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Filtration

A σ-field (Ω,F) consists of a sample space Ω and a collection
of subsets F satisfying the following conditions :

1 Contains the empty set (∅ ∈ F).
2 Is closed under complement(E ∈ F⇒ E ∈ F).
3 Is closed under countable union and intersection.

Given the σ-field (Ω,F) with F = 2Ω, a filter (sometimes also
called a filtration) is a nested sequence F0 ⊆ F1 ⊆ . . . ⊆ Fn of
subsets of 2Ω such that :

1 F0 = {∅,Ω}(no information).
2 Fn = 2Ω(full information).
3 for 0 ≤ i ≤ n, (Ω,Fi ) is a σ-field(partial information).

Essentially a filter is a sequence of σ-fields such that each
new σ-field corresponds to the additional information that
becomes available at each step and thus the further
refinement of the sample space Ω.
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Filtration-Examples

Binary Strings : Consider w a binary string size n. A filter for the
sample space Ω = {0, 1}n could be the sequence of sets Fi such that
each set corresponds to the
partitioning of the sample
space according to the first i
bits.

Americans: Let Ω be the sample space of all Americans.Define the
random variable X, denoting the weight of a randomly chosen
American. A filter with respect to Ω could be:

F0 is the trivial σ-field(no information - no partition).
F1 is the σ-field generated by partioning Ω according to sex.
F2 is the σ-field generated by the refinement of the previous
partion into sets of different heights.
F3 is the further refinement based on age.
F4 is the partition into sigleton sets
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Conditional Expectation

The expectation of a random variable X conditioned on an
event A can be viewed as a function of a random variable Y
which takes constant real values for every different outcome of
A. In other words :

E[X |A] = E[X |Y ] = E[X |Y = y ] = f (y)

If the outcome of the event A or equivalently the value of the
variable Y is not known then the conditional expectation itself
is a random variable, denoted f(Y).
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Americans

Consider the example about Americans. We saw that we can
define a filter on the sample space by partitioning appropriately the
sample space. Let F0 ⊆ F1 ⊆ . . . ⊆ F4 be the filter we mentioned
earlier.Define Xi = E[X |Fi ], for 0 ≤ i ≤ 4. Then :

X0 = E[X ] denotes the average weight of an American.

X1 = E[X |F1] denotes the average weight of Americans as a
function of their sex.

X2 = E[X |F2] denotes the average weight as a function of
their sex and height.

X3 = E[X |F3] denotes the average weight as a function of
their sex, height and age.

Whereas X4 = E[X |F4] = X corresponds to the weight of an
individual American.
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6-Sided Unbiased die

Consider n independent throws of an unbiased 6-sided die. For
0 ≤ i ≤ 6, let Xi denote the number of times the value i
appears. Then :

E[X1|X2] =
n − X2

6− 1

E[X1|X2X3] =
n − X2 − X3

4

These equations define the expected value of the random
variable X1 given the number of times 2 and 3 appear. Of
course the variables X2,X3 are random themselves if they are
not given.
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Martingales

Martingales originally referred to systems of betting in which a
player doubled his stake each time he lost a bet.

Definition

Let (Ω,F,Pr) be a propability space with a filter F0,F1, . . ..
Suppose that X0,X1, . . . are random variables such that for all
i ≥ 0,Xi is Fi measurable (constant over each block in the
partition generating Fi ). The sequence X0, . . . ,Xn is a martingale
provided that for all i ≥ 0

E[Xi+1|Fi ] = Xi
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Edge Exposure Martingale

Let G be a random graph on the vertex set V = {1, . . . , n} obtained
by intepedently choosing to include each possible edge with
propability p. The underlying propability space is called Gn,p.

Arbitarily label the m = n(n − 1)/2 edges with the sequence
1, . . . ,m. For 1 ≤ i ≤ m, define the inidcator random variable Ij
which takes value 1 if edge j is present in G, and has value 0
otherwise. These indicator variables are independent and each takes
value 1 with propability p.

Consider any real-valued function F defined over the space of all
graphs, e.g., the clique number. The edge exposure martingale is
defined to be the sequence of random variables X0, . . . ,Xm such
that :

Xk = E[F (G )|I1, . . . , Ik ]

while X0 = E[F (G )] and Xm = F (G ).
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Edge Exposure Martingale

Consider that m = n = 3,and F (G ) = chromatic number we will
show that the sequence X0, . . . ,Xm is indeed a martingale.
Specifically that the following property holds : E[Xi+1|Fi ] = Xi .
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Vertex Exposure Martingale

Let again consider the propability space Gn,p mentioned earlier.

