacency matrix A -> Distance matrix D
All-Pairs Shortest Paths (APSP)

O(n³), O(mn+n²logn)
Q(n²)

All-Pairs Distances (APD)

• What do A², A³, ..., Aⁿ express?

Solving APD (deterministically)

 $Z < - A^2$ Compute matrix A' such that $A'_{ii} = 1$ if and only if $i \neq j$ and $(A_{ii} = 1 \text{ or } Z_{ii} > 0)$ If $A'_{ii} = 1$ for all $i \neq j$ then return D = 2A'-A. Recursively compute the APD matrix D' for the graph G' with adjacency matrix A'. • S <- AD' - Return matrix D with $D_{ii} = 2D'_{ii}$ if $S_{ii} \ge D'_{ii}Z_{ii}$, otherwise $D_{ii} = 2D'_{ii} - 1.$

Analysis I

Compute G'(V, E'), the "square" of G, $i \neq j$ (i, j) $\in E'$ iff there exists path of length 1 or 2 between i, j in G. Easy: $Z = A^2$, A determine A' in O(n²) Observation: G' complete iff G has diameter 2 -> D=2A'-A in $O(n^2)$ Idea: Compute recursively D from D' What is the relationship between D and D'?

Analysis II

PARITY Lemma: For every pair i, $j \in V$ - If D_{i} is even then $D_{i} = 2D'_{i}$ If D_{i} is odd then $D_{i} = 2D'_{i} - 1$ Lemma: For every pair i, $j \in V$ - For any ker(i): $D_{ij} \leq D_{ik} + D_{ij} \rightarrow D_{ij} - 1 \leq D_{ij}$ and $D_{ij} \leq D_{ij} + D_{ij} \rightarrow D_{ij} \leq 1 + D_{ij}$ - There exists a k $\in \Gamma(i)$ s.t. $D_k = D_{i} - 1$ **Lemma:** For every pair i, $j \in V$ _ If D_i is even then D'_{ki}≥D'_i for every k∈Γ(i) in G _ If D_i is odd then D'_k ≤ D'_i for every k∈Γ(i) in G Moreover there exists a k ker(i) s.t. $D'_{ki} < D'_{ii}$

Analysis III

Summing over all vertices in $\Gamma(i)$ the second part of the inequality is multiplied by d(i)

The APD algorithm solves APD in O(MM(n)logn) – If G has diameter δ G' has $\delta/2$. – T(n, δ)=2MM(n) + T(n, $\delta/2$) + O(n²) – δ =1 G is complete – δ =2 T(n, δ)=MM(n) + O(n²)

Boolean Product Witness Matrix (BPWM)

Suppose A and B are n×n boolean matrices and P=AB is their product under Boolean matrix multiplication.
A witness for P_{ij} is an index k ∈ {1,...,n} such that A_{ik}=B_{ij}=1. Observe that P_{ij}=1 if and only if it has some witness k.
BPWM for P is a matrix W, where W_{ij} ∈{1,2,...,n} contains a witness iff P_{ij}=1
If A=B the adjacency matrix P_{ij}=1 iff there exists a path of length 2 in G, therefore a witness k is the

intermediate vertex.

Analysis I

Simple case: unique witness multiply column k by k read off witness identity Reduction: If r columns have witnesses, choose each column with probability p • $R \leq \{1, 2, ..., n\}$ random set of cardinality r What is the probability to find exactly 1 witness? - urn(w white, n-w black). Choose r balls at random, with $n/2 \leq n$ wr \leq n. Then $Pr\{exactly one ball is chosen\} \ge 1/2e$ • Try all values of r!!!???

Analysis II

- Represent R as a vector with R_k=1 iff kER
 AR: A^R_k=kR_kA_k
- So we will choose each column with probability 2* s.t 1≤2k≤n O(logn)tries
 The probability of finding exactly one witness is: r 2* (1-2*)^{r1} ≥ (1/2)(1/e²)
 Repeat logn times
 Las Vegas algorithm

All-pairs Shortest Paths

Compute distances with APD
For each i, j find a node kEΓ(i) on the shortest path (have distance one less)
Keep an array R saying that the distance is -1

Compute the boolean witness product RA
 How many matrix multiplications should we do?

