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Case Study: Graph Coloring

Assign colors to nodes.



Case Study: Graph Coloring

Legal coloring: neighbors

have different colors!



Case Study: Graph Coloring

Optimal coloring: Minimal 

number of colors (aka 

chromatic number)



Applications

6

Country Maps Medium Access Image Processing

❏ Neighboring states 
should have different 
colors!

❏ Famous 4-color 
theorem: any map 
can be painted with 
four colors! 

❏ Interference-free, 
efficient utilization of 
spectrum 

❏ Neighboring cells 
should have different 
frequencies!

❏ Colors = frequencies, 
channels, etc.

❏ Chromatic scheduling 
for physical 
simulation

❏ Process nodes of 
same color in parallel 
without determinacy 
race

❏ No coordination, no 
mutual exclusion 
needed



Legal coloring? Chromatic number?
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Legal coloring? Chromatic number?

Tree! 2 colors are enough...
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What about this example?
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What about this example?

3 colors needed and enough...
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Now distributed!

How to color a graph 

in a distributed manner?
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Now distributed!

How to color a graph 

in a distributed manner?
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The LOCAL Model: A Convenient Synchronous Model

... compute.

... receive...

Send...
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... in each 

round!



... compute.

... receive...

Send...
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... in each 

round!

The LOCAL Model: A Convenient Synchronous Model
We will see in this course: there are 

techniques to execute an algorithm 

designed in the simple LOCAL model 

also in asynchronous networks!
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... receive...

Send...
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... in each 

round!

The LOCAL Model: A Convenient Synchronous Model
We will see in this course: there are 

techniques to execute an algorithm 

designed in the simple LOCAL model 

also in asynchronous networks!

Moreover, LOCAL algorithms can be 

made very robust (namely self-

stabilizing), in an automatic manner!



... compute.

... receive...

Send...
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... in each 

round!

Unlike CONGEST model: 

message size and link 

capacity not bounded.

The LOCAL Model: A Convenient Synchronous Model
We will see in this course: there are 

techniques to execute an algorithm 

designed in the simple LOCAL model 

also in asynchronous networks!

Moreover, LOCAL algorithms can be 

made very robust (namely self-

stabilizing), in an automatic manner!



LOCAL Performance Metrics

❏ Time Complexity: 

Number of communication rounds

❏ Message Complexity: 

Number of messages sent

❏ Local Computation: 

Complexity of local computations
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LOCAL Performance Metrics

❏ Time Complexity: 

Number of communication rounds

❏ Message Complexity: 

Number of messages sent

❏ Local Computation: 

Complexity of local computations

What else?

Quality of solution: Approximation ratio 

for example („price of locality“).
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Now distributed!How to color a tree

in a distributed manner?
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Now distributed!How to color a rooted tree

in a distributed manner?

Simplification:

❏ Assume unique node IDs

❏ Assume rooted

❏ Root ID 0

0
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Now distributed!How to color a rooted tree

in a distributed manner?

Simplification:

❏ Assume unique node IDs

❏ Assume rooted

❏ Root ID 0

0

Idea: interpret ID as color! 

Communicate my color to children and 

take opposite color from my parent!



Slow Distributed Tree Coloring: Example
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Round 1

0



Slow Distributed Tree Coloring: Example
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Round 2

0

1 1



Slow Distributed Tree Coloring: Example
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Round 3

0

1 1

0 0 0 0
0



Slow Distributed Tree Coloring: Example
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Round 3

0

1 1

0 0 0 0
0

1
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Slow Tree

Slow Tree Algo

If root: color 0, send 0 to children

Otherwise: each node v:

• Wait for message x from parent

• Choose color y=1-x

• Send y to children
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Slow Tree: Analysis
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❏ Approximation quality:

❏ Time complexity:

❏ Message complexity: 

❏ Local complexity:



Slow Tree: Analysis
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❏ Approximation quality: # colors?

❏ Time complexity: # rounds?

❏ Message complexity: # messages?

❏ Local complexity: local computations?



Slow Tree: Analysis

30

❏ Approximation quality: 2 colors suffice!

❏ Time complexity: O(n), depth of the tree

❏ Message complexity: O(n)

❏ Local complexity: trivial, just flip!



