
Stefan Schmid @ T-Labs, 2011

The Power of

Locality

Case Study: Graph Coloring

GIAN Course on Distributed Network Algorithms

Case Study: Graph Coloring

Case Study: Graph Coloring

Assign colors to nodes.

Case Study: Graph Coloring

Legal coloring: neighbors

have different colors!

Case Study: Graph Coloring

Optimal coloring: Minimal

number of colors (aka

chromatic number)

Applications

6

Country Maps Medium Access Image Processing

❏ Neighboring states
should have different
colors!

❏ Famous 4-color
theorem: any map
can be painted with
four colors!

❏ Interference-free,
efficient utilization of
spectrum

❏ Neighboring cells
should have different
frequencies!

❏ Colors = frequencies,
channels, etc.

❏ Chromatic scheduling
for physical
simulation

❏ Process nodes of
same color in parallel
without determinacy
race

❏ No coordination, no
mutual exclusion
needed

Legal coloring? Chromatic number?

7

Legal coloring? Chromatic number?

Tree! 2 colors are enough...

8

What about this example?

9

What about this example?

3 colors needed and enough...

10

Stefan Schmid @ T-Labs, 2011

Now distributed!

How to color a graph

in a distributed manner?

11

Stefan Schmid @ T-Labs, 2011

Now distributed!

How to color a graph

in a distributed manner?

12

The LOCAL Model: A Convenient Synchronous Model

... compute.

... receive...

Send...

13

... in each

round!

... compute.

... receive...

Send...

14

... in each

round!

The LOCAL Model: A Convenient Synchronous Model
We will see in this course: there are

techniques to execute an algorithm

designed in the simple LOCAL model

also in asynchronous networks!

... compute.

... receive...

Send...

15

... in each

round!

The LOCAL Model: A Convenient Synchronous Model
We will see in this course: there are

techniques to execute an algorithm

designed in the simple LOCAL model

also in asynchronous networks!

Moreover, LOCAL algorithms can be

made very robust (namely self-

stabilizing), in an automatic manner!

... compute.

... receive...

Send...

16

... in each

round!

Unlike CONGEST model:

message size and link

capacity not bounded.

The LOCAL Model: A Convenient Synchronous Model
We will see in this course: there are

techniques to execute an algorithm

designed in the simple LOCAL model

also in asynchronous networks!

Moreover, LOCAL algorithms can be

made very robust (namely self-

stabilizing), in an automatic manner!

LOCAL Performance Metrics

❏ Time Complexity:

Number of communication rounds

❏ Message Complexity:

Number of messages sent

❏ Local Computation:

Complexity of local computations

LOCAL Performance Metrics

❏ Time Complexity:

Number of communication rounds

❏ Message Complexity:

Number of messages sent

❏ Local Computation:

Complexity of local computations

What else?

LOCAL Performance Metrics

❏ Time Complexity:

Number of communication rounds

❏ Message Complexity:

Number of messages sent

❏ Local Computation:

Complexity of local computations

What else?

Quality of solution: Approximation ratio

for example („price of locality“).

Stefan Schmid @ T-Labs, 2011

Now distributed!How to color a tree

in a distributed manner?

Stefan Schmid @ T-Labs, 2011

Now distributed!How to color a rooted tree

in a distributed manner?

Simplification:

❏ Assume unique node IDs

❏ Assume rooted

❏ Root ID 0

0

Stefan Schmid @ T-Labs, 2011

Now distributed!How to color a rooted tree

in a distributed manner?

Simplification:

❏ Assume unique node IDs

❏ Assume rooted

❏ Root ID 0

0

Idea: interpret ID as color!

Communicate my color to children and

take opposite color from my parent!

Slow Distributed Tree Coloring: Example

23

Round 1

0

Slow Distributed Tree Coloring: Example

24

Round 2

0

1 1

Slow Distributed Tree Coloring: Example

25

Round 3

0

1 1

0 0 0 0
0

Slow Distributed Tree Coloring: Example

26

Round 3

0

1 1

0 0 0 0
0

1

Stefan Schmid @ T-Labs, 2011

Slow Tree

Slow Tree Algo

If root: color 0, send 0 to children

Otherwise: each node v:

• Wait for message x from parent

• Choose color y=1-x

• Send y to children

27

Slow Tree: Analysis

28

❏ Approximation quality:

❏ Time complexity:

❏ Message complexity:

❏ Local complexity:

Slow Tree: Analysis

29

❏ Approximation quality: # colors?

