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Introduction

Example: Estimating π

Chose a point, (X ,Y ), in a 2× 2 square centered at (0,0).
Or equiv chose Y and X independently from [−1,1].

Z =

{
1 if(X ,Y ) ∈ Unit Circle
0 otherwise

Pr(Z = 1) = π
4 the ratio of the area of the cicle to the area

of the square.
We run m times and let W =

∑m
i=1 Zi .

E[W ] = mπ
4 and W ′ = (4/m)W is a natural estimate for π.

By Chernoff bound (Pr(|X − µ| ≥ δµ) ≤ 2eµδ
2/3, where X

is the sum of independent poisson trials) we have:
Pr(|W ′ − π| ≥ επ) ≤ 2e−mπε2/12
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Introduction

(ε, δ)-approximation and FPRAS

Definition ((ε, δ)-approximation)

A randomized algorithm gives an (ε, δ)-approximation for the
value V if the output X satisfies:

Pr(|X − V | ≤ εV ) ≥ 1− δ.

Therefore if we choose m ≥ 12 ln(2/δ
πε2 we have an

(ε, δ)-approximation for π.

Definition
A fully polynomial randomized approximation scheme for a
problem is a randomized algorithm for which, given an input x
and any parameters 0 < ε, δ < 1, the algorithm outputs an
(ε, δ)-approximation to V (x) in time polynomial in 1/ε, ln δ−1

and the size of the input x .



The Monte Carlo Method The Markov Chain Monte Carlo Method Permanent

Introduction

Outline of the Monte Carlo Method

Obtain an efficient approximation for a value V :
Find an efficient Process to generate a sequence of of
independent and identically distributed random samples with
E[Xi ] = V .
Get enough samples for an (ε, δ)-approximation for V .

The nontrivial task here is to Generate a good sequence of
samples.
The Monte Carlo method is also called Monte Carlo Simulation.
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DNFSAT Counting

A little about counting problems

In counting problems we are interested in finding the
number of different solutions for the input.
For example in #SAT we are interested in counting the
number of satisfying assignments of a given boolean
formula in conjunctive normal form.
The class of counting problems that can be solved within
poly-time is FP

The output is a number and not a yes/no answer as in
decision problems

The class that contains the problems of counting the
solutions of NP problems is called #P.
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DNFSAT Counting

A little about counting problems (cont.)

#P = {f | f (x) = accM(x)}, where M is a NPTM and
accM(x) = number of accepting paths of M on input x .
With an a-la-cook proof we can get that #SAT is a
complete problem for #P.
It is interesting the fact that counting versions of problems
in P may also be complete for #P.

examples: #BIPMATCHINGS, #DNFSAT, #MONSAT, #IS,
#BIS.

Note that these hard to count easy to decide problems are
#P complete under the poly-time Turing reduction and #P
is not closed under poly-time Turing reduction.
On the other hand #P is closed under poly-time many one
reduction (parsimonious or karp).
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DNFSAT Counting

A little about counting problems (concl.)

Furthermore there are three degrees of approximability
within problems of #P [DGGJ’00]:

Solvable by an FPRAS:
#PM, #DNFSAT, ...
AP-interreducible with #SAT:
#SAT, #IS, #IS�deg(25) ...
An Intermediate Class (AP-Interreducible with #BIS)

Note that if the counting versions of NP complete problems
have an FPRAS this would imply an unexpected class collision
(NP = RP).
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DNFSAT Counting

#DNFSAT: A first approach

Given a #DNFSAT formula F consider the following
algorithm:

1 X := 0
2 For k = 1 to m do:

a Generate a random assignment for the n variables, chosen
uniformly at random from all 2n possible assignments

b If the random assignment satisfies the formula: X := X + 1
3 Return (X/m)2n.

If X =
∑m

i=1 Xi , where Xi independent random variables
that take value 1 with probability c(F )/n

By linearity of expectations: E[Y ] = E[X ]2n

m = c(F ), where
c(F ) = # sat assingns.
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DNFSAT Counting

A first approach (concl.)

