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A 2-SAT algorithm
Def. k-SAT is the special case of SAT where each 

clause has exactly k literals.

Example: 
(x1∨x2) ∧ (¬x1∨x3) ∧ (¬x2∨¬x3)

• For k>2, it is NP-hard.
• For k=1, k=2 it is in P.
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A 2-SAT algorithm
2-SAT Algorithm:
1. Start with an arbitrary truth assignment.
2. Repeat up to 2mn2 times, terminating if all 

clauses are satisfied:
a) Choose an arbitrary clause that is not satisfied 
b) Choose uniformly at random one of the literals in the 

clause and switch its value
3. If a valid truth assignment has been found, 

return true.
4. Otherwise, return that the formula is 

unsatisfied.
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Analysis of the 2-SAT algorithm
Th. The expected number of steps of the above   

2-SAT algorithm to find a satisfying assignment 
is O(n2).

Analysis: Let A be a particular satisfying 
assignment. The progress of the algorithm can 
be represented by {0,1,…,n}, where the i-th
position indicates how many variables in the 
current solution have the correct values. With 
probability at least ½ we move from i to i+1 in an 
unsatisfied clause. Thus it resembles a random 
walk in the line.
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Markov Chains

Def. A Markov chain M is a discrete time 
stochastic process defined over a set of states S 
in terms of a matrix P of transition probabilities.

• S={1,…,n}: set of states
• Xt: random variable: state of the system in time 

step t. X0 is chosen according to some 
probability distribution. 

• Pij=Pr[Xt+1 = j | Xt = i] 
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Markov Chains
• Memorylessness property:
Pr[Xt+1=j | X0 = i0, …,Xt=i] = Pr[Xt+1=j | Xt=i]=Pij

• rij
(t) = Pr[Xt = j, and for 1≤s≤t-1,Xs≠j| X0=i]

• If fij < 1, then hij = ∞ (but not the converse)
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Markov Chains
Def. A state i with fii < 1 is said to be transient, and 
one for which fii = 1 is said persistent. Those 
persistent states i for which hii=∞ are said null 
persistent, while the other non-null persistent.

• Underlying directed graph: (S,{(i,j): Pij > 0})

• Strong component: with some probability it 
reaches all other vertices, final strong component 
Pr=1
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Markov Chains
Def. A Markov chain is said to be irreducible

whenever its underlying graph consists of a 
single strong component. 

• The unique strong component in an irreducible 
Markov chain must be final, and hence all states 
are persistent.

Def. q(t)= (q1
(t), q2

(t), …, qn
(t)): state probability 

vector (distribution of the chain at time t)
q(t+1) = q(t)P
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Markov Chains
Def. A stationary distribution for the Markov chain 

with matrix P is a probability distribution π s.t.    
π= πP. 

• Aperiodic: ∀T>1,q(0),a,i: ∃t: qi
(t)>0 and t mod T ≠a

• Periodic Markov chains do not converge to the 
stationary distribution! 

Def. An ergodic state is one that is aperiodic and 
non-null persistent.
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Markov Chains
Th. (Fundamental Theorem of Markov chains): Any 

irreducible, finite and aperiodic Markov chain has 
the following properties. 

1. All states are ergodic.
2. There is a unique stationary distribution π s.t., for 

1≤i≤n,  πi > 0.
3. For 1≤i≤n, fii=1 and hii=1/πi
4. Let N(i,t) be the number of times the Markov chain 

visits state i in t steps. Then,
limt →∞N(i,t)/t=πi
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Random walks
• Let G=(V,E) be a non-bipartite, connected, 

undirected graph, n=|V|, m = |E|.
• A random walk on G induces the Markov chain 

MG with Pij=1/d(i), for (i,j)∈E and Pij=0 otherwise.

Lemma: For all v∈V, πv = d(v)/2m defines a unique 
stationary distribution. 

Proof: The j-component of πP is 

• G is aperiodic because it is non-bipartite, so π is 
unique
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Random walks
Lemma: For all v∈V, hvv = 1/πv=2m/d(v)

• huv: expected number of steps in a random walk 
starting at u and first reaching v

• Commute Time Cuv= huv+hvu

• Cu(G): expected length of a walk starting at u 
and visiting all v∈V

• Cover time C(G) = maxuCu(G)
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Random walks

• Lollipop graph:
–A clique on n/2 vertices
–A path on n/2 vertices
–Let u,v ∈ V, u is in the clique, v is at the far end 
of the path.
1.Surprisingly, huv ≠ hvu

(huv is Θ(n3) hvu is Θ(n2))
2.Cover time is not monotone in the number of 
edges (chain has cover time Θ(n2))
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Electrical networks
• Resistive electrical network: an undirected graph, 

each edge has a positive real branch resistance

• Kirchhoff’s Law, Ohm’s Law

• Effective resistance Ruv between any two vertices 
u,v: the voltage between u and v, when one 
ampere is injected into u and removed from v
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Electrical networks
• Given an undirected graph G, let N(G) be the 

electrical network: a node for every vertex in V 
and for every edge in E, one ohm resistance 
between the corresponding nodes.