Slow Tree: Analysis
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❏ Approximation quality: 2 colors suffice!

❏ Time complexity: O(n), depth of the tree

❏ Message complexity: O(n)

❏ Local complexity: trivial, just flip!

Can we do faster?



Ultra Fast Distributed Tree Coloring

32

❏ Yes we can!

❏ 3-coloring in O(log* n) rounds



Ultra Fast Distributed Tree Coloring

33

❏ Yes we can!

❏ 3-coloring in O(log* n) rounds

❏ Idea: based on ID manipulations

❏ Again: interpret ID as color

Unique IDs → legal (but expensive) coloring!
How can we quickly reduce the ID space? 



Intuition: n vs log* n

log n: How many times do I have to :2 until <2?

n, n/2, n/4, n/8, …, 8, 4, 2, 1

log n
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Intuition: n vs log* n

log n: How many times do I have to :2 until <2?

n, n/2, n/4, n/8, …, 8, 4, 2, 1

log n

loglog n: How many times do I have to √x until <2?

loglog n

n, √ n, √ √ n, √ √ √ n, …, <2

log* n: How many times do I have to log x until <2?

log* n

n, log n, loglog n, logloglog n, …, <2



n = atoms in universe ≈ 1080

log*(atoms in universe) ≈ 5



Time: n Time: log* n

Slow Algo
No parallelism!

Fast Algo
Efficient parallel 

manipulations!



Log*-Time Coloring with Label Manipulation

0010110000

1010010000

0110010000

...

...

...

39

initially

Initially ID = label of 
node v =color cv
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Initially ID = label of node v =color cv

log n

initially

Unique IDs → legal (but expensive) coloring!

Log n bits to represent 
n unique IDs

Initially ID = label of 
node v =color cv



Log*-Time Coloring with Label Manipulation

0010110000

...

...
Round 1

...
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Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

1010010000

0110010000

Send ID to children

Send ID to children



Log*-Time Coloring with Label Manipulation

0010110000

...

...
Round 1

...
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Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary) 

4. My new cv = i || cv(i) 

1010010000

0110010000

ID = color for next round: the position! 



Log*-Time Coloring with Label Manipulation

0010110000

1010010000

0110010000

...

...
Round 1

1010010000
0010110000

01010

Differ at position 5 = (0101)2

0110010000
1010010000

10001

Differ at position 8 = (1000)2

...
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Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary) 

4. My new cv = i || cv(i) 

Example:



Log*-Time Coloring with Label Manipulation

0010110000

1010010000

0110010000

...

...
Round 1

1010010000
0010110000

01010

Differ at position 5 = (0101)2

0110010000
1010010000

10001

Differ at position 8 = (1000)2

...

44

Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary) 

4. My new cv = i || cv(i) 

How long are the new IDs?



Log*-Time Coloring with Label Manipulation

0010110000

1010010000

0110010000

...

...
Round 1

1010010000
0010110000

01010

Differ at position 5 = (0101)2

0110010000
1010010000

10001

Differ at position 8 = (1000)2

...
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Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary) 

4. My new cv = i || cv(i) 

Describing position in x-bit 
string takes log x bits, so:

loglog n bits

How long are the new IDs?



Log*-Time Coloring with Label Manipulation

0010110000

1010010000

0110010000

...

...
Round 1

1010010000
0010110000

01010

Differ at position 5 = (0101)2

0110010000
1010010000

10001

Differ at position 8 = (1000)2

...
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Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary) 

4. My new cv = i || cv(i) 

Describing position in x-bit 
string takes log x bits, so:

loglog n bits

How long are the new IDs?

+1 bit



Log*-Time Coloring with Label Manipulation

10010

01010

10001

...

...
Round 2

...
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Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary) 

4. My new cv = i || cv(i) 



Log*-Time Coloring with Label Manipulation

10010

01010

10001

Round 2
01010
10010

111

Differ at position 3 = (11)2

...

10010

01010

10001

...

...

...
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Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary) 

4. My new cv = i || cv(i) 



Log*-Time Coloring with Label Manipulation

10010

01010

10001

Round 2
01010
10010

111

Differ at position 3 = (11)2

...

10010

01010

10001

...

...