For 1 ≤ i ≤ n,let Ei be the set of all possible edges with both
end-points in {1, . . . , n}.Define the indicator random variables
Ij for all j ∈ Ei .

Again consider any real valued fucntion F(G). The vertex
exposure martingale is defined to be the sequence of of
random variables X0, . . . ,Xn such that :

Xi+1 = E[F (G )|Ij∀j ∈ Ei ]

The vertex exposure martingale reveals the induced graph Gi

generated by only the first i nodes.
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Expected Running Time

Let T be the running time of a randomized algorithm A that uses
a total of n random bits, on a specific input. Clearly T is a random
variable whose value depends in the random bits.

Observe that T is Fn measurable, but in general is not Fi

measurable for i < n.

Define the conditional expectation Ti = E[T |Fi ] where Fi is
the σ-field with the i-first bits known. Observe that
T0 = E[T ] and Tn = T .

Ti is a function of the values of the first i random bits
denoting the expected running time for a random choice of
the remaining n-i bits. The sequence of random variables
T0,T1, . . . ,Tn is a martingale.
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Why martingales are usefull?

We have seen various example of filters and the corresponding
martingales. They have the nasty habit to come up in a variety of
applications.

We may view the σ-field sequence F0 ⊆ F1 ⊆ . . . ⊆ Fn as
representing the evolution of the algorithm, with each succesive
σ-field providing more information about the behaviour of the
algorithm.

The random variables T0,T1, . . . ,Tn represent the changing
expectation of the running time as more information is revealed
about the random choices. As we will see later, if it can be shown
that the absolute difference |Ti − Ti−1| is suitably bounded, then
the random variable Tn behaves like T0 in the limit.

We mainly utilize martingales in obtaining concentration bounds.
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Lipschitz Condition

Let f : D1 × D2 × . . .× Dn → R be a real valued function
with n arguments from possible distinct domains. The
function f is said to satisfy the Lipschitz Condition if for any
x1 ∈ D1 , x2 ∈ D2 , . . . , xn ∈ Dn, any i ∈ {1, . . . , n} and any
y ∈ Di

|f (x1 , . . . , xi , . . . , xn)− f (x1 , . . . , yi , . . . , xn)| ≤ c

Basically a function satisfies the Lipschitz Condition if an
arbitary change in the value of any one argument does not
change the value of the function by more than a constant c.
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Azuma-Hoeffding Inequality

Theorem

Let (Y ,F) be a martingale, and suppose that there exists a
sequence K1,K1, . . . ,Kn of real numbers such that
|Yi − Yi−1| ≤ Kn for all i(bounded difference condition). Then :

P(|Yn − Y0| ≥ x) ≤ 2exp(−1

2
x2/

n∑
i=1

K 2
i ), x > 0
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Proof I

We begin the proof with an elementary inequality that stems from
the convexity of g(d) = eψd .

eψd ≤ 1

2
(1− d)e−ψ +

1

2
(1 + d)e+ψ |d | ≤ 1.

Applying this to a random variable D having mean 0 and |D| ≤ 1
we obtain

E(eψD) ≤ 1

2
(e−ψ + e+ψ) ≤ e

1
2ψ

2

. (1)

By applying the Markov Inequality we have :

P(Yn − Y0 ≥ x) ≤ e−θxE(eθ(Yn−Y0)). (2)

Writing Dn = Yn − Yn−1, we have that :

E(eθ(Yn−Y0)) = E(eθ(Yn−1−Y0)eθDn).
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Proof II

Conditioning on Fn−1, using the fact that Yn−1 − Y0 is
Fn−1-measurable and applying (1) to the random variable Dn/Kn,
we obtain :

E(eθ(Yn−Y0)|Fn−1) = eθ(Yn−1−Y0)E(eθDn |Fn−1) ≤ eθ(Yn−1−Y0)exp(
1

2
θ2K 2

n )

Taking expectation of the above inequality, using the fact that
E[E[X |Y ]] = E[X ] and then iterating we find that :

E(eθ(Yn−Y0)) ≤ E(eθ(Yn−1−Y0))exp(
1

2
θ2K 2

n ) ≤ exp(
1

2
θ2

n∑
i=1

K 2
i )

Applying (2)which is known as the Bernstein Inequality we obtain :

P(Yn − Y0 ≥ x) ≤ exp(−θx +
1

2
θ2

n∑
i=1

K 2
i )
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Proof III

Suppose x > 0, the value that minimizes the exponent is
θ = x/

∑n
i=1 K 2

i . Thus we have :

P(Yn − Y0 ≥ x) ≤ exp(−1

2
x2

n∑
i=1

K 2
i )

The same argument is valid with Yn − Y0 replaced with Y0 − Yn,
and the claim of the theorem follows by adding the two bounds
together.