Th. For any u,v∈V, Cuv = 2mRuv

• Effective resistance ≤ shortest path ≤ diameter
Corollary: In any n-vertex graph, and for all u,v∈V, 

Cuv < n3
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Cover Time

Th. C(G) ≤ 2m(n-1)

• Lollipop: C(Ln)=O(n3), C(Kn)=Θ(nlogn)

• Refine the upper bound.
Let R(G)=maxu,v∈VRuv , called resistance of G.

Th. mR(G) ≤ C(G) ≤ 2e3mR(G)lnn+n
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Graph Connectivity 

• STCON: Given a graph G and two vertices s and 
t in G, decide whether s and t are in the same 
connected component.

• Important in space-bounded complexity classes 
and a natural abstraction of a number of graph 
search problems.

DFS: O(m) time and Ω(n) space. 



Randomized Algorithms 2010 / Markov Chains and Random Walks 19/46

Graph Connectivity 
• A probabilistic log-space Turing machine (TM) for 

a language L is a probabilistic Turing machine 
using space O(logn) on instances of size n, and 
running in time polynomial time in n. 

• A language A is in RLP if there exists a 
probabilistic log-space TM M s.t. on any input x,
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USTCON ∈ RLP
Th. USTCON ∈ RLP. 
Pr. The log-space probabilistic TM simulates a 

random walk of length 2n3.If it encounters t in 
the walk it outputs YES, o.w. NO. The probability 
that t is in the same component with s and 
outputs NO is at most ½, by the Markov 
inequality and hst=n3. It uses O(logn) space.
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USTCON 
• Turn this randomized algorithm to a 

deterministic algorithm: use the class of non-
uniform, deterministic, log-space algorithms 
called universal traversal sequences.

σ=(1,2,1,1,2)

• A sequence σ is said to be universal traversal 
sequence for a class of labeled graphs if it 
traverses every labeled graph in the class.
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USTCON 
• A universal traversal sequence with polynomial 

length in n can be used by a deterministic log-
space TM as follows: the sequence is stored in 
the finite-state control of the TM and is used to 
traverse G starting from s on an instance of 
USTCON.

Let G be a family of connected, labeled, d-regular 
graphs on n vertices. 

• U(G): length of the shortest universal traversal 
sequence for all the labeled graphs in G

• R(G): maximum resistance between any pair of 
vertices.

Th. U(G) ≤5mR(G)log(n|G|)
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USTCON 
• U(n,d): length of the shortest universal traversal 

sequence for connected, labeled, d-regular, n-
vertex graphs

Corollary: U(d,n) = O(n3d logn)

• So there is a deterministic log-space TM that 
decides USTCON. We proof that there exists a 
universal traversal sequence (by probabilistic 
method), but we cannot constructed it.
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Directed Graphs 
STCON Algorithm
1. Starting at s, simulate a random walk of n-1 

steps. Each step consists of choosing an edge 
leaving the current vertex uniformly at random. It 
t is reached, output YES. If the walk reaches a 
vertex with no outgoing edge, or a vertex other 
than t after n-1 steps, return to s. It needs 
O(logn) bits.

2. Flip lognn unbiased coins. If they all come up 
HEADS, halt and output NO. This needs a 
counter for the coins, so O(logn) bits. 
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Directed Graphs 

Th. The above algorithm, will given an instance of 
STCON

1. Always output NO, if there is no path from s to t.
2. Output YES with probability at least ½ if there is 

a path from s to t.

Requires O(logn) space.
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Expanders

• Informally, an expander is a graph that any set 
of vertices S has neighborhood large relative to 
S.

• Sparse expander graphs: linear number of 
edges

• Deciding whether a given graph is an expander 
is co-NP-complete.

• We use algebraic graph theory to describe its 
properties.
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Expanders and Eigenvalues

Let G=(V,E) be an undirected, multipgraph, |V|=n.

When G is bipartite: two independent sets of 
vertices X={v1,…,vn} and Y={vn/2+1,…,vn}.  

