
6.852: Distributed Algorithms
Fall, 2015

Lecture 2

Today’s plan

• Leader election in a synchronous ring:
– Lower bound for comparison-based algorithms.

• Basic computation in general synchronous networks:
– Leader election

– Breadth-first search

– Broadcast and convergecast

– Shortest paths (Bellman-Ford)

• Reading: Sections 3.6, 4.1-4-3

• Next time:
– Shortest paths, continued

– Minimum Spanning Tree

– Maximal Independent Set

– Reading: Sections 4.3-4.5, related papers (see last slide)

Leader Election
 in a

Synchronous Ring

Last time

• Model for synchronous networks

• Leader election problem, in simple ring networks

• Algorithms:
– [LeLann], [Chang, Roberts]

• Pass UID tokens one way, elect max

• Proofs, using invariants

• Time complexity: 𝑛 for a ring of size 𝑛

• Communication (message) complexity: 𝑂(𝑛2)

– [Hirshberg, Sinclair]
• Send UIDs to successively-doubled distances, in both directions.

 Message complexity: 𝑂(𝑛 log 𝑛)

 Time complexity: 𝑂(𝑛) (dominated by the final phase)

Last time

• Q: Can the message complexity be lowered still
more?

• Non-comparison-based algorithms

– Wait quietly until it’s your “turn”, determined by UID.

– Message complexity: 𝑂(𝑛)

– Time complexity: 𝑂(𝑢𝑚𝑖𝑛 𝑛) if 𝑛 is known, 𝑂(𝑛 2𝑢𝑚𝑖𝑛) if 𝑛
is unknown

Lower bounds for leader election
 Q: Can we get time complexity less than 𝑛?
 Easy 𝑛/2 lower bound (𝑛 unknown)

 Suppose an algorithm always elects a leader in time < 𝑛/2.
 Consider two separate rings of size 𝑛 (𝑛 odd), 𝑅1 and 𝑅2.
 Algorithm elects processes 𝑖1 and 𝑖2 respectively, each in time < 𝑛/2.

 Now cut 𝑅1 and 𝑅2 at points furthest from the leaders, paste them
together to form a new ring 𝑅 of size 2𝑛.

 Then in 𝑅, both 𝑖1 and 𝑖2
get elected, because the time until they get

elected is less than the time needed for information about the pasting
to propagate from the pasting points to 𝑖1 or 𝑖2.

R1
i1 R2

i2 R
i1 i2

Lower bounds for leader election

 Q: Can we get message complexity less than
𝑂(𝑛 log 𝑛), for comparison-based algorithms?

 We can prove an Ω(𝑛 log 𝑛) lower bound.

 Assumptions:

 Comparison-based algorithm.

 Bidirectional ring.

 Known 𝑛.

 Deterministic.

Comparison-based algorithms

 All decisions are determined only by comparisons
of UIDs:
 All processes are identical, except that they have

different UIDs in their start states.
 Manipulate UIDs only by copying, sending, receiving,

and comparing them <, =, > .
 Use results of comparisons to decide what to do:

 State transitions,
 What (if anything) to send to your neighbors,
 Whether to elect yourself leader.

Lower bound theorem

• Theorem 1: Let 𝐴 be a comparison-based algorithm that
elects a leader in rings of size 𝑛. Then 𝐴 has an execution in
which Ω(𝑛 log 𝑛) messages are sent by the time the leader is
elected.

• This holds for any 𝑛.

• Proof overview:
– For any 𝑛, define a ring 𝑅𝑛 of size 𝑛 in which any leader election

algorithm has:
• Ω(𝑛) “active” rounds (in which messages are sent).
• Ω(𝑛 / 𝑖) messages sent in the 𝑖𝑡ℎ active round.
• So, Ω(𝑛 log 𝑛) total messages.

 The key is to choose ring 𝑅𝑛 with a lot of symmetry in the ordering
pattern of UIDs.

Proof overview, cont’d
 Choose ring 𝑅𝑛 with a lot of symmetry in the ordering pattern

of UIDs.

 Informal lemma statements:

 Lemma 2: Processes whose neighborhoods have the same
ordering pattern act the same, until information from outside
their neighborhoods reaches them.

 Lemma 3: If two processes have large order-equivalent
neighborhoods, then many active rounds are needed to break
symmetry between them.

 Lemma 4: If the ring has enough processes with large-enough
order-equivalent neighborhoods, then during each active
round many processes send messages.

 Now, the details…

Definitions
 A round is active if some process sends a (non-null) message

in that round.

 𝑘-neighborhood of a process: The 2𝑘 + 1 processes within
distance 𝑘 on both sides.

 Tuples 𝑢1, 𝑢2, … , 𝑢𝑘 and (𝑣1, 𝑣2, … , 𝑣𝑘) are order-equivalent
provided that 𝑢𝑖 ≤ 𝑢𝑗 iff 𝑣𝑖 ≤ 𝑣𝑗

 for all pairs 𝑖, 𝑗.

 Implies the same (<, =, >) relationships for all corresponding pairs.

