GIAN Course on Distributed Network Algorithms

The Power of
Locality

Case Study: Graph Coloring

Case Study: Graph Coloring

N T~

Assign colors to nodes.

Q)
_—
N

o P

Case Study: Graph Coloring

Legal coloring: neighbors
have different colors!

Ny

Case Study: Graph Coloring

7

Optimal coloring: Minimal
number of colors (aka
chromatic number)

Applications

Country Maps

[Neighboring states
should have different
colors!

(d Famous 4-color
theorem: any map
can be painted with
four colors!

Medium Access

(‘)

(1 Interference-free,
efficient utilization of
spectrum

1 Neighboring cells
should have different
frequencies!

(1 Colors = frequencies,
channels, etc.

Image Processing

///
RV /
»‘; \M%“;‘ir 7‘“% i /
E 4 = ANT A
_4

L NP .
> v"‘ N \{ \ S
) '\qﬁi‘;ﬁ(ﬁiﬁ‘A

(1 Chromatic scheduling

for physical
simulation

(1 Process nodes of

same color in parallel
without determinacy
race

(4 No coordination, no

mutual exclusion
needed

Legal coloring? Chromatic number?

o
X
Yo

~&

i

Legal coloring? Chromatic number?

.

e

Tree! 2 colors are enough...

8

What about this example?

O
0\‘

3 colors needed and enough...

10

How to color a graph
In a distributed manner?

11

How to color a graph
In a distributed manner?

12

The LOCAL Model: A Convenient Synchronous Model

. In each
round!

13

We will see in this course: there are
The LOCAL Model: 4 techniques to execute an algorithm

designed in the simple LOCAL model —
also in asynchronous networks!

INn each
Send... roundl
.. receive... ta

14

The LOCAL Model: 4 techniques to execute an algorithm

... receive...

We will see in this course: there are

designed in the simple LOCAL model —
also in asynchronous networks!

... In each

Moreover, LOCAL algorithms can be
made very robust (namely self-
stabilizing), in an automatic manner!

... compute. T

15

We will see in this course: there are
The LOCAL Model: 4 techniques to execute an algorithm

designed in the simple LOCAL model —
also in asynchronous networks!

... In each

Moreover, LOCAL algorithms can be
made very robust (namely self-
stabilizing), in an automatic manner!

... receive... 2 @
T '; y) %
—7 @"*Q\i -
Unlike CONGEST model: ... compute. Ta o

message size and link
capacity not bounded.

16

LOCAL Performance Metrics

d Time Complexity:
Number of communication rounds

1 Message Complexity:
Number of messages sent

1 Local Computation:
Complexity of local computations

LOCAL Performance Metrics

N
\ N
What else?

d Time Complexity:
Number of communication rounds

1 Message Complexity:
Number of messages sent

1 Local Computation:
Complexity of local computations

LOCAL Performance Metrics

N
\ N
What else?

d Time Com

Numl Quality of solution: Approximation ratio
for example (,price of locality”).

1 Message Complexity:
Number of messages sent

1 Local Computation:
Complexity of local computations

In a distributed manner?

How to color arooted tree
In a distributed manner?

Simplification:
1 Assume unigue node IDs

1 Assume rooted
1 RootID O Q

N\ o
Yo

T

How to color arooted tree
In a distributed manner?

Simplification:
1 Assume unigue node IDs

1 Assume rooted
1 RootID O Q

N\ o
Yo

ldea: interpret ID as color! \6

Communicate my color to children and
take opposite color from my parent!

Slow Distributed Tree Coloring: Example

Round 1

23

Slow Distributed Tree Coloring: Example

Round 2

24

Slow Distributed Tree Coloring: Example

Round 3

25

Slow Distributed Tree Coloring: Example

0

g/é}% ; 01\8) Round 3

26

Slow Tree Algo

If root: color 0, send 0 to children
Otherwise: each node v:
« Wait for message x from parent

* Choose color y=1-x
« Send y to children

27

Slow Tree: Analysis

@\)

Approximation quality:
Time complexity:
Message complexity:
Local complexity:

I I

28

Slow Tree: Analysis

I I

Jo S5

Approximation quality: # colors?
Time complexity: # rounds?