The Azuma-Hoeffding inequality can be generalized if
ak ≤ Yk − Yk−1 ≤ bk to yield :

P(|Yn − Y0| ≥ x) ≤ 2exp(−2x2/

n∑
i=1

(bk − ak)2), x > 0

The application of the Azuma-Hoeffding inequality is sometimes
called ”the method of bounded differences”.
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Connection with Chernoff Bound

Let Z1, . . . ,Zn be independent random variables that take values 0
or 1 each with propability p.

The random variable S =
∑n

i=1 Zi has the binomial distribution
with parameters n and p.

Define a maritngale sequence X0, . . . ,Xn by setting X0 = E[S ],and,
for 1 ≤ i ≤ n, Xi = E[S |Z1, . . . ,Zi ]. It is clear that |Xi − Xi−1| ≤ 1,
since fixing the value of one variable Zi can only affect the expected
value of the sum by at most 1.

It follows that the propability that S deviates from its expected
value is bounded by :

P(|Xn − X0| ≥ x) ≤ 2exp(− x2

2n
)

Which is a weaker result than can be inferred from the Chernoff
bound approach.
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Bin Packing

Given n items with random sizes X = (X1, . . . ,Xn) uniformly distributed
in the interval [0,1] and unlimited collection of unit size bins. The
problem is to find the minimum number of bins required to store all the
items,denoted Bn. It can be shown that Bn grows approximately linearly
in n : E[Bn]→ c · n. How close is Bn to its mean value :

Define for i ≤ n , Yi = E(Bn|Fi ), where Fi is the σ − field
generated by X1, . . . ,Xi .

It easily seen that (Y ,F) is a martingale. Because the items are
distributed between [0,1] we derive that |Yi − Yi−1| ≤ 1.

Applying the Azuma inequalitywith
∑n

i=1 K 2
i = n, we get :

P(|Yn − Y0| ≥ x) ≤ 2exp(−1

2
x2/n)

setting x = εn we see that the chance that Bn deviates from its
mean by εn decays exponentially in n.
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Chromatic Number

Given a random graph G in Gn,p, the chromatic number χ(G) is the
minimum number of colors needed in order to color all vertices of the
graph so that no adjacent vertices have the same color. We use the
vertex exposure martingale to obtain a concentration result for χ(G).

Let Gi be the random subgraph induced by the set of vertices
1, . . . , i , let Z0 = E[χ(G )] and let :

Zi = E[χ(G )|G1, . . . ,Gi ].

Since a vertex uses no more than one new color, again we have that
the gap between Zi and Zi−1 is at most 1. Applying the
Azuma-Hoeffding inequality ,we obtain :

P(|Zn − Z0| ≥ λ
√

n) ≤ 2exp(−λ2/2)

The result holds without knowing the mean. We must note that by
using the generalized version of the inequality we obtained a better
bound.
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Pattern Matching

Let X = (X1, . . . ,Xn) be a sequence of characters chosen independently
and uniformly at random from an alphabet Σ, where |Σ| = s. Let
B = (B1, . . . ,Bk) be a fixed string of k characters from Σ. Let F be the
number of occurences of B in the random string X.The expectation of F
is E[F ] = (n − k + 1)( 1

s )k

Define the martingale sequence Zi = E[F |X1, . . . ,Xi ].

Since each character in the string X cannot participate in no more
than k possible matches, we have that the function F satisfies the
lipschitz condition for bound k . Thus we have that :
|Zi − Zi−1| ≤ k .

By applying the general Azuma-Hoeffding inequality we have :

P(|Zn − Z0| ≥ ε) ≤ 2exp(−ε2/2nk2)
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Balls and Bins

Suppose we are throwing m balls independently and uniformly at random
at n bins. Let Xi denote the random variable representing the bin into
which the ith ball falls. Let F be the number of empty bins after the m
balls are thrown. Then the sequence: Zi = E[F |X1, . . . ,Xi ] is a
martingale.