A(G): adjacency matrix

B: edges between X, Y
A(G) is symmetric, eigenvalues λ1≥…≥ λn, and 
eigenvectors e1,…,en (orthonormal basis)

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

0B
B0

)G(A
T



Randomized Algorithms 2010 / Markov Chains and Random Walks 28/46

Expanders
Th. (Fundamental Th. of Algebraic Graph Theory): Let 

G=(V,E) be an n-vertex, undirected multigraph with 
maximum degree d. Then, under the canonical labeling 
of eigenvalues λi and orthonormal eigenvectors ei for 
A(G),

1. If G is connected, then λ2<λ1.
2. For 1≤i ≤n, |λi| ≤d.
3. d is an eigenvalue iff G is regular.
4. If G is d-regular, then λ1=d has e1 = 1/√n(1,1,…,1).
5. The graph G is bipartite iff for every eigenvalue λ there is 

an eigenvalue –λ of the same multiplicity.
6. Suppose G is connected. Then, G is bipartite iff –λ1 is an 

eigenvalue.
7. If G is d-regular and bipartite, λn=-d and en= 1/√n(1,1,…,   

-1,…,-1).
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Special Class of Expanders
Def. An (n,d,c)-expander is a d-regular bipartite multigraph

G(X,Y,E) with |X|=|Y|=n/2 s.t. for any S⊆X, 
|Γ(S)| ≥(1+c(1-2|S|/n))|S|

• Gabber-Galil: For m∈N, let n=2m2. 
• Vertex: a distinct label (a,b), for a,b ∈ Zm. 
• Edges: a vertex (x,y) in X is connected to vertices (x,y), 

(x,x+y), (x,x+y+1), (x+y,y), (x+y+1,y).
• It gives family of (n,5,a)-expanders, with a=(2-√3)/4 
• Similar, (n,7,2a)-expander: edges (x,y), (x,2x+y), 

(x,2x+y+1), (x,2x+y+2), (x+2y,y), (x+2y+1,y), (2x+y+2,y).
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Special Class of Expanders
• There is polynomial time neighborhood 

algorithm of any given vertex

Th. If G is an (n,d,c)-expander, then A(G) has 
|λ2| ≤ d - (c2/1024+2c2)

Th. If A(G) has |λ2|≤d-ε, then G is an 
(n,d,c)-expander with

c ≥(2dε- ε2)/d2
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Expanders
• For a d-regular graph G=(V,E), define

split(G)=min∅⊂X⊂V(|e(X,V\X)|/|X||V\X|)
where e(A,B): multiset of edges of G between sets 

A,B.

Th. If G is d-regular, then
split(G)≥(d-λ2)/n

Corollary: If G is d-regular then for any W⊂V,
|W ∪Γ(W)| ≥[1+(1-λ2/d)/2]|W|
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Random Walks on Expanders
• Let G be a (n,d,c)-expander. Random walk: for k 

edges between u and w, the probability that a 
random walk goes from v to w is k/d(v). This 
corresponds to a Markov chain with P=A(G)/d, and 
the eigenvalues are λi/d same eigenvectors.

• G is periodic: Overcome this, adding a self loop at 
each vertex with probability ½ (reduce all transition 
probabilities by 2). Then, Q=(I+P)/2, λi’=(1+λi/d)/2
Thus, 1=λ1’ ≥ λ2’ ≥…≥ λn’ and assuming λ2=d-ε, we 
have λ2’=1-ε/2d.
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Rapidly mixing 
• The Markov chain defined by Q, is “rapidly mixing”, 

i.e. converges to the stationary distribution in a 
small number of steps, starting from an initial 
distribution. 

Def. Let q(t) be the state probability vector of a 
Markov chain defined by Q at time t>0, given an 
initial distribution q(0). Let π denote the stationary 
distribution of Q. The relative pointwise distance of 
the Markov chain at time t is a measure of 
deviation from the limit and is defined as 

Δ(t)=maxi|qi
(t)-πi|/πi
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Rapidly mixing
Th. Let Q be the transition matrix of the aperiodic

random walk on a (n,d,c)-expander G with 
λ2 ≤ d-ε. Then, for any initial distribution q(0), the 
relative pointwise distance is bounded by:

Δ(t) ≤ n1.5(λ2’)t ≤ n1.5(1-ε/2d)t

This show that the relative pointwise distance of 
the random walk on an expander converges to 
zero at an exponential rate.
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Random Walks on Expanders
• For any 0<δ<1, let T(δ) denote the time at which 

the relative pointwise distance of the random 
walk defined by Q first falls below δ. Then 

T(δ) ≤ (logn1.5/δ)/(-logλ2’)

• So, to get a relative pointwise distance that is 
bounded from above by an inverse polynomial in 
n run the random walk only a logarithmic 
number of steps. Best possible, since the length 
of the random walk must at least the diameter of 
the graph. In expander graphs, the diameter is 
Ω(logn).
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Probability Amplification by 
Random Walks on Expanders

Probability amplification: Randomness-efficient 
error reduction of randomized algorithms. From a 
constant error rate randomized algorithm, to a 
randomized algorithm with exponentially small 
error with a small number of random bits.
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Probability Amplification by 
Random Walks on Expanders