The previous approach gives an (ε, δ)-approximation of
c(F ) when m ≥ 3·2n ln(2/d)

ε2c(F )

The above algorithm is polynomial to the size of the input
(n) only if c(F ) ≥ 2n/poly(n)

We have no guarantee of how dense c(F ) is in our sample
space
If c(f ) is polynomial in n then with high probability we must
sample an exponential number of assignments before
finding the fist satisfying one.
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DNFSAT Counting

Fixing the sample space

A sat assignment of F = C1 ∨ C2 . . .Ct needs to satisfy at
least one of the clauses.
If clause Ci has li litterals there are exactly 2n−li sat
assigns.
If SCi is the set of assigns that sat Ci we will use as
sample space the following:
U = {(i ,a) | 1 ≤ i ≤ t & a ∈ SCi}.
|U| =

∑t
i=1 |SCi | and we want to compute

c(F ) =
∣∣∣⋃t

i=1 SCi

∣∣∣.
An assignment can satisfy more than one clause, thus we
need to define a subset S ⊆ U with size c(F ).
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DNFSAT Counting

The Algorithm

We provide the following algorithm for sampling
1 X := 0
2 For k := 1 to m do:

a With probability |SCi |/|U| choose, uniformly at random, an
assignment a ∈ SCi

b If a is not in any SCj , j < i , then X := X + 1.
3 Return (X/m)|U|

The above algorithm in order to estimate c(F ) uses
S = {(i ,a) | 1 ≤ i ≤ t ,a ∈ SCi ,a /∈ SCj for j < i}.

That is for each sat assign we get exactly one pair, the one
with the smalest clause index number.

Then we estimate the ratio |S|/|U| by sampling uniformly
at random from U.
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DNFSAT Counting

FPRAS for #DNFSAT

How to uniformly sample from U:
We first choose the first coordinate i .
The i-th clause has |SCi | sat assigns, therefore we should
chose i with probability proportional to |SCi |,
that is we chose i with probability |SCi |/|U|.
Then we chose a sat assign uniformly at random from SCi ,
that is we chose the value “T” or “F” independently and
uniformly at random for each variable not in clause i .

Pr((i ,a) is chosen ) = Pr(a is chosen | i is chosen)

= |SCi |
|U| ·

1
|SCi | = 1

|U| , which gives a uniform distribution.

This algorithm is an FPRAS when m = d(3t/ε2) ln(2/δ)e.
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DNFSAT Counting

FPRAS for #DNFSAT (concl.)

This algorithm is an FPRAS when m = d(3t/ε2) ln(2/δ)e.

A sat assign of F sats at most t clauses, therefore there
are at most t elements (i ,a) in U, corresponding to each Ci

therefore |S||U| ≥
1
t , that is the probability that each random

chosen element belongs to S is at least 1/t . (E[X ] ≥ 1/t)
Pr(
∣∣E[Y ]− |S|

∣∣ ≥ εE[Y ]) =
Pr(
∣∣E[X ]− |S|m

∣∣ ≥ εE[X ]m) ≤
2e−ε

2E[X ]m/3 ≤ δ
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Markov Chains Reminder

MC is a stohastic process that has states and transition
probabilities.
The transition probabilities are memoryless, i.e. they
depend only on the current state of the MC.
An ergodic (irreducible, finite and aperiodic) Markov Chain
converges to a unique stationary distribution π.

That is the probability of a state in the MC is given by π,
and it is independent from the initial state.
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Overview of the MCMC method

Define an ergodic Markov Chain with states the elements
of the Sample Space.
This MC must converge to the required Sampling
Distribution.
From any starting state X0, and after a sufficient number of
steps r the distribution of Xr will be close to the stationary.
We use as almost independent samples Xr ,X2r ,X3r . . . .
The efficiency of MCMC method depends on:

How large r must be to have a good samples.
How fast (computationally) can we traverse between the
states of the MC.
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From Sampling to Counting

Variation Distance and Approximate Samplers

Definition (Variation Distance)

The variation distance between two probability distributions π and π′

on a countable state space S is given by:
‖π − π′‖ = 1

2

∑
x∈S |π(x)− π′(x)|.

‖π − π′‖ = maxA⊆S |π(A)− π′(A)|

Definition (FPAUS)

An almost uniform sampler is a randomized algorithm that takes as
input x and a tolerance δ, and produces a random variable Z ∈ Ω(x),
such that the probability distribution of Z is within variation distance ε
of the uniform distribution on Ω(x). An almost uniform sampler is said
to be fully polynomial if it runs in poly-time in |x | and ln δ−1.

Notice that the above definition can be generalized for any desired
distribution.
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From Sampling to Counting

An Example: Proper Colorings of a Graph

Theorem
Suppose we have an AUS for k−colorings of a graph, which
works for graphs G with max degree ∆ < k; and suppose that
the sampler has time complexity T (n, δ) (n is the number of
vertices in G). Then we may construct a (ε, δ)-approximation for
the number of k−colorings of a graph, which works for graphs
with max degree bounded by ∆, and which has time complexity
O
(m2

ε2 T (n, ε
6m )
)
.