Message complexity: # messages?
Local complexity: local computations?

29

Slow Tree: Analysis

Jo S5

Approximation quality: 2 colors suffice!
Time complexity: O(n), depth of the tree
Message complexity: O(n)

Local complexity: trivial, just flip!

I I

30

Slow Tree: Analysis

I I

Jo S5

Can we do faster?

Approximation quality: 2 coMe!

Time complexity: O(n), depth of the tree
Message complexity: O(n)
Local complexity: trivial, just flip!

31

Ultra Fast Distributed Tree Coloring

1 Yes we can! C/Ob \O

1 3-coloring in O(log* n) rounds

32

Ultra Fast Distributed Tree Coloring

1 Yes we can! fb \Q
1 3-coloring in O(log* n) rounds

1 Idea: based on ID manipulations
1 Again: interpret ID as color

o

Unique IDs - legal (but expensive) coloring!
How can we quickly reduce the ID space?

33

Intuition: n vs log* n

log n: How many times do | have to :2 until <2?

n,n/2,n/4,n/8, ..., 8,4, 2,1

< [
< »

log n

Intuition: n vs log* n

log n: How many times do | have to :2 until <2?

n,n/2,n/4,n/8, ..., 8,4, 2,1

< [
< »

log n

How many times do | have to ' until <2?

n,vn, vVyn, VvvV+n, ..., <2

[
»

loglog n

Intuition: n vs log* n

log n: How many times do | have to :2 until <2?

n,n/2,n/4,n/8, ..., 8,4, 2,1

< [
< »

log n

How many times do | have to ' until <2?

n,vn, vVyn, VvvV+n, ..., <2

[
»

loglog n
log* n: How many times do | have to log x until <2?

n, log n, loglog n, logloglog n, ..., <2

»
< |

log* n

o
00
o
i
n

in universe

atoms
log*(atoms in universe)

Nn=

N

Slow Algo Fast Algo

No parallelism! Efficient parallel
manipulations!

™
— — i -.I
"'-|l. .I 1
|] \\ Fa
N~ T
\ /]
; . |

Time: n Time: log* n

Log*-Time Coloring with Label Manipulation

Initially ID = label of
node v =color ¢,

— 0010110000

1010010000

0110010000 Cf O

initially

39

Log*-Time Coloring with Label Manipulation

Initially ID = label of
node v =color c, logn Log n bits to represent
B '
0010110000 . n unique IDs

1010010000

4 initially
O

0110010000

Initially 1D = label of node v =color c,

N

Unique IDs - legal (but expensive) coloring!

40

Log*-Time Coloring with Label Manipulation

Send ID to children
W 0010110000

'S
.o X< Roundl1
O

0110010000

Send ID to children

Algorithm: in round i, node v:
1. Send my c, to children (in parallel!)
2. Receive parent ID/color c,

41

Log*-Time Coloring with Label Manipulation

0010110000

0110010000

'S
.o X< Roundl1
O

Algorithm: in round i, node v:

1.

2.
3.
4

Send my c, to children (in parallel!)
Receive parent ID/color ¢,
Let i be the smallest index where c, and c, differ (from right, binary)

My new ¢, =il ¢,() == |D = color for next round: the position!

Log*-Time Coloring with Label Manipulation

Example:

Differ at position 5 = (0101),

* IIIIIIIIIIIIIIIIIIIIIIIII
0010110000 «***"
1010010000 ..,

01010

" 1010010000

\ oo
1010010000 4" 0110010000

0110010000 “
10001

Algorithm: in round i, node v:
1. Send my c, to children (in parallel!)
Receive parent ID/color ¢,

2
3. Letibe the smallest index where c, and c, differ (from right, binary)
4

My new c, =1 || c,(i)

