GIAN Course on Distributed Network Algorithms

The Power of Locality

Case Study: Graph Coloring

Case Study: Graph Coloring

Case Study: Graph Coloring

Assign colors to nodes.

Case Study: Graph Coloring

Case Study: Graph Coloring

Applications

Medium Access

- Interference-free, efficient utilization of spectrum
- Neighboring cells should have different frequencies!
- Colors = frequencies, channels, etc.

Image Processing

- Chromatic scheduling for physical simulation
- Process nodes of same color in parallel without determinacy race
- No coordination, no mutual exclusion needed

Legal coloring? Chromatic number?

Legal coloring? Chromatic number?

What about this example?

What about this example?

3 colors needed and enough...

How to color a graph in a distributed manner?

How to color a graph in a distributed manner?

The LOCAL Model: A Convenient Synchronous Model

Send...

The LOCAL Model. We will see in this course: there are

Send...

The LOCAL Model: We will see in this course: there are

Send...

... receive...
 techniques to execute an algorithm designed in the simple LOCAL model

Send...

... receive...

Unlike CONGEST model: message size and link capacity not bounded.

LOCAL Performance Metrics

\square Time Complexity:

Number of communication rounds

- Message Complexity:

Number of messages sent

\square Local Computation:
Complexity of local computations

LOCAL Performance Metrics What else?

\square Time Complexity:

Number of communication rounds

- Message Complexity:

Number of messages sent

\square Local Computation:
Complexity of local computations

LOCAL Performance Metrics
What else?
\square Time Comple
Num Quality of solution: Approximation ratio for example (,.price of locality").

- Message Complexity:

Number of messages sent

\square Local Computation:
Complexity of local computations

How to color a tree in a distributed manner?

How to color a rooted tree in a distributed manner?

Simplification:
\square Assume unique node IDs
\square Assume rooted
\square Root ID 0

How to color a rooted tree in a distributed manner?

Simplification:
\square Assume unique node IDs
\square Assume rooted
\square Root ID 0

Slow Distributed Tree Coloring: Example

Round 1

Slow Distributed Tree Coloring: Example

Round 2

Slow Distributed Tree Coloring: Example

Round 3

Slow Distributed Tree Coloring: Example

Round 3

Slow Tree Algo

If root: color 0 , send 0 to children Otherwise: each node v :

- Wait for message x from parent
- Choose color $y=1-x$
- Send y to children

Slow Tree: Analysis

- Approximation quality:
- Time complexity:
\square Message complexity:
- Local complexity:

Slow Tree: Analysis

- Approximation quality: \# colors?
- Time complexity: \# rounds?
- Message complexity: \# messages?
- Local complexity: local computations?

Slow Tree: Analysis

- Approximation quality: 2 colors suffice!
\square Time complexity: $\mathrm{O}(\mathrm{n})$, depth of the tree
- Message complexity: O(n)
\square Local complexity: trivial, just flip!

Slow Tree: Analysis

Can we do faster?

- Approximation quality: 2 coldosuffice!
\square Time complexity: O(n), depth of the tree
\square Message complexity: O(n)
\square Local complexity: trivial, just flip!

Ultra Fast Distributed Tree Coloring

- Yes we can!
- 3-coloring in $\mathrm{O}\left(\log ^{*} \mathrm{n}\right)$ rounds

Ultra Fast Distributed Tree Coloring

- Yes we can!
- 3-coloring in $\mathrm{O}\left(\log ^{*} \mathrm{n}\right)$ rounds

- Idea: based on ID manipulations
\square Again: interpret ID as color

Unique IDs \rightarrow legal (but expensive) coloring!
How can we quickly reduce the ID space?

Intuition: n vs $\log ^{*} n$
$\log \mathrm{n}:$
How many times do I have to :2 until <2?
$n, n / 2, n / 4, n / 8, \ldots, 8,4,2,1$
$\log n$

Intuition: n vs $\log ^{*} n$
$\log n:$
How many times do I have to :2 until <2?
$\mathrm{n}, \mathrm{n} / 2, \mathrm{n} / 4, \mathrm{n} / 8, \ldots, 8,4,2,1$
$\log n$
$\log \log \mathrm{n}:$
How many times do I have to \sqrt{x} until <2 ?

$$
\underset{\log \log \mathrm{n}}{\mathrm{n}, \sqrt{ } \mathrm{n}, \sqrt{ } \sqrt{ } \mathrm{n}, \sqrt{ } \sqrt{ } \mathrm{n}, \ldots,<2}
$$

Intuition: n vs $\log ^{*} n$

$\log \mathrm{n}:$
How many times do I have to :2 until <2?
$n, n / 2, n / 4, n / 8, \ldots, 8,4,2,1$
$\log n$
$\log \log \mathrm{n}: \quad$ How many times do I have to \sqrt{x} until <2 ?