Analysis

Recall that for every pair i, $j \in V$ – For any $k\in\Gamma(i)$: $D_{ij}-1 \leq D_{kj} \leq D_{ij}+1$ – For any $k\in\Gamma(i)$ with $A_{ik}=1$ and $D_{kj}=D_{ij}$ (mod3) is valid candidate foa being a successor of i on the shortest path to j.

Algorithm APSP

Compute the distance matrix D=APD(A). • for $s = \{0, 1, 2\}$ do - Compute 0-1 matrix $D^{(s)}$ with $D_{ki}^{(s)}=1$ iff $D_{ki}+1=$ $s \pmod{3}$ Compute the witness matrix $W^{(s)} = BPWM(A, D^{(s)}).$ Compute successor matrix S for G.

Min-Cut Problem

Input: an undirected, connected multigraph G = (V,E)• Output: A cut (V_1, V_2) where $V_1 \cup V_2 = V$ and $V_1 \cap V_2 = \emptyset$) such that number of edges between V_1 and V_2 is the fewest possible. Contraction Algorithm FastCut

Network Reliability

Given a network of n vertices, m edges, each edge has probability of failure p What is the probability that the surviving network is disconnected? The problem is in #P. The algorithm works on reliable graphs and computes the probability for the network to be reliable.

More Lemmas

- Of all graphs with min cut c, the least reliable is the cycle on n nodes with c/2 edges between adjacent nodes.
- If each edge of a graph with min cut c is removed with probability p, the probability that the network fails is at least p^c and at most n²p^c.
 - the c edges in some min cut fail with probability p^c
 - for the above graphs, the probability that 2 sets of c/2 edges fail is p^c and there are (n choose 2) pairs of groups of edges
- In a graph with min cut c, there are at most n² cuts with less than ac cycles.

Reliability Theorem

Suppose a graph has min cut c, s-t cut u and each edge fails with probability p, $p^{c} < n^{(2+\epsilon)}$ for some ϵ . Then the probability that the network becomes disconnected is $O(n^{\epsilon}(1+1/\epsilon))$, and the probability that s and t become disconnected is $O(n^{1/\epsilon}(1+1/\epsilon)).$ • Let $r=2^{n}-2$ the #cuts, c_1, c_2, \dots, c_r their values, with $c=c_1 \le c_2 \le \dots \le c_r$ and $p_k = p^{c_k}$ the probability that all edges in k-th cut fail. - The probability that G disconnects is Σp_{μ} . Let's bound

it from above!

Consider the n² smallest cuts. Each one is larger than c, therefore $p_k \le n^{-(2+\epsilon)}$:

 $\Sigma_{k\leq n^{-2}} p_k \leq n^2 n^{-(2+\epsilon)} = n^{-\epsilon}.$

Consider the remaining larger cuts. From a previous theorem, there are at most n²ⁿ cuts of value less than ac, i.e. c_{n²⁰}≥ac. For k = n²ⁿ : c_k≥[lnk/2ln(2n)] c
 And p_k≤(p^c)^{{lnk/2ln(2n)}=k^{-(1+ ε/2)}.
 Therefore Σ_{k>n²}p_k≤ΣΣ_{k>n²}k^{-(1+ ε/2)} ≈O(n^{-ε}/ε)

An Approximation Algorithm

- E is the set of edges in the i-th small cut.
- Assign a boolean variable x_e to each edge e, with x_e true if edge e fails. x_e are independent and true with probability p.
- i-th cut fails: $F_i = \bigcap_{e \in E} X_e$.
- Some small cut fails: $F = \bigcup_i F_i$.
- We wish to know the probability that F is true!
- F is in DNF with n² clauses and at least c variables per clause.
- Karp, Luby and Madras {KLM89} estimated the truth probability in this formula, thus the failure probability.