...
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Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary) 

4. My new cv = i || cv(i) 

How long are the new IDs?



Log*-Time Coloring with Label Manipulation

10010

01010

10001

Round 2
01010
10010

111

Differ at position 3 = (11)2

...

10010

01010

10001

...

...

...
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Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary) 

4. My new cv = i || cv(i) 

How long are the new IDs?

Describing position in x-bit 
string takes log x bits, so:

logloglog n bits

+1 bit



Log*-Time Coloring with Label Maniplulation

111

001

...

...

...
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Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary) 

4. My new cv = i || cv(i) 

Round 3



Log*-Time Coloring with Label Maniplulation

111

001

...

...

...
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Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary) 

4. My new cv = i || cv(i) 

etc.!



Analysis
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❏ How long does it take until O(1) colors?

❏ Why is coloring always legal?



Analysis
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❏ How long does it take until O(1) colors?

❏ # bits/colors reduced by a log-factor in each round

❏ The definition of log*!

❏ Why is coloring always legal?

log* n: How many times do I have to log x until <2?

Algorithm: My new cv = i || cv(i) 



Analysis

55

❏ How long does it take until O(1) colors?

❏ # bits/colors reduced by a log-factor in each round

❏ The definition of log*!

❏ Why is coloring always legal?

log* n: How many times do I have to log x until <2?

grandfather: cg

father: cf ...

...

...Algorithm: My new cv = i || cv(i) 

me: cv

By contradiction: To get the same ID as 
my father, I need to differ at same 
position from father as father from 

grandfather. But then last bit must be 
different: there I took my own bit (and 

father will do the same with his 
different bit)!



Summary of Algorithm
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Summary of Algorithm
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Note: we stop if color in {0,…,5}: why?



Summary of Algorithm
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Could I go down to 2-bit colors, i.e., 
{0,…,3}: No, requires 2 bits to address 
index where  they differ, plus adding the 
„difference-bit“ gives more than two bits.

Note: we stop if color in {0,…,5}: why?



Summary of Algorithm
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We stop if color in {0,…,5}: why?

Could I go down to 2-bit colors, i.e., 

{0,…,3}: No, requires 2 bits to address

index where they differ, plus adding the

„difference-bit“ gives more than two bits.

For 3-bit colors {0,…,7} this still works: e.g., 
7=(111)2 can be described with 3 bits, and 
position index (0,1,2) requires two bits, plus 
one „difference-bit“ gives three again 

Could I go down to 2-bit colors, i.e., 
{0,…,3}: No, requires 2 bits to address 
index where  they differ, plus adding the 
„difference-bit“ gives more than two bits.

Note: we stop if color in {0,…,5}: why?



Summary of Algorithm
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We stop if color in {0,…,5}: why?

Could I go down to 2-bit colors, i.e., 

{0,…,3}: No, requires 2 bits to address

index where they differ, plus adding the

„difference-bit“ gives more than two bits.

For 3-bit colors {0,…,7} this still works: e.g., 
7=(111)2 can be described with 3 bits, and 
position index (0,1,2) requires two bits, plus 
one „difference-bit“ gives three again 

Could I go down to 2-bit colors, i.e., 
{0,…,3}: No, requires 2 bits to address 
index where  they differ, plus adding the 
„difference-bit“ gives more than two bits.

Note: we stop if color in {0,…,5}: why?

But actually colors 110 
(for color „6“) and 111 
(for color „7“) are not 
needed, as we can do
another round! IDs of 
three bits can only differ 
at positions 00 (for „0“), 
01 (for „1“), 10 (for „2“) 



With 6-COLORS algorithm we can get down to 6 colors.

What about improving it to 2 colors? 



With 6-COLORS algorithm we can get down to 6 colors.

What about improving it to 2 colors? 

Impossible: takes linear time.

What about 3 colors?



Observation: Shift Down

Let us note a simple trick: 

shift colors down by one 

level makes siblings 

„independent“. And 

preserves legal coloring…
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Let us note a simple trick: 

shift colors down by one 

level makes siblings 

„independent“. And 

preserves legal coloring…

Result: all my descendants 

have same color! At most 2 

colors are occupied: father and 

descendants! 3rd color free!