$\log ^{*}$ n: How many times do I have to $\log x$ until <2?

$$
\mathrm{n}, \log \mathrm{n}, \log \log \mathrm{n}, \log \log \log \mathrm{n}, \ldots,<2
$$

$\log ^{*} n$

Slow Algo

No parallelism!

Fast Algo

Efficient parallel manipulations!

Time: $\log ^{*} n$

Log*-Time Coloring with Label Manipulation

Initially ID = label of node $v=$ color c_{v}

initially

Log*-Time Coloring with Label Manipulation

Initially ID = label of node $v=$ color c_{v}

Log*-Time Coloring with Label Manipulation

Send ID to children

Algorithm: in round i , node v:

1. Send $m y c_{v}$ to children (in paralle!!)
2. Receive parent ID/color C_{p}

Log*-Time Coloring with Label Manipulation

Round 1

Algorithm: in round i , node v:

1. Send $m y c_{v}$ to children (in paralle!!)
2. Receive parent ID/color C_{p}
3. Let i be the smallest index where c_{v} and c_{p} differ (from right, binary)
4. My new $c_{v}=i \| c_{v}(i) \longrightarrow I D=$ color for next round: the position!

Log*-Time Coloring with Label Manipulation

Example:

Round 1

Algorithm: in round i , node v:

1. Send $m y c_{v}$ to children (in paralle!!)
2. Receive parent ID/color C_{p}
3. Let i be the smallest index where c_{v} and c_{p} differ (from right, binary)
4. My new $c_{v}=i \| c_{v}(i)$

Log*-Time Coloring with Label Manipulation

Round 1

Algorithm: in round i , node v:

1. Send $m y c_{v}$ to children (in paralle!!)
2. Receive parent ID/color C_{p}
3. Let i be the smallest index where c_{v} and c_{p} differ (from right, binary)
4. My new $c_{v}=i \| c_{v}(i)$

Log*-Time Coloring with Label Manipulation

Log*-Time Coloring with Label Manipulation

Log*-Time Coloring with Label Manipulation

Round 2

Algorithm: in round i , node v:

1. Send $m y c_{v}$ to children (in paralle!!)
2. Receive parent ID/color C_{p}
3. Let i be the smallest index where c_{v} and c_{p} differ (from right, binary)
4. My new $c_{v}=i \| c_{v}(i)$

Log*-Time Coloring with Label Manipulation

Round 2

Algorithm: in round i , node v:

1. Send $m y c_{v}$ to children (in paralle!!)
2. Receive parent ID/color C_{p}
3. Let i be the smallest index where c_{v} and c_{p} differ (from right, binary)
4. My new $c_{v}=i \| c_{v}(i)$

Log*-Time Coloring with Label Manipulation

Round 2

Algorithm: in round i , node v:

1. Send $\mathrm{my} \mathrm{c}_{\mathrm{v}}$ to children (in paralle!!)
2. Receive parent ID/color C_{p}
3. Let i be the smallest index where c_{v} and c_{p} differ (from right, binary)
4. My new $c_{v}=i \| c_{v}(i)$

Log*-Time Coloring with Label Manipulation

How long are the new IDs?

Round 2

Describing position in x-bit string takes $\log x$ bits, so: logloglog n bits

3. Letion p smallest index where c. and c_{p} differ (from right, binary) 4. My new $c_{v}=i \| c_{v}(i) _\quad+1$ bit

Log*-Time Coloring with Label Maniplulation

Round 3

Algorithm: in round i , node v:

1. Send $m y c_{v}$ to children (in paralle!!)
2. Receive parent ID/color C_{p}
3. Let i be the smallest index where c_{v} and c_{p} differ (from right, binary)
4. My new $c_{v}=i \| c_{v}(i)$

Log*-Time Coloring with Label Maniplulation

etc.!

Algorithm: in round i , node v:

1. Send $\mathrm{my} \mathrm{c}_{\mathrm{v}}$ to children (in paralle!!)
2. Receive parent ID/color C_{p}
3. Let i be the smallest index where c_{v} and c_{p} differ (from right, binary)
4. My new $c_{v}=i \| c_{v}(i)$

Analysis

\square How long does it take until O(1) colors?
\square Why is coloring always legal?

Analysis
\square How long does it take until $\mathrm{O}(1)$ colors?
\square \# bits/colors reduced by a log-factor in each round
\square The definition of log*!
$\log ^{*}$ n: How many times do I have to $\log x$ until <2?
\square Why is coloring always legal?
Algorithm: My new $c_{v}=i \| c_{v}(i)$

Analysis
\square How long does it take until O(1) colors?
\# bits/colors reduced by a log-factor in each round - The definition of log*!
$\log ^{*}$ n: How many times do I have to $\log x$ until <2?

- Why is coloring always legal?

