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Dafs G(_\L-;- ndirects ,'connected graph, IV|=
E | = e —
Auje _g &y matrix A -> Distance matrix D

AllERAI Shortest Paths (APSP)

— =] O ), O(mn+n2Iogn)

a—ﬁ(nz)

i

—7¥Il Pairs Distances (APD)
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e \What do A?, A3, ..., A" express?
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SEIVING APDI(determinist

- A
OIIPULE [ atrlx A“suchithat A% =1 if and only iff i # j and
= | O /&
A.‘—: Lt r aII | # j then return D = 2A™-A.

)9 o] .swely compute the APD matrix D’ for the graph G’
ithradjacency matrix A"

- AD’

eturn matrix D with D,=2D’; if S,=2D’;Z; , otherwise
D =2D’-1.
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seimpute G(V, E), the “square” of G, i%#j (i, J)EE’
Iff "r'ner'e__ path of length 1 or 2 between i, j
IG. e

Ess“' +Z A2 A determine A’ in O(nz)

'- Iden: Compute recursively D from D’
e What is the relationship between D and D?
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PARTTS Lemmr O every pair, j €
LiSDIS eve en D =2D;
lifDI5 orId«E en D;=2D; 1

Lerlnels 5O r every pair i, j EV

0l e ,w E‘I'(l) D, D,k+D -> D,-1<D, and D,<D;+D; -> D,<1+D,

.'--F'.-_ —_-_

= here exists a kEN(i) s.t. D, =D,-1

-*ferﬁ”ﬁ‘ia For every pair i, j € V

'__,_ ":If D; is even then D', =D’; for every k€I(i) in G
e 1f D is odd then D’ <D’; for every k€I(i) in G

g Moreover there exists a k k€I (i) s.t. D, <D/,
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e e — _—

Jummmcw ver'all vertices in I'(|) the second part
OIRLIIEN uallty Is multiplied by d(i)

e~
s T
_.|. _I_- h. -

m_ﬁw algorlthm solves APD in O(MM(n)logn)
:"— f—If G has diameter 0 G" has 0/2.
f_; = rT(n 0)=2MM(n) + T(n,0/2) + O(n?)

- e

- —=0=1 G is complete
— 0=2 T(n, 0)=MM(n) + O(n?)



5opIEan Product Wifness M ;,
(BPYY) )___ JE-.__

e

SUPPOSEIA @i Brale MM DOOIEAN Matrices and P=AB'Is
tniglr greel Uct Under Boolean matrix multiplication.

ARV rne s forF P; IS aniindex k [0 {1,...,n} such that

Ay = e = L Observe that P,=1 if and only i it has some
WItHESS: k

- -JE:EV Vifior P'is a matrix W, where W,€{1,2,...,n}

—
—

= Contains a witness  iff P,= 1

"r

= o- Tf A=B the adjacency matrlx P,=1 iff there exists a path

- ofilength 2 in G, therefore a witness k is the
intermediate vertex.
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Analysis I ..

SIPIEICaSE: URIgUE WILRESS
mulrlr)l\/- olumn k by k
E80 Ol |tness identity

-41-.

Pecltigros = If r columns have witnesses, choose each
cOIUMmN ‘Wlth probability p

%:FP‘- 2 N} random set of cardinality r

e — -
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— ijhat IS the probability to find exactly 1 witness?

—

e —
- -
wi—

e

ot urn(w white, n-w black). Choose r balls at random, with n/2 <
- wr < n. Then

Pr{exactly one ball is chosen}>1/2e
e Try all'values of r!1???
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”epres* it R as a vector with R, =1 iff KER
AR: AR kR A

SOIWE WI|| choeose each column with

= Arz;e ablllw 2% 5.t 1<2%<n O(logn)tries

_g:.t he probability of finding exactly one
~—_ witness is: r 2% (1-2%) > (1/2)(1/e?)

