GIAN Course on Distributed Network Algorithms

The Power of Locality

Case Study: Graph Coloring

Assign colors to nodes.

Applications

- Neighboring states should have different colors!
- Famous 4-color theorem: any map can be painted with four colors!

Medium Access

- Interference-free, efficient utilization of spectrum
- Neighboring cells should have different frequencies!
- Colors = frequencies, channels, etc.

Image Processing

- Chromatic scheduling for physical simulation
- Process nodes of same color in parallel without determinacy race
- No coordination, no mutual exclusion needed

Legal coloring? Chromatic number?

Legal coloring? Chromatic number?

Tree! 2 colors are enough...

What about this example?

What about this example?

3 colors needed and enough...

How to color a graph in a distributed manner?

How to color a graph in a distributed manner?

The LOCAL Model: A Convenient Synchronous Model

□ Time Complexity:

Number of communication rounds

□ Message Complexity:

Number of messages sent

□ Local Computation:

Complexity of local computations

LOCAL Performance Metrics

What else?

□ Time Complexity:

Number of communication rounds

□ Message Complexity:

Number of messages sent

□ Local Computation:

Complexity of local computations

□ Message Complexity:

Number of messages sent

□ Local Computation:

Complexity of local computations

How to color a *tree* in a distributed manner?

How to color a *rooted tree* in a distributed manner?

Simplification:

How to color a *rooted tree* in a distributed manner?

Simplification:

- Slow Tree Algo

If root: color 0, send 0 to children Otherwise: each node *v*:

- Wait for message *x* from parent
- Choose color y=1-x
- Send y to children

- □ Approximation quality:
- □ Time complexity:
- □ Message complexity:
- □ Local complexity:

- □ **Approximation quality:** # colors?
- **Time complexity:** # rounds?
- □ **Message complexity:** # messages?
- □ **Local complexity:** local computations?

- □ Approximation quality: 2 colors suffice!
- □ **Time complexity:** O(n), depth of the tree
- Message complexity: O(n)
- Local complexity: trivial, just flip!

□ Local complexity: trivial, just flip!

❑ Yes we can!

□ 3-coloring in O(log* n) rounds

❑ Yes we can!

- 3-coloring in O(log* n) rounds
- Idea: based on ID manipulations

□ Again: interpret ID as color

Unique IDs → legal (but expensive) coloring! How can we quickly reduce the ID space?

log n:

How many times do I have to :2 until <2?

log n

log n: How many times do I have to :2 until <2?

n, n/2, n/4, n/8, ..., 8, 4, 2, 1

loglog n:

How many times do I have to \sqrt{x} until <2?

n,
$$\sqrt{n}$$
, $\sqrt{\sqrt{n}}$, $\sqrt{\sqrt{n}}$, ..., <2

loglog n

log* n: How many times do I have to log x until <2?

n, log n, loglog n, logloglog n, ..., <2

Slow Algo

No parallelism!

Fast Algo

Efficient parallel manipulations!

Time: n

Time: log* n

initially

Initially ID = label of node v =color c_v

Unique IDs \rightarrow legal (but expensive) coloring!

- 1. Send my c_v to children (in parallel!)
- 2. Receive parent ID/color c_p

Round 1

Algorithm: in round i, node v:

- 1. Send my c_v to children (in parallel!)
- 2. Receive parent ID/color c_p
- 3. Let i be the smallest index where c_v and c_p differ (from right, binary)

4. My new $c_v = i \parallel c_v(i)$ **ID = color for next round: the position!**

Example:

Round 1

- 1. Send my c_v to children (in parallel!)
- 2. Receive parent ID/color c_p
- 3. Let i be the smallest index where c_v and c_p differ (from right, binary)
- 4. My new $c_v = i || c_v(i)$

Round 1

- 1. Send my c_v to children (in parallel!)
- 2. Receive parent ID/color c_p
- 3. Let i be the smallest index where c_v and c_p differ (from right, binary)
- 4. My new $c_v = i || c_v(i)$

Round 2

- 1. Send my c_v to children (in parallel!)
- 2. Receive parent ID/color c_p
- 3. Let i be the smallest index where c_v and c_p differ (from right, binary)
- 4. My new $c_v = i || c_v(i)$

Round 2

- 1. Send my c_v to children (in parallel!)
- 2. Receive parent ID/color c_p
- 3. Let i be the smallest index where c_v and c_p differ (from right, binary)
- 4. My new $c_v = i || c_v(i)$

Round 2

- 1. Send my c_v to children (in parallel!)
- 2. Receive parent ID/color c_p
- 3. Let i be the smallest index where c_v and c_p differ (from right, binary)
- 4. My new $c_v = i || c_v(i)$

Round 2

Round 3

- 1. Send my c_v to children (in parallel!)
- 2. Receive parent ID/color c_p
- 3. Let i be the smallest index where c_v and c_p differ (from right, binary)
- 4. My new $c_v = i || c_v(i)$

etc.!