Minimum Spanning Trees

- G(V,E) connected graph with edge weights w:E -> R with n vertices and m edges.
 A spanning tree is an acyclic graph of G that includes every vertex in G and is connected.
 We wish to compute the minimum
 - spanning tree (MST).

Borůvka's Phase

Contract simultaneously the min weight edges incident on each of the vertices in G.

Implementation:

- mark the edges to be contracted
- determine the "new" connected components
- replace the "new" connected components with a single vertex
- eliminate self loops and multiple edges created

Runs in O(mlogn) time

Heavy and Light Edges

Fix a forest on G and any pair of vertices u,veV. $W_{F}(u,v)$ denotes the max weight of any edge on the path P(u,v)if it exists, ∞ otherwise Edge (u,v) is F-heavy if $w(u,v) > w_F(u,v)$ F-light if $w(u,v) \leq w_{F}(u,v)$ If an edge is F-heavy, it does not lie in the MST. An F-light edge can be used to improve the MST. A verification algorithm for MST takes a candidate MST, checks that only F-light edges are used and accepts if they are, returns the F-light edges if they aren't.

Random Graphs

- A random graph G(p) is obtained by graph G by including independently each edge of G in G(p) with probability p.
- G(p) has n vertices and mp expected edges.
- We expect that very few edges in G are F-light.
 - Random variable X has the negative binomial distribution with parameters n and p, if it corresponds to the number of independent trials required for n successes when each trial has probability of success p.
- X stochastically dominates Y if for all z∈R Pr[X>z]≥Pr[Y>z].
- If X stochastically dominates Y then $E[X] \ge E[Y]$.

F-light edges are few...

- Let F be the min spanning forest in G(p). Then the number of F-light edges in G is stochastically dominated by a random variable X that has the negative binomial distribution with parameters n and p. The expected number of edges in G is at most n/p.
 - e₁, e₂, ..., e_m the edges in increasing weight
 - Construct the MSForest F online while choosing edges for G(p).
 - At step i if edge e_i is chosen for G(p), it is a candidate for F.
 - Edge e_i is added to F iff it connects previously disconnected components.
 - Note that
 - Whether an edge in F if F-light depends on the coin
 - edges are never removed
 - \bullet e_i is F-light at the end iff it is F-light at the beginning of step i.

k-1 edges have been added to F. Phase k begins and ends when k edges belong to F. An F-light edge is added in F only if the coin says so, but phase k ends when such an edge is added. Therefore, during this phase we have some F-light edges that are chosen with probability p -> F-light edges have the negative binomial distribution with parameter p. In total F grows from 0 to s: continue to flip the coin until n HEADS have appeared. The random variable that expresses the total number of coin flips has the negative binomial distribution with parameters n, p. Therefore, the expected number of F-light edges is bounded by n/p.

Linear-Time MST Algorithm

- Use 3 applications of Borůvka's Phase to compute G_1 with at most n/8 vertices and let C be the set of contracted edges. If G is empty return F=C.
- Let $G_2 = G_1(p)$, with p = 1/2
- Recursively apply MST, compute minimum spanning forest F_2 for graph G_2 .
- Use a verification algorithm to identify F₂-heavy edges in G₁ and delete them to obtain graph G₃.
- Recursively apply MST to compute the minimum spanning forest F₃ for graph G₃.
- return forest $F=C\cup F_3$.

The expected running time of MST is O(n+m)

T(n,m)=T(n/8,m/2)+T(n/8,n/4)+c(n+m):

- Borůvka's Phase O(n+m)
- G2 has n/8 vertices and m/2 expected edges runs in O(n+m)
- find min spanning forest in G2 in expected time T(n/8,m/2)
- verification takes O(n+m) and produces G3 with at most n/8 vertices and expected n/4 edges
- find the min spanning forest of G3 has expected cost T(n/8,n/4)
- Return the final forest in O(n)

Thank you...