The function F = f (X1, . . . ,Xm) satisfies the Lipschitz Condition
with bound 1. Because changing the bin where the ith ball was, will
either decrease F by 1(relocate to an empty bin), increase F by 1
(relocate to a non-empty bin) or stay the same.

Applying the Azuma inequality we obtain :

P(|Zn − Z0| ≥ x) ≤ 2exp(−1

2
x2/m)

This result can be improved by taken more care in bounding the
difference |Zi − Zi−1|.
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Occupancy Revised

In the Balls and Bins setting we will obtain tighter concentration bounds.
Let Z0, . . . ,Zm be the martingale sequence defined earlier. Define z(Y , t)
as the expectation of Z given that Y bins are empty at time t. The
propability that none of these bins does not receive a ball during the last
m − t time units is (1− 1/n)m−t .

By linearity of expectation, we obtain that the number of these bins
that remain empty is given by :

E[Z |Yt ] = z(Y , t) = Yt(1− 1

n
)m−t

where the random variable Yt denotes the number of empty bins at
time t.

Then for the martingale sequence we have :

Zt−1 = z(Yt−1, t − 1) = Yt−1(1− 1

n
)m−t+1
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Analysis I

Suppose we are at time t − 1, so that the values of Yt−1,Zt−1 are
determined. At time t there are two possibilities :

1 With propability 1−Yt−1/n, the tth ball goes into a currently
non-empty bin. Then Yt = Yt−1 and we have :

Zt = z(Yt , t) = z(Yt−1, t) = Yt−1(1− 1

n
)m−t

2 With propability Yt−1/n, the tth ball goes into a currently
empty bin. Then Yt = Yt−1 − 1 and we have :

Zt = z(Yt , t) = z(Yt−1 − 1, t) = (Yt−1 − 1)(1− 1

n
)m−t
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Analysis II

We will focus on the difference random variable ∆t = Zt − Zt−1.
The distribution of ∆t can be characterized as follows :

1 With propability 1− Yt−1/n, the value of ∆t is :

δ1 = Yt−1(1− 1

n
)m−t −Yt−1(1− 1

n
)m−t+1 =

Yt−1

n
(1− 1

n
)m−t

2 With propability Yt−1/n, the value of ∆t is :

δ2 = (Yt−1 − 1)(1− 1

n
)m−t − Yt−1(1− 1

n
)m−t+1

= Yt−1(1− 1

n
)m−t(1− (1− 1

n
))− (1− 1

n
)m−t

= −(1− Yt−1

n
)(1− 1

n
)m−t
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Analysis III

Observing that 0 ≤ Yt−1 ≤ n, and using δ1 and δ2 for the upper
and lower bound respectively we obtain :

−(1− 1

n
)m−t ≤ ∆t ≤ (1− 1

n
)m−t

For 1 ≤ i ≤ m, we set ct = (1− 1
n )m−t , and we have that

|Zt − Zt−1| ≤ ct . Consequently :

m∑
t=1

c2
t =

1− (1− 1/n)2m

1− (1− 1/n)2
=

n2 − µ2

2n − 1

where we used the geometric series sum and the expected value
µ = n(1− 1/n)m.
Invoking Azuma-Hoeffding inequality now gives :

P(|Zn − µ| ≥ λ) ≤ 2exp(−λ
2(n − 1/2)

n2 − µ2
)
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Traveling Salesman Problem

We consider a randomized version of the problem where we have a set of
independent and uniformly distributed points P1 = (x1, y1),P2 = (x1, y1),
P3 = (x1, y1), . . . ,Pn = (xn, yn) in the unit square [0, 1]2.

A route is a permutation π of {1, . . . , n}. The total length of the
journey is :

d(π) =
n−1∑
i=1

|Pπ(i+1) − Pπ(i)|+ |Pπ(n) − Pπ(1)|

The shortest tour has length Dn = minπd(π).We are interested in
finding how close is Dn to its mean. We set Yi = E[Dn|Fi ] for i ≤ n
where Fi is the σ-field generated by P1, . . . ,Pi .As before,(Y ,F) is a
martingale and Yn = Dn,Y0 = E(Dn).
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Analysis I

We will try to obtain a bounding difference condition for Dn. Let Dn(i)
be the minimal-length tour through all points except i, and note that
E[Dn(i)|Fi ] = E[Dn(i)|Fi−1].

The vital inequality is :

Dn(i) ≤ Dn ≤ Dn(i) + 2Zi , i ≤ n − 1

where Zi is the shortest distance from Pi to one of the points
Pi+1, . . . ,Pn.