- 1. Send my c_v to children (in parallel!)
- 2. Receive parent ID/color c_p
- 3. Let i be the smallest index where c_v and c_p differ (from right, binary)
- 4. My new $c_v = i || c_v(i)$

 \Box How long does it take until O(1) colors?

□ Why is coloring always legal?

How long does it take until O(1) colors?
bits/colors reduced by a log-factor in each round
The definition of log*!
log* n: How many times do I have to log x until <2?

□ Why is coloring always legal? Algorithm: My new $c_v = i || c_v(i)$ How long does it take until O(1) colors?
bits/colors reduced by a log-factor in each round
The definition of log*!
log* n: How many times do I have to log x until <2?

□ Why is coloring always legal? Algorithm: My new $c_v = i || c_v(i)$

By contradiction: To get the same ID as my father, I need to differ at same position from father as father from grandfather. But then last bit must be different: there I took my own bit (and father will do the same with his different bit)!

6-Colors

Assume: legal initial coloring, root with label $c_v=0$ Each other node v does (in parallel):

Send c_v to kids

Repeat (until $c_w \in \{0,...,5\}$ for all w):

- 1. Receive c_p from parent
- 2. Interpret c_v/c_p as little-endian bitstrings c(k)...c(1)c(0)
- 3. Let i be smallest index where c_v and c_p differ
- 4. New label is: i||c_v(i)
- 5. Send c_v to kids

6-Colors

Assume: legal initial coloring, rest with lebel a =0. Each other node v does (in pa Send c_v to kids

Repeat (until $c_w \in \{0,...,5\}$ for all w):

- 1. Receive c_p from parent
- 2. Interpret c_v/c_p as little-endian bitstrings c(k)...c(1)c(0)
- 3. Let i be smallest index where c_v and c_p differ
- 4. New label is: i||c_v(i)
- 5. Send c_v to kids

59

With 6-COLORS algorithm we can get down to 6 colors.

What about improving it to 2 colors?

With 6-COLORS algorithm we can get down to 6 colors.

What about improving it to 2 colors?

Impossible: takes linear time. What about 3 colors? Let us note a simple trick: shift colors down by one level makes siblings "independent". And preserves legal coloring...

E Fre

The second

Con Pro

The ser

Let us note a simple trick: shift colors down by one level makes siblings "independent". And preserves legal coloring...

Con Star

Result: all my descendants have same color! At most 2 colors are occupied: father and descendants! 3rd color free!

Observation: Shift Down

Each node v concurrently does: recolor v with color of parent

Shift Down

Let us note a simple trick: shift colors down by one level makes siblings "independent". And preserves legal coloring...

Con Star

Formally...

Result: all my descendants have same color! At most 2 colors are occupied: father and descendants! 3rd color free!

Why still log* n time?

Example: Shift Down + Drop Color 4

Siblings no longer have same color: must do shift down again first!

One can show that no local algorithm can 3-color a graph faster than in O(log* n).

In fact: in 0 rounds: \geq n colors in 1 round: \geq log n colors in 2 rounds: \geq loglog n colors etc.!

One can show that no local algorithm can 3-color a graph faster than in O(log* n).

One can show that no local algorithm can 3-color a graph faster than in O(log* n). In fact: in 0 rounds: \geq n colors in 1 round: \geq log n colors in 2 rounds: \geq loglog n colors etc.!

Proof idea: Recall the elephant!

A local coloring algorithm can be seen as a function: f: neighborhood \rightarrow color

A deterministic algorithm needs to decide in the same way given same neighborhood: risk illegal coloring. Only with communication neighborhoods start look different and require less colors.

Can we reduce to 2 colors?

Not without increasing runtime significantly! (Linear time, more than exponentially worse!)

Simple on purpose: results more general!

log* runtime is also possible on more general graphs Many results: see ACM PODC conference!

Where can I learn more?

- Distributed Computing book by David Peleg
- □ Lecture notes by Roger Wattenhofer ETH Zurich
- □ ACM Survey by Jukka Suomela
- □ Research: ACM PODC Conference