The idea of the proof will be presented on the whiteboard.
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Markov Chains and Mixing Time

Markov Chain with Uniform distribution

We need a MC with uniform stationary distribution.
We perform a random walk in the graph of the state space.
We add self loops to break the periodicity of MC.
Lemma:
For a finite space Ω and neigborhood structure
{N(x) | x ∈ Ω} let N = maxx∈Ω |N(x)|. Let M ≥ N. If the
following MC is irreducible, aperiodic then the sationary
distribution is the uniform distribution.

Px ,y =


1/M if x 6= y and y ∈ N(x),
0 if x 6= y and y /∈ N(x),
1− N(x)/M if x = y .
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Markov Chains and Mixing Time

Markov Chain for the k-colorings

For our example we will use the following Markov Chain:
At each step choose a vertex v u.a.r. and a color c u.a.r.
Recolor v with c if the new coloring is proper, otherwise the
state of the chain remains unchainged
This chain obviously satisfies the requirements of the
previous lemma.
We will show that the above MC is “rapidly mixing”, that is
the t-step distribution closely approaches to the stationary
distribution in polynomial time (of n), provided k ≤ 2∆ + 1.
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Markov Chains and Mixing Time

Mixing Time

Definition
Let π be the stationary disrtibution of a Markov Chain with state
space S. Let pt

x be the distribution of the state of the chain
starting at x after t steps. We define:
∆x (t) = ‖pt

x − π‖.

Definition (Mixing Time)

We define τx (ε) = min{t | ∆x (t) ≤ ε} and τ(ε) = maxx∈S τx (ε).
That is τx (ε) is the first step t at which the variation distance
between pt

x and the stationary distribution is less than ε, and
τ(ε) is tha maximum of these values over all states x .

A chain is called rapidly mixing if τ(ε) is polynomial in 1/ε and
the size of the problem.
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Coupling of Markov Chains

The main idea

In order to show that a chain is rapidly mixing consider the
following.
We have two copies of the same Markov Chain one of
them already in the sationary distribution.
The other starts at a state x .
We then prove that after a short period of time they reach
the same state.
Additionally we have defined the two chains properly so
that the remain in the same state right after.
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Coupling of Markov Chains

Coupling

Definition (MC coupling)

A coupling of a Markov chain Mt with a state space S is a
Markov chain Zt = (Xt ,Yt ) on the state space S × S such that:

Pr(Xt+1 = x ′ | Zt = (x , y)) = Pr(Mt+1 = x ′ | Mt = x);
Pr(Xt+1 = y ′ | Zt = (x , y)) = Pr(Mt+1 = y ′ | Mt = y).

That is, a coupling consists of two copies of the MC M running
simultaneously. They are not necessarily in the same state of make
the same move, instead each copy behaves exactly like the original
chain.
We will use couplings that:

1 bring the two copies to the same state
2 keep them in the same state by having the two chains make

identical moves once they are in the same state.
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Coupling of Markov Chains

Coupling Lemma

Coupling Lemma

Let Zt = (Xt ,Yt ) be a coupling for a Markov Chain M. Suppose
that there exists a T such that, for every x , y ∈ S,
Pr(XT 6= YT | X0 = x ,Y0 = y) ≤ ε
Then τ(ε) ≤ T .

That is, for any initial state, the variation distance between the
distribution of the state of the chain after T steps and the
stationary distribution is at most T .

Proof on board.
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Coupling of Markov Chains

FPAUS for k-colorings (I)

Consider the case of k-colorings where k > 2∆ + 1
We remind the MC on the colorings of G:
At each step chose a vertex v u.a.r. and a color c u.a.r.
Recolor v with c if the new coloring is proper, otherwise let
the state unhanged.
We will define a coupling of this MC.
Let Dt be the set of vertices that have different colors in the
two chains of the coupling at time t with |Dt | = dt .
Let At be the set of vertices that have the same color in the
two chains at time t .
Define d ′(v) to be the neigbours of v in Dt if v ∈ At .
Similarly d ′(w) the neigbours of w in At if w ∈ Dt .
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Coupling of Markov Chains

FPAUS for k-colorings (II)