It is obvious that Dn ≥ Dn(i) .Since every tour of the n points
includes a tour of all the points except i . For the second inequality
we argue that,let Pj be the closest point to Pi amongst the set
{Pi+1, . . . ,Pn},a (sub-optimal) tour could be when we arrive at Pj

to visit Pi and return.

We must note that because the space is continuous we can come
arbitarily close to Pj without visiting it. Thus we have a valid tour.
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Analysis II

Taking conditional expectations of the previous inequality we obtain:

E[Dn(i)|Fi−1] ≤ Yi−1 ≤ E[Dn(i)|Fi−1] + 2E[Zi |Fi−1]

E[Dn(i)|Fi ] ≤ Yi ≤ E[Dn(i)|Fi ] + 2E[Zi |Fi ]

Manipulating the above inequalities and using the fact Dn(i) is
independent of point i . We have :

|Yi − Yi−1| ≤ 2max{E[Zi |Fi ],E[Zi |Fi−1]} i ≤ n − 1 (1)

We need to estimate the right hand side here.
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Analysis III

Let Q ∈ [0, 1]2 and let Zi (Q) be the shortest distance from Q to
the closest of n − i random points. If Zi (Q) > r then no point lies
within the circle C (r ,Q).Note that the largest possible distance
between two points in the square is

√
2.

There exists c(= π/4) such that for all r ∈ (0,
√

2], the intersection
of C (r ,Q) with the unit square has area at least cr 2.Therefore :

P(Zi (Q) > r) ≤ (1− cr 2)n−i , 0 < r ≤
√

2.
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Analysis IV

Integrating over x, using the (1 + x) < ex inequality and
E[X ] =

∫∞
0

P(X > x)dx we have for a constant C :

E(Zi (Q)) ≤
∫ √2

0

(1− cr 2)n−idr ≤
∫ √2

0

e−cr
2(n−i)dr <

C√
n − i

(2)

Since the random variables E[Zi |Fi ],E[Zi |Fi−1] are each smaller
than C/

√
n − i we have : |Yi − Yi−1| ≤ 2C/

√
n − i for i ≤ n − 1.

For the case i = n, we use the trivial bound |Yn − Yn−1| ≤ 2
√

2.
Applying the Azuma-Hoeffding Inequality, we obtain :

P(|Dn − E(Dn)| ≥ x) ≤ 2exp(− x2

2(8 +
∑n−1

i=1 4C 2/i

≤ exp(−Ax2/logn), x > 0.
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Analysis V

It can be shown that 1√
n
E(Dn)→ τ as n→∞ so using the

previous result :

P(|Dn − τ
√

n| ≥ ε
√

n) ≤ 2exp(−Bε2n

logn
) ε > 0

for some positive constant B and all large n.
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Stopping Times

Consider again the betting martingale we saw at the beginning. Due to
the martingale property if the number of games is initially fixed then the
expected gain from the sequence of games is zero.

Suppose now that the number of games is not fixed. What happens
if the gambler plays a random number of games or even better
according to a strategy?

For example a gambler could be playing until he doubles his original
assets. There are many strategies that one can conjure but not all
of them are possible to quantify and analyze.
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Stopping Times

Definition

A non-negative, integer-valued random variable T is a stopping
time for the sequence {Zn, n ≥ 0} if the event T=n depends only
on the value of the random variables Z1, . . . ,Zn.

Essentially a stopping time corresponds to a strategy for determining
when to stop a sequence based only on the outcomes seen so far.

A stopping time could be the first time the gamble has won at least
100 dollars or lost 50 dollars.

Letting T be the last time the gambler wins before he loses would
not be a stopping time since determining whether T=n cannot be
done without knowing Zn+1.
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Martingale Stopping Theorem

In order to fully utilize the martingale property, we need to characterize
conditions on the stopping time T that maintain the property E[ZT ] = E[Z0].

Theorem

if Z0,Z1, . . . is a martingale with respect to X1,X2, . . . and if T is a stopping
time for X1,X2, . . . then:

E[ZT ] = E[Z0]

whenever one of the following holds :

the Zi are bounded.

T is bounded.

E[T ] <∞, and there is a constant c such that
E[|Zi+1 − Zi | |X1, . . . ,Xi ] < c
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Betting Strategy

We will use the martinale stopping theorem to derive a simple solution to the
gambler’s ruin problem. Let Z0 = 0, let Xi be the amount won on the ith
game and Zi be the total amount won after i games.Assume that the player
quits the game when has either won W or lost L. What is the propability
that he wins W dollars before he loses L?