“e Repeat logn times
e [.as Vegas algorithm
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Cornigll 2 distances with APD

FOf ‘:‘c f_h ,j find a node KEI(i) on the
Jno est path (have distance one less)

(ee o) an array R saying that the distance is

\\
I

p—

g 1,'1

i

e éompute the boolean witness product RA

“e How many matrix multiplications should
we do?
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;ecall for every pairi, j EV
le’ EI'(l) D-1=D,=<D+1

o.r y k€F(|) with A,=1 and D,=D, (mod3) is

Ve Td candldate foa being a successor of i on

- -d-.._—-

-f_ == _~Ehe shortest path to j.

2 —
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Algertm ARSE. g

sbimipute the distance matrix D=APD(A).
for 3=__-f@ 12} do

Col 1aute 0-1 matrix D¥ with D,#=1 iff D,+1 =
S "-ﬂ mod 3)

1-'_ — -

S —

;+=~'Compute the witness matrix
~ WE=BPWM(A,DY).

0 Compute successor matrix S for G.

—
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~connected

IPNEanrundirectec
mulrlgre = (VE)

Ourrb + Acut (V,Vwhere V. O V=V and
V_ 1) such that number of edges
::‘?’ ween V. and ¥, is the fewest possible.

"ﬁ._" '-"'

—

~ e Contraction Algorithm

e FastCut
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NEUWork Reliability: 3/‘1-—

S

EIVENa NEtWOrK of niVertices, m edges,
SEGINE ge as prebability: of fallure o}

Wher -ﬂs the probability that the surviving
SELWork is disconnected?

i M
E =
S

=% (e problem is in #P.

g —
i x ‘-'- =

~ e The algorithm works on reliable graphs
and computes the probability for the
network to be reliable.



http://people.csail.mit.edu/karger/karger300.jpg

YEIEREMmas,. w

OlaligrapnsIWIth minicut c; thefleast reliable isithe
cycle gl nodes With' ¢/2 edges between adjacent

I'.l

iodes.
lIFEach 3 dge of a graph with min cut c is removed with
PG mty p, the probablllty that the network fails is at
= |east pfandiat most n’p-.

"'_ '-'"—the ¢ edges in some min cut fail with probability pr
—'_'4 - — for the above graphs, the probability that 2 sets of ¢/2 edges fail
~ ~ s pfand there are (n choose 2) pairs of groups of edges

e In a graph with min cut c, there are at most n* cuts with

less than ac cycles.
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POSENC c ?rap as min cut C, S- t cut u and
cdge fails with probablllt P, p’<n® for
IENE.Ihen the probability that the network
mes disconnected is O(n#(1+1/€)), and the
fe)o) blllty that s and t become disconnected is

—

( "“(1+1/€))
et r=21-2 the #cuts, c,c,...,c their values, with
C—C1 C,<...<cand p=p* the probability that all

edges in k-th cut fail.

— The probability that G disconnects is 2p,. Let’s bound
it from above!
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n — n

i'D"L, @ G (D (D)
'_\. (‘D (@) (1) ‘—
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the remaining larger cuts. From a
_ s theorem, there are at most n® cuts of
e es.s than ac, i.e. c ,=ac. For k= n% :

== _"U.n' /2In(2n)] ¢
~ And p,=(p9)” {Ink/2In(2n)} =k 2
= Therefore 2. P=2 X _ ki e =0(n¢/c)
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L Olf eddes) Inrtne i=tnrsmall’ cut.
oolean Variable x, to each edge e, with X, true
Ige e fails. x, are mdependent and true W|th

probﬂ:'s I‘ty o)

=5 ifails: F= n_, x.

gl £ =0

~ e« 50 _esmall cut fails: F=0F.

. _We ‘wish to know the probability that F is true!

e [is in DNE with n® clauses and at least c variables per
clause.

. KarB Luby and Madras {KLM89} estimated the truth
pro ab|I|ty in this formula, thus the failure probability.
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GV, E f) seonnected graph With edge welghts
WHESS Riwith n vertices and m edges.

A Sz INing| tree is an acyclic graph of G
kel 'lncludes every vertex in G and is
"_—:'e Anected.