❏ Time complexity: # rounds?

❏ Message complexity: # messages?

❏ Local complexity: local computations?

Slow Tree: Analysis

30

❏ Approximation quality: 2 colors suffice!

❏ Time complexity: O(n), depth of the tree

❏ Message complexity: O(n)

❏ Local complexity: trivial, just flip!

Slow Tree: Analysis

31

❏ Approximation quality: 2 colors suffice!

❏ Time complexity: O(n), depth of the tree

❏ Message complexity: O(n)

❏ Local complexity: trivial, just flip!

Can we do faster?

Ultra Fast Distributed Tree Coloring

32

❏ Yes we can!

❏ 3-coloring in O(log* n) rounds

Ultra Fast Distributed Tree Coloring

33

❏ Yes we can!

❏ 3-coloring in O(log* n) rounds

❏ Idea: based on ID manipulations

❏ Again: interpret ID as color

Unique IDs → legal (but expensive) coloring!
How can we quickly reduce the ID space?

Intuition: n vs log* n

log n: How many times do I have to :2 until <2?

n, n/2, n/4, n/8, …, 8, 4, 2, 1

log n

Intuition: n vs log* n

log n: How many times do I have to :2 until <2?

n, n/2, n/4, n/8, …, 8, 4, 2, 1

log n

loglog n: How many times do I have to √x until <2?

loglog n

n, √ n, √ √ n, √ √ √ n, …, <2

Intuition: n vs log* n

log n: How many times do I have to :2 until <2?

n, n/2, n/4, n/8, …, 8, 4, 2, 1

log n

loglog n: How many times do I have to √x until <2?

loglog n

n, √ n, √ √ n, √ √ √ n, …, <2

log* n: How many times do I have to log x until <2?

log* n

n, log n, loglog n, logloglog n, …, <2

n = atoms in universe ≈ 1080

log*(atoms in universe) ≈ 5

Time: n Time: log* n

Slow Algo
No parallelism!

Fast Algo
Efficient parallel

manipulations!

Log*-Time Coloring with Label Manipulation

0010110000

1010010000

0110010000

...

...

...

39

initially

Initially ID = label of
node v =color cv

Log*-Time Coloring with Label Manipulation

0010110000

1010010000

0110010000

...

...

...

40

Initially ID = label of node v =color cv

log n

initially

Unique IDs → legal (but expensive) coloring!

Log n bits to represent
n unique IDs

Initially ID = label of
node v =color cv

Log*-Time Coloring with Label Manipulation

0010110000

...

...
Round 1

...

41

Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

1010010000

0110010000

Send ID to children

Send ID to children

Log*-Time Coloring with Label Manipulation

0010110000

...

...
Round 1

...

42

Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary)

4. My new cv = i || cv(i)

1010010000

0110010000

ID = color for next round: the position!

Log*-Time Coloring with Label Manipulation

0010110000

1010010000

0110010000

...

...
Round 1

1010010000
0010110000

01010

Differ at position 5 = (0101)2

0110010000
1010010000

10001

Differ at position 8 = (1000)2

...

43

Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary)

4. My new cv = i || cv(i)

Example:

Log*-Time Coloring with Label Manipulation

0010110000

1010010000

0110010000

...

...
Round 1

1010010000
0010110000

01010

Differ at position 5 = (0101)2

0110010000
1010010000

10001

Differ at position 8 = (1000)2

...

44

Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary)

4. My new cv = i || cv(i)

How long are the new IDs?

Log*-Time Coloring with Label Manipulation

0010110000

1010010000

0110010000

...

...
Round 1

1010010000
0010110000

01010

Differ at position 5 = (0101)2

0110010000
1010010000

10001

Differ at position 8 = (1000)2

...

45

Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary)

4. My new cv = i || cv(i)

Describing position in x-bit
string takes log x bits, so:

loglog n bits

How long are the new IDs?

Log*-Time Coloring with Label Manipulation

0010110000

1010010000

0110010000

...

...
Round 1

1010010000
0010110000

01010

Differ at position 5 = (0101)2

0110010000
1010010000

10001

Differ at position 8 = (1000)2

...

46

Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary)

4. My new cv = i || cv(i)

Describing position in x-bit
string takes log x bits, so:

loglog n bits

How long are the new IDs?

+1 bit

Log*-Time Coloring with Label Manipulation

10010

01010

10001

...

...
Round 2

...