Let T be the first time has either won W or lost L. Then T is a
stopping time for the sequence X1,X2, . . ..

The sequence Z1,Z2, . . . is a martingale and the values are clearly
bounded.

let q be the propability first winning W .We apply the Martingale
Stopping Theorem :

E[ZT ] = E[Z0] = 0 and E[ZT ] = W · q − L(1− q)

q =
L

W + L
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Wald’s Equation

Wald’s equation deals with the expectation of the sum of
independent random variables in the case where the number of
random variables being summed is itself a random variable.

Theorem

Let X1,X2, . . . be nonnegative, independent, identically distributed
random variables with distribution X. Let T be a stopping time for
this sequence. If T and X have bounded expectation, then :

E[
T∑
i=1

Xi ] = E[T ] · E[X ]
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Proof I

For i ≥ 1, let :

Zi =
i∑

j=1

(Xj − E[X ]).

The sequence Z1,Z2, . . . is a martingale for X1,X2, . . . and
E[Z1] = 0

Now, E[T ] <∞(by definition) and

E[|∆Zi |Fi ] = E[|Xi+1 − E[X ]|] ≤ 2E[X ].

Hence we can apply the martingale stopping theoremto
compute :

E[ZT ] = E[Z1] = 0.
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Proof II

We now find by linearity of expectation :

E[ZT ] = E[
T∑
j=1

(Xj − E[X ])]

= E[(
T∑
j=1

(Xj)− TE[X ]]

= E[(
T∑
j=1

(Xj)]− E[T ]E[X ]]

= 0.

which gives the result.

Paris Siminelakis Martingales and Stopping Times



Martingales
Concentration Results for Martingales

Stopping Times
Conclusion

Basics
Wald’s Equation

Server Routing

Las Vegas Algorithms

Wald’s equation can arise in the analysis of Las Vegas algorithms, which
always give the right answer but have variable running times.

In a Las Vegas algorithm we often repeatedly perform some
randomized subroutine that may or may not return the right answer.

We then use some determenistic checking subroutine to determine
whether or not the answer is correct; If it is correct then it
terminates, otherwise the algorithm runs the subroutine again.

If N is the number of trials until a correct answer is found and if Xi

is the running time for the two subroutines (randomized routine and
determenistic checking routine).Then as long as Xi are independent
and identically distributed with distribution X, Wald’s equation gives
that the expected running time of the algorithm is:

E[
T∑
i=1

Xi ] = E[T ] · E[X ]
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Server Routing

Consider a set of n servers communicating through a shared
channel.Time is divided in time slots, and at each one any server
that needs to send a packet can transmit through the channel.

If exactly one packet is sent at that time, the transmission is
completed. If there are more than one, none is succesfull. Packets
not sent, are stored in the server’s buffer until they are transmitted.
Servers follow the following protocol :

Randomized Protocol

At each time slot, if the server’s buffer is not empty then with propability
1/n it attempts to send the first package in its buffer.

What is the expected number of time slots used until all servers
have sent at least one packet ?
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Server Routing

Let N be the number of packets succesfully sent until each server has
successfully sent at least one packet. Let ti be the time slot in which the
ith succesfully transmitted packet is sent. Starting from time t0 = 0, and
let ri = ti − ti−1.

Then T, the number of time slots until each server successfully
sends at least one packet, is given by :

T =
N∑
i=1

ri .

We see that N is independent of ri , and N is bounded in
expectation;thus is a stopping time.
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Server Routing

The propability that a packet is successfully sent in a given time slot
is :

p =

(
n

1

)
(

1

n
)(1− 1

n
)n−1 ≈ e−1

The ri each have a geometric distribution with parameter p, so :

E[ri ] = 1/p ≈ e.

The sender of a succesfully transimited packet is uniformly
distributed amongst the n servers, independent of previous steps.
Using the analysis of the Coupon Collector’s problem we deduce
that E[n] = nH(n) = n lnn + On.

We now use Wald’s identity to compute :

E[T ] = E[
N∑
i=1

]ri ] = E[N]E[ri ] =
nH(n)

p
≈ en lnn.
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Concluding Remarks

Using martingales we can obtain bounds even under complex
dependencies between the random variables.

It is not necessary to know the mean value inorder to seek
concentration results.

Appropriately defining martingales and using their properties
finds great application in analyzing and designing randomized
algorithms,e.g Las Vegas algorithms.
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