ﬁ‘- ___'.-

== We wish to compute the minimum

spanning tree (MST).
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sonract simultaneously the min weight edges
]rw]dan’h each ofi the vertices in G.
impIEm nentation:
- m rk the edges to be contracted
- _ etermlne the “new” connected components

=2 replace the “new” connected components with a
- _smgle vertex

z — eliminate self loops and multiple edges created
e Runs in O(mlogn) time
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EYAENONESE 0N G and any’ pair off VErtices u,vev.

WAV denotesi the max weight of any edge on the path P(u,v)
I it c,dJ'rj"io otherwise

rrUe (L )is E-heavy if w(u,v)>w.(u,v)

=21 lf w(u V)=We(U,V)

_—:—_ =

'--z—'--? =i -ﬁedge IS F-heavy, it does not lie in the MST.
g—f‘“ r_An 'If-llght edge can be used to improve the MST.

— e Averification algorithm for MST takes a candidate MST, checks
that only F-light edges are used and accepts if they are, returns
the F-light edges if they aren't.
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iaph' G by
G in G(p) with

ANEEeR arapn G(p)is optainea yfc_;
iricluicigle lndependantly each edge o
orozlgifieer

&(p)iiasin vertices and mp expected edges.

WQ— Xpect that very few edges in G are F-light.

S Ral dom variable X has the negative binomial distribution
‘parameters n and p, if it corresponds to the number

,0f mdependent trials reqwred for n successes when each
~ trial has probability of success p.

@ X stochastically dominates Y if for all zeR
Pr[X>z]=Pr[Y>z].

e [f X stochastically dominates Y then E[X] = E[Y].
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SEN:
Ijg EG
valrlzlnleng
PEIEIIED e
rose Y

_ ep:’ ;. , e the edges in increasing weight

= =0 struct the MSForest F online while choosing edges for G(p).
__:;'- ¥ _'-Af;step i'iiFedge e. is chosen for G(p), it is a candidate for F.

= = Edge e is added to F iff it connects previously disconnected

s components
~ — Note that
— e Whether an edge in F if F-light depends on the coin
e edges are never removed
e € Is F-light at the end iff it is F-light at the beginning of step i.

ENTIIN Jr)rmrnng forasi s G
a5 10 Gl IS stochastically’ dominated by a random
hat has the negative binomial distribution with
s and p. The expected number of edges in G is at
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sihave been added to) F. Phase k begins and
1B EE G ESHICIONE O
Ar) edge isiadded! in F only iff the coin says so, but
PIEGENREENASTWNEN| SUCh an edde is added.
iErefore, during this phase we have some F-light edges
e Fale! chosen with Iprobability p -> F-light edges have
RtiiEmnegative binomial distribution with parameter p.
=% I3 total F grows from 0 to s: continue to flip the coin

—
e
—

= Until niHEADS have appeared. The random variable that

= expresses the total number of coin flips has the negative
-~ binomial distribution with parameters n, p.

e T[herefore, the expected number of F-light edges is
bounded by n/p.
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TimeddST Algorithm

UEERSRaPplIcations! Off Boruvka's Phase to compute G with at
neswN) 6 vertices and let C be the set of contracted edges. If
G s emr)rw eturn F=C.

LELG,=Gyl (p), with p=1/2
R:e_tf' vely apply: MST, compute minimum spanning forest F,
—';-._::_dg._?'rf_.‘“ GZ'
== e’ a verlﬂcatlon algorithm to identify F,-heavy edges in G,
ﬁnel delete them to obtain graph G..

- e Recursively apply MST to compute the minimum spanning
forest F; for graph G..

e return forest F=CLIF..

ﬁf“
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ENEXPECLEA running time
15Ok _), '

T (n),000) =R ehas n/8,n/4)+c(n+m):
BOKUVka’s Phase O(n+m)
G2 rm »8’vert|ces and m/2 expected edges runs in O(n+m)
'rmrl rj spannlng forest in G2 in expected time T(n/8,m/2)

VTl atlon takes O(n+m) and produces G3 with at most n/8
.e;tmes and expected n/4 edges

s = md ‘the min spanning forest of G3 has expected cost T(n/8,n/4)
= Return the final forest in O(n)

.,

- e Thank you...