47

Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary)

4. My new cv = i || cv(i)

Log*-Time Coloring with Label Manipulation

10010

01010

10001

Round 2
01010
10010

111

Differ at position 3 = (11)2

...

10010

01010

10001

...

...

...

48

Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary)

4. My new cv = i || cv(i)

Log*-Time Coloring with Label Manipulation

10010

01010

10001

Round 2
01010
10010

111

Differ at position 3 = (11)2

...

10010

01010

10001

...

...

...

49

Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary)

4. My new cv = i || cv(i)

How long are the new IDs?

Log*-Time Coloring with Label Manipulation

10010

01010

10001

Round 2
01010
10010

111

Differ at position 3 = (11)2

...

10010

01010

10001

...

...

...

50

Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary)

4. My new cv = i || cv(i)

How long are the new IDs?

Describing position in x-bit
string takes log x bits, so:

logloglog n bits

+1 bit

Log*-Time Coloring with Label Maniplulation

111

001

...

...

...

51

Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary)

4. My new cv = i || cv(i)

Round 3

Log*-Time Coloring with Label Maniplulation

111

001

...

...

...

52

Algorithm: in round i, node v:

1. Send my cv to children (in parallel!)

2. Receive parent ID/color cp

3. Let i be the smallest index where cv and cp differ (from right, binary)

4. My new cv = i || cv(i)

etc.!

Analysis

53

❏ How long does it take until O(1) colors?

❏ Why is coloring always legal?

Analysis

54

❏ How long does it take until O(1) colors?

❏ # bits/colors reduced by a log-factor in each round

❏ The definition of log*!

❏ Why is coloring always legal?

log* n: How many times do I have to log x until <2?

Algorithm: My new cv = i || cv(i)

Analysis

55

❏ How long does it take until O(1) colors?

❏ # bits/colors reduced by a log-factor in each round

❏ The definition of log*!

❏ Why is coloring always legal?

log* n: How many times do I have to log x until <2?

grandfather: cg

father: cf ...

...

...Algorithm: My new cv = i || cv(i)

me: cv

By contradiction: To get the same ID as
my father, I need to differ at same
position from father as father from

grandfather. But then last bit must be
different: there I took my own bit (and

father will do the same with his
different bit)!

Summary of Algorithm

56

Summary of Algorithm

57

Note: we stop if color in {0,…,5}: why?

Summary of Algorithm

58

Could I go down to 2-bit colors, i.e.,
{0,…,3}: No, requires 2 bits to address
index where they differ, plus adding the
„difference-bit“ gives more than two bits.

Note: we stop if color in {0,…,5}: why?

Summary of Algorithm

59

We stop if color in {0,…,5}: why?

Could I go down to 2-bit colors, i.e.,

{0,…,3}: No, requires 2 bits to address

index where they differ, plus adding the

„difference-bit“ gives more than two bits.

For 3-bit colors {0,…,7} this still works: e.g.,
7=(111)2 can be described with 3 bits, and
position index (0,1,2) requires two bits, plus
one „difference-bit“ gives three again

Could I go down to 2-bit colors, i.e.,
{0,…,3}: No, requires 2 bits to address
index where they differ, plus adding the
„difference-bit“ gives more than two bits.

Note: we stop if color in {0,…,5}: why?

Summary of Algorithm

60

We stop if color in {0,…,5}: why?

Could I go down to 2-bit colors, i.e.,

{0,…,3}: No, requires 2 bits to address

index where they differ, plus adding the

„difference-bit“ gives more than two bits.

For 3-bit colors {0,…,7} this still works: e.g.,
7=(111)2 can be described with 3 bits, and
position index (0,1,2) requires two bits, plus
one „difference-bit“ gives three again

Could I go down to 2-bit colors, i.e.,
{0,…,3}: No, requires 2 bits to address
index where they differ, plus adding the
„difference-bit“ gives more than two bits.

Note: we stop if color in {0,…,5}: why?

But actually colors 110
(for color „6“) and 111
(for color „7“) are not
needed, as we can do
another round! IDs of
three bits can only differ
at positions 00 (for „0“),
01 (for „1“), 10 (for „2“)

With 6-COLORS algorithm we can get down to 6 colors.

What about improving it to 2 colors?

With 6-COLORS algorithm we can get down to 6 colors.

What about improving it to 2 colors?

Impossible: takes linear time.

What about 3 colors?