The class BPP (Bounder-error Probabilistic Polynomial 
time) consists of all languages L that have a randomized 
polynomial time algorithm A s.t. for any x ∈Σ*, given a 
suitably long random string r, 

– x∈L ⇒ Pr[A(x,r) rejects] ≤ 1/100
– x∉L ⇒ Pr[A(x,r) accepts] ≤ 1/100

Fix an input x, and consider a BPP algorithm A that uses n 
random bits on inputs of length |x|. Suppose we choose k 
independent n-bit random strings r1,…,rk and compute 
A(x,r1),…,A(x,rk). By Chernoff bounds, Pr[majority is 
incorrect] = 1/2Ω(k) .
nk random bits used. What is the minimum number of 
random bits?
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Probability Amplification by 
Random Walks on Expanders

Idea: Take Gabber-Galil expanders, with vertices 
from {0,1}n. Start from a uniform random vertex a 
random walk of constant length. For every vertex 
on the random walk, we will run the algorithm with 
this vertex as its random string. Output as final 
decision the majority of these decisions. This will 
give an error that is exponentially small using as 
few random bits as possible (derandomization).

Sampling from an expander walk is as good as 
sampling independently.
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Probability Amplification by 
Random Walks on Expanders

•Consider the (N,7,2a)-expander. Choose m=2(n-1)/2 and 
N=2m2=2n, label each vertex with a distinct sequence of 
{0,1}n. Let A be the adjacency matrix of the expander. 
•Let Q=(I+A/7)/2 be the probability transition of the ergodic
Markov chain. Denote by X0, X1,… the states of the Markov 
chain.
•Choose a positive integer β, s.t. λ2

β ≤ 1/10. β=O(1)

•Scheme: For 0 ≤ i ≤ 7k, let ri = Xiβ (X0,Xβ,…). Run the 
algorithm A(x,*) using these 7kβ different choices of 
random inputs. The majority of these 7k YES/NO decisions 
is the final decision.  n bits are needed to choose an initial 
vertex and 4 bits for each of the 7kβ steps of the random 
walk.
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Probability Amplification by 
Random Walks on Expanders

Intuition:  The random strings are constructed by 
the states of the random walk on the expander. 
The random walk on an expander is rapidly mixing.

Composition of 7k different random walks, starting 
resp. from X0,Xβ, …,X7kβ, each generating a 
different random string ri. Each random walk has 
length β=O(1), instead of O(logN). On the other 
hand, we choose the initial vertex according to the 
stationary distribution, and this works for us.
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Probability Amplification by 
Random Walks on Expanders

p(i): the probability distribution vector for ri=Xiβ.
B=Qβ: transition matrix for the Markov chain to the 
sequence of ri’s.
W={r∈{0,1}n | A(x,r} is correct}   |W|≥0.99N
0-1 NxN diagonal matrix W, s.t. Wii=1 iff the i-th
vertex corresponds to a string that is a witness for 
x  and W’=I-W.
Event sequence S=(S1,S2,…,S7k)∈{W,W’}7k be s.t. 
Si=W iff ri∈W
S: encodes the pattern of errors in the executions 
of the algorithm
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Probability Amplification by 
Random Walks on Expanders

Lemma: For any fixed event sequence S, 
Pr[S occurs] = ||p(0)(BS1)(BS2)…(BS7k)||1

Lemma: For all vectors p ∈ RN

||pBW|| ≤ ||p||
||pBW’|| ≤ 1/5||p||
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Probability Amplification by 
Random Walks on Expanders

Th. The probability that the majority of the outputs 
A(x,r1),…,A(x,r7k) is incorrect is at most 1/2k.

Proof:
By a Chernoff Bound for expander walks.  Half of 
the elements in S must equal to W’. Fix any 
particular S whose elements contain a majority of 
W’s, κ ≥7k/2 of them.

Pr[S occurs] = ||p(0)(BS1)(BS2)…(BS7k)||1
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Probability Amplification by 
Random Walks on Expanders

Proof (Cont):
Pr[S occurs] = ||p(0)(BS1)(BS2)…(BS7k)||1

≤ √N||p(0)(BS1)(BS2)…(BS7k)||
≤ √N(1/5)κ||p(0)||
≤ √N(1/5)7k/2||p(0)||

We chose p(0)  uniform on the N vertices, so     
||p(0)|| = 1/√N.
The number of sequences S with a majority of W’
is at most 27k, so 
Pr[Majority vote is incorrect ] ≤ 27k√N(1/5)7k/2||p(0)||

≤ 27k(1/5)7k/2 ≤ 1/2k
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Probability Amplification by 
Random Walks on Expanders

Number of repetitions Number of random bits

Independent Repetitions O(k) O(km)

Pairwise Independent Repetitions O(2k) O(k+m)

Expander Walks O(k) m+O(k)
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