Round 1

43

Log*-Time Coloring with Label Manipulation

Differ at position 5 = (0101),

* IIIIIIIIIIIIIIIIIIIIIIIII
0010110000 «***"
1010010000 ..,

01010 1010010000

n o, Round 1

oiteratpos| How long are the new IDs? \\C)

' s .
101001000 00 d O (
01100100 <

10001 4

Algorithm: in round i, node v:

1. Send my c, to children (in parallel!)

2. Receive parent ID/color c,

3. Letibe the smallest index where c, and c, differ (from right, binary)
4. Mynewc, =1i||c,i) 44

Log*-Time Coloring with Label Manipulation

Differ at position 5 = (0101, 0010110000
* IIIIIIIIIIIIIIIIIIII

0010110000 +
1010010000 ...

01010 1010010000

o~ o, Round 1

oiteratpos| — HOw long are the new IDs? \\C)

' s ,
101001000 00 d O (
01100100 <

10001 4

Describing position in x-bit
string takes log x bits, so: |51
loglog n bits

msmallest iIndex where c, and Cp differ (from right, binary)
4. Mynewc, =1i||c,i) 45

Log*-Time Coloring with Label Manipulation

Differ at position 5 = (0101, 0010110000
* IIIIIIIIIIIIIIIIIIII

0010110000 +
1010010000 ...

01010 1010010000

o~ o, Round 1

oiteratpos| — HOw long are the new IDs? \\C)

' s ,
101001000 00 (:S O (
01100100 <

10001 4

Describing position in x-bit
string takes log x bits, so: |51
loglog n bits

3. LetToe_x smallest ind ¢, differ (from right, binary)
4. Mynewc,=i||c,() +1 bit 46

Log*-Time Coloring with Label Manipulation

Algorithm: in round i, node v:

1.

2.
3.
4

Send my c, to children (in parallel!)
Receive parent ID/color ¢,

Round 2

Let i be the smallest index where c, and c, differ (from right, binary)

My new c, =1 || c,(i)

47

Log*-Time Coloring with Label Manipulation

Differ at position 3 = (11),

.
.
.
.
.
.
.
.
.
.
.
.
.
.*
.

Algorithm: in round i, node v:

1.

2.
3.
4

Send my c, to children (in parallel!)
Receive parent ID/color ¢,

Round 2

Let i be the smallest index where c, and c, differ (from right, binary)

My new c, =1 || c,(i)

48

Log*-Time Coloring with Label Manipulation

How long are the new IDs?

L

Differ at position 3 = (11),

.
.
.
.
.
.
.
.
.
.
.
.
.
.*
.

Algorithm: in round i, node v:

1.

2.
3.
4

Send my c, to children (in parallel!)
Receive parent ID/color ¢,

Round 2

Let i be the smallest index where c, and c, differ (from right, binary)

My new c, =1 || c,(i)

49

Log*-Time Coloring with Label Manipulation

How long are the new IDs?

L

Differ at position 3 = (11),

.,

Describing position in x-bit
string takes log x bits, so: |51
logloglog n bits

3. LetToe—_x smallest ind ¢, differ (from right, binary)
4. Mynewc,=i||c,() +1 bit 50

Log*-Time Coloring with Label Maniplulation

Algorithm: in round i, node v:

1.

2.
3.
4

Send my c, to children (in parallel!)
Receive parent ID/color ¢,

Round 3

Let i be the smallest index where c, and c, differ (from right, binary)

My new c, =1 || c,(i)

51

Log*-Time Coloring with Label Maniplulation

Algorithm: in round i, node v:

1.

2.
3.
4

Send my c, to children (in parallel!)
Receive parent ID/color ¢,

etc.!

Let i be the smallest index where c, and c, differ (from right, binary)

My new c, =1 || c,(i)

52

Analysis

1 How long does it take until O(1) colors?

1 Why is coloring always legal?

53

Analysis

1 How long does it take until O(1) colors?
1 # bits/colors reduced by a log-factor in each round
1 The definition of log*!

log* n: How many times do | have to log x until <2?