Observation: Shift Down

Let us note a simple trick:

shift colors down by one

level makes siblings

„independent“. And

preserves legal coloring…

Observation: Shift Down

Let us note a simple trick:

shift colors down by one

level makes siblings

„independent“. And

preserves legal coloring…

Result: all my descendants

have same color! At most 2

colors are occupied: father and

descendants! 3rd color free!

Observation: Shift Down

Let us note a simple trick:

shift colors down by one

level makes siblings

„independent“. And

preserves legal coloring…

Shift Down

Each node v concurrently does:

recolor v with color of parent

Result: all my descendants

have same color! At most 2

colors are occupied: father and

descendants! 3rd color free!

Formally…

6-to-3

6-to-3

Each other node v does (in parallel):

1. Run „6-Colors“ for log*(n) rounds

2. For x=5,4,3:

1. Perform Shift Down

2. If (cv=x) choose new color cv ϵ {0,1,2} according

„first free“ principle

66

6-to-3

6-to-3

Each other node v does (in parallel):

1. Run „6-Colors“ for log*(n) rounds

2. For x=5,4,3:

1. Perform Shift Down

2. If (cv=x) choose new color cv ϵ {0,1,2} according

„first free“ principle

67

Why still log* n time?

6-to-3

6-to-3

Each other node v does (in parallel):

1. Run „6-Colors“ for log*(n) rounds

2. For x=5,4,3:

1. Perform Shift Down

2. If (cv=x) choose new color cv ϵ {0,1,2} according

„first free“ principle

68

Why still log* n time?

Just 3 more rounds!

6-to-3

6-to-3

Each other node v does (in parallel):

1. Run „6-Colors“ for log*(n) rounds

2. For x=5,4,3:

1. Perform Shift Down

2. If (cv=x) choose new color cv ϵ {0,1,2} according

„first free“ principle

69

Why not do in same step?

6-to-3

6-to-3

Each other node v does (in parallel):

1. Run „6-Colors“ for log*(n) rounds

2. For x=5,4,3:

1. Perform Shift Down

2. If (cv=x) choose new color cv ϵ {0,1,2} according

„first free“ principle

Why not do in same step?

Could be harmful:

same 3rd color!

Need to do it for

independent sets.

E.g. 5 => 1

E.g. 4 => 1

Example: Shift Down + Drop Color 4

4
shift

down

3 2

4 1

1

4 4

3 3

1

0 2

3 3

Siblings no longer have

same color: must do

shift down again first!

71

first free for 4!shift down!

Example: 6-to-3

4

35

2
1 2

4

5
2

2

44

5
5 3

2

3
3

2

44

0
0 3

2

3
3

shift

down

new color for

5: first free

1

22

4
4 4

3

4
4

shift

down

72

Careful: cannot

recolor 4 at

same time!

Remark: Optimality

73

One can show that no local

algorithm can 3-color a graph

faster than in O(log* n).

Remark: Optimality

74

One can show that no local

algorithm can 3-color a graph

faster than in O(log* n).

In fact:
in 0 rounds: ≥ n colors

in 1 round: ≥ log n colors

in 2 rounds: ≥ loglog n colors

etc.!

Remark: Optimality

75

One can show that no local

algorithm can 3-color a graph

faster than in O(log* n).

In fact:
in 0 rounds: ≥ n colors

in 1 round: ≥ log n colors

in 2 rounds: ≥ loglog n colors

etc.!

Proof idea: Recall the elephant!

A local coloring algorithm can be

seen as a function:

f: neighborhood → color

A deterministic algorithm needs to decide

in the same way given same

neighborhood: risk illegal coloring.

Only with communication neighborhoods

start look different and require less colors.

Lower Bound

Set of neighborhoods Local coloring algo Vertex coloring

4

4

ALG

7

4

7

ALG

7

Lower Bound

Set of neighborhoods Local coloring algo Vertex coloring

4

4

ALG

7

4

7

ALG

7

Can reduce problem of finding lower

bound to determine chromatic

number of special neighborhood

dependency graphs.

Concluding Remarks

Can we reduce to 2 colors?

Not without increasing runtime significantly!

(Linear time, more than exponentially worse!)

Simple on purpose: results more general!

log* runtime is also possible on more general graphs

Many results: see ACM PODC conference!

78

Where can I learn more?

79

❏ Distributed Computing book by David Peleg

❏ Lecture notes by Roger Wattenhofer ETH Zurich

❏ ACM Survey by Jukka Suomela

❏ Research: ACM PODC Conference