Note that
∑

v∈At
d ′(v) =

∑
w∈Dt

d ′(w) = m′.
Coupling: If an vertex v ∈ Dt is chosen to be recolored, we
chose the same color for both chains.
The vertex v will have the same color in both chains
whenever the color chosen is different from any color on
any of the neigbors of v in both copies of the MC.
There are k − 2∆ + d ′(v) such colors.
The probability that dt+1 = dt − 1 when dt > 0 is at least:
1
n
∑

v∈Dt

k−2∆+d ′(v)
k = 1

kn ((k − 2∆)dt + m′).
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Coupling of Markov Chains

FPAUS for k-colorings (III)

Coupling: If a vertex v ∈ At is chosen to be recolored we
use the following:
If the two vertices have one neighbour with different colors
wlog assume v has color 1, and the neigbours have colors
2,3. We recolor v with 3 in the first copy and 2 in the
second copy. (dt doesn’t increase)
General case, id there are d ′(v) differently colored vertices
around v we can couple the colors so that at most d ′(v)
color choices cause dt to increase. (explain)
the probability that dt−1 = dt + 1 is at most:
1
n
∑

v∈At

d ′(v)
k = m′

kn .
After some calculations (board) we prove that:
τ(ε) ≤ n(k−∆)

k−2∆ ln(n
ε )
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Other Mixing Time Bounding Methods

Path Coupling

We will explain the intuition of Path coupling with the problem
#IS (it works for max deg ≤ 4).
We start witha coupling for pairs of states thad differ in just one
vertex.
Then we extend this to a general coupling over all pairs of states.
This technique is powerfull because it is often much easier to
analyze the situation where the two states differ in a small way,
than to analyze all possible ways of states.
The extention of the coupling is a chain of states Z0 . . .Zdt where
Z0 = Xt and Yt = Zdt , an each successive Zi is obtained from
Zi−1 by either removing a vertex from Xt \ Yt or adding a vertex
from Yt \ Xt .
The previous can be done for example by first removing all
vertices in Xt \ Yt one by one and then add all the vertices in
Yt \ Xt one by one.
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Other Mixing Time Bounding Methods

Canonical Paths, CFTP

Canonical Paths

View the MC as an undirected gaph with vertex set Ω and
edge set E = {{x , y} ∈ Ω2 | P(x , y) > 0}.
For each ordered pair (x , y) we specify a canonical path γxy
in the graph.
We choose a set of paths that avoid teh creation of edges
that carry a heavy burden of paths
intuitively we might expect a MC to be rapidly mixing if it
contains no “bottlenecks”.

Coupling from the Past
We use “algorithmic coupling” to obtain sample from the
exact stationary distribution.
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Permanent

Definition and History

The permanent for a n × n zero one matrix is deifined by:

per(A) =
∑
π

n∏
i=1

A1,π(i)

where the sum is over all permutations π of {1,2, . . . ,n}.
The best deterministic algorithm runs in time O(n2n)

Although the determinant can be computed in poly time by
gaussian elimination.
It is equivalent to #BIPMATCHINGS, if A is the adjacency
matrix.
Valiant has shown that it is #P-complete.
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Permanent

FPRAS for the Permanent

An FPRAS was given by Jerrum, Sinclair and Vigoda ’02.
It is based in a Markov Chain monte carlo method.
The sample space of the MC consists of all perfect and
near-perfect Matchings (matchings with two uncovered
vertices).
The problem is that near-perfect mathcings may
outnumber the pm’s by more than a polynomial factor.
Solution: a weighting of the near perfect matchings in the
stationary distribution so as to take acount the position of
the holes (not matched vertices).
Each hole pattern has equal aggregated weigt so the PM’s
are not dominated too much
The mixing time of the chain is bounded by Canonical
Paths Method
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Permanent

An alternative estimator (Simple Approach)

The Laplace’s expantion formula for the Permanent:
per(A) =

∑n
j=1 a1jper(A1j)

The algorithm is the following:
If n = 0 then XA = 1.
W := {j | a1j = 1}.
If W = ∅ then XA = 0.
else chose J u.a.r. from W
XA = |W |XA1J .

For this estimator it holds that:
E[XA] = per(A)
E[X 2

A ] = per2(A)n!. (equality for the upper triangular)
The important result here is that for any function ω(n)

PrAn

(
E[X 2

A ]
(E[XA])2 > nω(n)

)
→ 0

That is the number of trials is bounded by O(nω(n)/ε2) with high
probabilty.
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