1 Why is coloring always legal?
Algorithm: My new c, =i || c(i)

54

Analysis

1 How long does it take until O(1) colors?
1 # bits/colors reduced by a log-factor in each round
1 The definition of log*!

log* n: How many times do | have to log x until <2?

1 Why is coloring always legal?

Algorithm: My new c, =i || c(i) grandfather: c,

.
o
.
.
&~

By contradiction: To get the same ID as
my father, | need to differ at same \7 father: ¢
position from father as father from
grandfather. But then last bit must be \
different: there | took my own bit (and O
father will do the same with his
different bit)!

Summary of Algorithm

6-Colors

Assume: legal initial coloring, root with label ¢c,=0
Each other node v does (in parallel):
Send c, to kids
Repeat (until c,, € {0,...,5} for all w):
. Receive c, from parent

. Interpret c,/c, as little-endian bitstrings c(k)...c(1)c(0)
. Leti be smallest index where ¢, and c, differ

. New label is: i]|c(i)

. Send ¢, to kids

56

Summary of Algorithm

6-Colors

Assume: legal initial col ikl Lo ol a I

oring, ~*
Each other node v does% Note: we stop if color in {0,...,5}: why?
Send c, to kids

Repeat (until c,, € {0,...,5} for all w):

Receive c, from parent

Interpret c,/c, as little-endian bitstrings c(k)...c(1)c(0)
Let i be smallest index where ¢, and c, differ

New label is: i||c,(i)

Send c, to kids

QA WN A

57

Summary of Algorithm

oring, pe=t—l—tataad a

Assume: legal initial col

Each other node v does Q Note: we stop if color in {0,...,5}: why?
Send c, to kids

Repeat (until c,, € {0,...,5} for all w):

1. Receive ¢, from parent

2. Interpret c,/c, as little-endian bitstrings c(k)...c(1)c(0)
— E— —Te ¢, and c, differ

Could | go down to 2-bit colors, i.e.,
{0,...,3}: No, requires 2 bits to address
index where they differ, plus adding the
,difference-bit” gives more than two bits.

58

Summary of Algorithm

6-Colors —I

Assume: legal initial coloring, ==+

Each other node v does Q Note: we stop if color in {0,...,5}: why?
Send c, to kids
Repeat (until c,, € {0,...,5} for all w):

1. Receive ¢, from parent

2. Interpret c,/c, as little-endian bitstrings c(k)...c(1)c(0)

— I —Te ¢, and c, differ

Could | go down to 2-bit colors, i.e.,
{0,...,3}: No, requires 2 bits to address
index where they differ, plus adding the
,difference-bit” gives more than two bits.

- —/

For 3-bit colors {0,...,7} this still works: e.g.,
7=(111), can be described with 3 bits, and
position index (0,1,2) requires two bits, plus
one , difference-bit“ gives three again

59

Summary of Algorithm

6-Colors —I

Assume: legal initial coloring, ==+

Each other node v doesg Note: we stop if color in {0,...,5}: why?
Send c, to kids
Repeat (until c,, € {0,...,5} for all w):

1. Receive ¢, from parent

2. Interpret c,/c, as little-endian bitstrings c(k)...c(1)c(0)

— I —Te ¢, and c, differ

Could | go down to 2-bit colors, i.e.,
{0,...,3}: No, requires 2 bits to address

index where they differ, plus adding the
,difference-bit” gives more than two bits. But actually colors 110
(for color ,,6“) and 111

_ﬂ (for color ,,7“) are not

needed, as we can do

For 3-bit colors {0,...,7.} this s.tiII wo.rks: e.g., another round! IDs of
7=(%1.1)2.can be described yvnth 3 blts:, and three bits can only differ
position index (0,1,2) requires two bits, plus at positions 00 (for ,,0),

one , difference-bit” gives three again 01 (for ,1%), 10 (for ,2%)

With 6-COLORS algorithm we can get down to 6 colors.

What about improving it to 2 colors?

With 6-COLORS algorithm we can get down to 6 colors.

What about improving it to 2 colors?

———

Impossible: takes linear time.

What about 3 colors?