Algorithm: My new $c_{v}=i \| c_{v}(i)$
By contradiction: To get the same ID as my father, I need to differ at same position from father as father from grandfather. But then last bit must be different: there I took my own bit (and father will do the same with his different bit)!

Summary of Algorithm

```
6-Colors
Assume: legal initial coloring, root with label c}\mp@subsup{\textrm{c}}{\textrm{v}}{}=
Each other node v does (in parallel):
Send \(\mathrm{c}_{\mathrm{v}}\) to kids
Repeat (until \(\mathrm{c}_{\mathrm{w}} \in\{0, \ldots, 5\}\) for all \(w\) ):
1. Receive \(\mathrm{c}_{\mathrm{p}}\) from parent
2. Interpret \(\mathrm{c}_{\mathrm{v}} / \mathrm{c}_{\mathrm{p}}\) as little-endian bitstrings \(\mathrm{c}(\mathrm{k}) \ldots \mathrm{c}(1) \mathrm{c}(0)\)
3. Let \(i\) be smallest index where \(c_{v}\) and \(c_{p}\) differ
4. New label is: \(\mathbf{i} \mid \mathbf{c}_{\mathbf{v}}(\mathbf{i})\)
5. Send \(\mathrm{c}_{\mathrm{v}}\) to kids
```


Summary of Algorithm

Summary of Algorithm

Summary of Algorithm

Summary of Algorithm

With 6-COLORS algorithm we can get down to 6 colors.
What about improving it to 2 colors?

With 6-COLORS algorithm we can get down to 6 colors.
What about improving it to 2 colors?
Impossible: takes linear time. What about 3 colors?

Observation: Shift Down

Observation: Shift Down

Observation: Shift Down

Shift Down

Each node v concurrently does: recolor v with color of parent
Let us note a simple trick: shift colors down by one level makes siblings „independent". And preserves legal coloring...

6-to-3

6-to-3

Each other node v does (in parallel):

1. Run „6-Colors" for $\log ^{*}(\mathrm{n})$ rounds
2. For $x=5,4,3$:
3. Perform Shift Down
4. If ($c_{v}=x$) choose new color $c_{v} \in\{0,1,2\}$ according "first free" principle

6-to-3

6-to-3

Each other node v does (in parallel):

1. Run „6-Colors" for $\log ^{*}(\mathrm{n})$ rounds
2. For $x=5,4,3$:
3. Perform Shift Down
4. If ($c_{v}=x$) choose new color $c_{v} \in\{0,1,2\}$ according "first free" principle

Why still $\log ^{*} n$ time?

6-to-3

6-to-3

Each other node v does (in parallel):

1. Run „6-Colors" for $\log ^{*}(\mathrm{n})$ rounds
2. For $x=5,4,3$:
3. Perform Shift Down
4. If ($c_{v}=x$) choose new color $c_{v} \in\{0,1,2\}$ according "first free" principle

Why still $\log ^{*} \mathrm{n}$ time?

Just 3 more rounds!

6-to-3

6-to-3

Why not do in same step?

1. Rum 6-Colors" for $\log ^{*}(n)$ rounds
2. For $\mathrm{x}=5,4,3$:
3. Perform Shift Down
4. If ($c_{v}=x$) choose new color $c_{v} \in\{0,1,2\}$ according "first free" principle

Example: Shift Down + Drop Color 4

Siblings no longer have same color: must do shift down again first!

Example: 6-to-3

Remark: Optimality

One can show that no local algorithm can 3-color a graph faster than in $\mathrm{O}\left(\log ^{*} \mathrm{n}\right)$.

Remark: Optimality
In fact:
in 0 rounds: $\geq \mathrm{n}$ colors
in 1 round: $\geq \log \mathrm{n}$ colors
One can show that no local algorithm can 3-color a graph in 2 rounds: $\geq \log \log \mathrm{n}$ colors etc.! faster than in $\mathrm{O}\left(\log ^{*} \mathrm{n}\right)$.

Remark: Optimality

One can show that no local algorithm can 3-color a graph
 faster than in $\mathrm{O}\left(\log ^{*} \mathrm{n}\right)$.

Proof idea: Recall the elephant!

Lower Bound

Set of neighborhoods Local coloring algo
 Vertex coloring

Lower Bound

Set of neighborhoods

Can reduce problem of finding lower bound to determine chromatic number of special neighborhood dependency graphs.

Concluding Remarks

Can we reduce to 2 colors?

Not without increasing runtime significantly! (Linear time, more than exponentially worse!)

Simple on purpose: results more general!
log* runtime is also possible on more general graphs Many results: see ACM PODC conference!

Where can I learn more?

\square Distributed Computing book by David Peleg

- Lecture notes by Roger Wattenhofer ETH Zurich
- ACM Survey by Jukka Suomela
- Research: ACM PODC Conference