Observation: Shift Down

Let us note a simple trick: 

shift colors down by one 

level makes siblings 

„independent“. And 

preserves legal coloring…

Shift Down

Each node v concurrently does:

recolor v with color of parent

Result: all my descendants 

have same color! At most 2 

colors are occupied: father and 

descendants! 3rd color free!

Formally…



6-to-3

6-to-3

Each other node v does (in parallel):

1. Run „6-Colors“ for log*(n) rounds

2. For x=5,4,3:

1. Perform Shift Down

2. If (cv=x) choose new color cv ϵ {0,1,2} according

„first free“ principle

66



6-to-3

6-to-3

Each other node v does (in parallel):

1. Run „6-Colors“ for log*(n) rounds

2. For x=5,4,3:

1. Perform Shift Down

2. If (cv=x) choose new color cv ϵ {0,1,2} according

„first free“ principle

67

Why still log* n time?



6-to-3

6-to-3

Each other node v does (in parallel):

1. Run „6-Colors“ for log*(n) rounds

2. For x=5,4,3:

1. Perform Shift Down

2. If (cv=x) choose new color cv ϵ {0,1,2} according

„first free“ principle

68

Why still log* n time?

Just 3 more rounds!



6-to-3

6-to-3

Each other node v does (in parallel):

1. Run „6-Colors“ for log*(n) rounds

2. For x=5,4,3:

1. Perform Shift Down

2. If (cv=x) choose new color cv ϵ {0,1,2} according

„first free“ principle

69

Why not do in same step?



6-to-3

6-to-3

Each other node v does (in parallel):

1. Run „6-Colors“ for log*(n) rounds

2. For x=5,4,3:

1. Perform Shift Down

2. If (cv=x) choose new color cv ϵ {0,1,2} according

„first free“ principle

Why not do in same step?

Could be harmful: 

same 3rd color!

Need to do it for 

independent sets.

E.g. 5 => 1

E.g. 4 => 1



Example: Shift Down + Drop Color 4

4
shift 

down

3 2

4 1

1

4 4

3 3

1

0 2

3 3

Siblings no longer have

same color: must do

shift down again first!

71

first free for 4!shift down!



Example: 6-to-3

4

35

2
1 2

4

5
2

2

44

5
5 3

2

3
3

2

44

0
0 3

2

3
3

shift 

down

new color for 

5: first free

1

22

4
4 4

3

4
4

shift

down

72

Careful: cannot 

recolor 4 at 

same time!



Remark: Optimality
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One can show that no local 

algorithm can 3-color a graph 

faster than in O(log* n). 
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One can show that no local 

algorithm can 3-color a graph 

faster than in O(log* n). 

In fact: 
in 0 rounds:  ≥ n colors

in 1 round:  ≥ log n colors

in 2 rounds:  ≥ loglog n colors

etc.!



Remark: Optimality
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One can show that no local 

algorithm can 3-color a graph 

faster than in O(log* n). 

In fact: 
in 0 rounds:  ≥ n colors

in 1 round:  ≥ log n colors

in 2 rounds:  ≥ loglog n colors

etc.!

Proof idea: Recall the elephant! 

A local coloring algorithm can be 

seen as a function: 

f: neighborhood → color

A deterministic algorithm needs to decide 

in the same way given same 

neighborhood: risk illegal coloring.

Only with communication neighborhoods 

start look different and require less colors.



Lower Bound

Set of neighborhoods Local coloring algo Vertex coloring

4

4

ALG

7

4

7

ALG

7



Lower Bound

Set of neighborhoods Local coloring algo Vertex coloring

4

4

ALG

7

4

7

ALG

7

Can reduce problem of finding lower 

bound to determine chromatic 

number of special neighborhood 

dependency graphs.



Concluding Remarks

Can we reduce to 2 colors?

Not without increasing runtime significantly! 

(Linear time, more than exponentially worse!)

Simple on purpose: results more general!

log* runtime is also possible on more general graphs

Many results: see ACM PODC conference!
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Where can I learn more?
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❏ Distributed Computing book by David Peleg

❏ Lecture notes by Roger Wattenhofer ETH Zurich

❏ ACM Survey by Jukka Suomela

❏ Research: ACM PODC Conference