Observation: Shift Down

Let us note a simple trick:
shift colors down by one
level makes siblings
,independent®. And
preserves legal coloring...

Observation: Shift Down

Let us note a simple trick:
shift colors down by one
level makes siblings
,independent®. And
preserves legal coloring...

Result: all my descendants
have same color! At most 2
colors are occupied: father and
descendants! 3rd color free!

Shift Down

Observation: Shift Down

Each node v concurrently does:
recolor v with color of parent

Let us note a simple trick:
shift colors down by one
level makes siblings
,independent®. And
preserves legal coloring...

Formally...

Result: all my descendants
have same color! At most 2
colors are occupied: father and
descendants! 3rd color free!

6-t0-3

6-t0-3

Each other node v does (in parallel):
1. Run ,6-Colors” for log*(n) rounds
2. For x=5,4,3:

1. Perform Shift Down
2. If (c,=x) choose new color c, € {0,1,2} according
Jfirst free” principle

66

6-t0-3

6-t0-3

Each other node v does (in parallel):
1. Run ,6-Colors” for log*(n) rounds
2. For x=5,4,3:

1. Perform Shift Down
2. If (c,=x) choose new color c, € {0,1,2} according
Jfirst free” principle

—_—

Why still log* n time?

67

6-t0-3

6-t0-3

Each other node v does (in parallel):
1. Run ,6-Colors” for log*(n) rounds
2. For x=5,4,3:

1. Perform Shift Down
2. If (c,=x) choose new color c, € {0,1,2} according
Jfirst free” principle

————
Why still log* n time?

A\

Just 3 more rounds!

68

6-t0-3

6-10-3

Why not do in same step?

arallel):
1. -Colors* for log*(n) rounds
2. For x=5,4,3:

1. Perform Shift Down
2. If (c,=x) choose new color c, € {0,1,2} according
Jfirst free” principle

69

6-t0-3

6-10-3

1

Why not do in same step?

arallel):
-Colors* for log*(n) rounds

2. For x=5,4,3:

1. Perform Shift Down

2. If (c,=x) choose new color c, € {0,1,2} according
Jirst free® principle

Could be harmful:
same 3rd color!
Need to do it for
iIndependent sets.

Example: Shift Down + Drop Color 4

shift down!

first free for 4!
b = &

Siblings no longer have
same color: must do
shift down again first!

71

Example: 6-t0-3

new color for
5: first free

Careful: cannot
recolor 4 at
same time!

72

Remark: Optimality

One can show that no local
algorithm can 3-color a graph
faster than in O(log* n).

73

Remark: Optimality In fact:
in 0 rounds: = n colors

in 1 round: = log n colors
One can show that no local A in 2 rounds: > loglog n colors

algorithm can 3-color a graph £~ 1<
faster than in O(log* n).

74

Remark: Optimality In fact:
in 0 rounds: = n colors

in 1 round: = log n colors

One can show that no local A in 2 rounds: > loglog n colors
i etc.!
algorithm can 3-color a graph

faster than in O(log* n).

Proof idea: Recall the elephant!

A local coloring algorithm can be
seen as a function:
A f: neighborhood — color

N

A deterministic algorithm needs to decide
- In the same way given same
neighborhood: risk illegal coloring.

Only with communication neighborhoods
start look different and require less colors.

Lower Bound

Set of neighborhoods Local coloring algo Vertex coloring

Lower Bound

Set of neighborhoods Loca%

Can reduce problem of finding lower
bound to determine chromatic
number of special neighborhood
dependency graphs.

O~

Y
X7 O
PIRAR [——>
¢)
;o @
& O

Concluding Remarks

Can wereduce to 2 colors?

Not without increasing runtime significantly!
(Linear time, more than exponentially worse!)

Simple on purpose: results more general!

log* runtime is also possible on more general graphs
Many results: see ACM PODC conference!

78

Where can | learn more?

1 Distributed Computing book by David Peleg

1 Lecture notes by Roger Wattenhofer ETH Zurich

1 ACM Survey by Jukka Suomela

1 Research: ACM PODC Conference

79