 Example: (1 3 6 5 2 7 9) vs. (2 7 9 8 4 10 11)

 Two process states 𝑠 and 𝑡 correspond with respect to
(𝑢1, 𝑢2, … , 𝑢𝑘) and (𝑣1, 𝑣2, … , 𝑣𝑘) if they are identical except
that occurrences of 𝑢𝑖 in 𝑠 are replaced by 𝑣𝑖 in 𝑡, for every 𝑖.

 Analogous definition for corresponding messages.

Key Lemma: Lemma 2
• Lemma 2: Suppose 𝐴 is a comparison-based algorithm on a

synchronous ring network. Suppose 𝑖 and 𝑗 are processes whose
sequences of UIDs in their 𝑘-neighborhoods are order-equivalent.

 Then at any point after at most 𝑘 active rounds, the states of 𝑖 and
𝑗 correspond wrt their 𝑘-neighborhoods' UID sequences.

• That is, processes with order-equivalent 𝑘-neighborhoods are
indistinguishable until after “enough” active rounds.

• Enough: Information has had a chance to reach the processes
from outside the 𝑘-neighborhoods.

• Example: 5 and 8 have order-equivalent 3-neighborhoods, so
must remain in corresponding states through 3 active rounds.

1

2 5
6

3

9 7

11

8
10

4

Proof of Lemma 2

 Lemma 2: Suppose 𝑖 and 𝑗 are processes whose sequences of
UIDs in their 𝑘-neighborhoods are order-equivalent. Then at
any point after 𝑘 active rounds, the states of 𝑖 and 𝑗
correspond wrt their 𝑘-neighborhoods' UID sequences.

 Proof:
 Induction on 𝑟 = number of completed rounds (for each 𝑟,

consider every 𝑖, 𝑗, and every 𝑘 ≥ 0).

 Base: 𝑟 = 0
 Start states of 𝑖 and 𝑗 are identical except for UIDs.

 Correspond with respect to their k-neighborhoods, for every k.

 Inductive step: Assume for 𝑟 − 1, show for 𝑟.

Proof of Lemma 2
 Lemma 2: Suppose 𝑖 and 𝑗 have order-equivalent 𝑘-

neighborhoods. Then at any point after 𝑘 active rounds, 𝑖 and
𝑗 are in corresponding states wrt their 𝑘-neighborhoods.

 Inductive step:
 Assume this is true after round 𝑟 − 1, for all 𝑖, 𝑗, 𝑘.

 Prove it’s true after round 𝑟, for all 𝑖, 𝑗, 𝑘.

 Fix 𝑖, 𝑗, 𝑘, where 𝑖 and 𝑗 have order-equivalent 𝑘-neighborhoods.

 Assume 𝑖 ≠ 𝑗 (trivial otherwise).

 Assume at most 𝑘 of the first r rounds are active.

 We must show that, after 𝑟 rounds, 𝑖 and 𝑗 are in corresponding states
wrt their 𝑘-neighborhoods.

 By inductive hypothesis, after 𝑟 − 1 rounds, 𝑖 and 𝑗 are in corresponding
states wrt their 𝑘-neighborhoods.

 If neither 𝑖 nor 𝑗 receives a non-null message at round 𝑟, they make
corresponding transitions, to corresponding states (wrt their 𝑘-
neighborhoods), so the conclusion is true.

 So suppose that at least one of 𝑖, 𝑗 receives a message at round 𝑟.

Proof of Lemma 2

 Lemma 2: Suppose 𝑖 and 𝑗 have order-equivalent 𝑘-
neighborhoods. Then at any point after 𝑘 active rounds, 𝑖 and
𝑗 are in corresponding states wrt their 𝑘-neighborhoods.

 Inductive step, cont’d:
 So assume at least one of 𝑖, 𝑗 receives a message at round 𝑟.
 Then round 𝑟 is active, and the first 𝑟 − 1 rounds include at most 𝑘 − 1

active rounds.
 The (𝑘 − 1) −neighborhoods of 𝑖 − 1 and 𝑗 − 1 are order-equivalent,

since they are included within the 𝑘-neighborhoods of 𝑖 and 𝑗.
 By inductive hypothesis, after 𝑟 − 1 rounds, 𝑖 − 1 and 𝑗 − 1 are in

corresponding states wrt their (𝑘 − 1) −neighborhoods, and thus wrt the
𝑘-neighborhoods of 𝑖 and 𝑗.

 Thus, messages from 𝑖 − 1 to 𝑖 and from 𝑗 − 1 to 𝑗 at round 𝑟 correspond.
 Similarly for messages from 𝑖 + 1 to 𝑖 and from 𝑗 + 1 to 𝑗.
 So, 𝑖 and 𝑗 start round 𝑟 in corresponding states and receive corresponding

messages at round 𝑟, so they make corresponding transitions and end up
in corresponding states at the end of round 𝑟.

 As needed.

Proof of Theorem 1, cont’d

 We have shown:

 Lemma 2: Suppose 𝑖 and 𝑗 have order-equivalent 𝑘-
neighborhoods. Then at any point after 𝑘 active rounds, 𝑖 and
𝑗 are in corresponding states wrt their 𝑘-neighborhoods.

• Lemma 2 implies that many active rounds are needed to break
symmetry, if there are large order-equivalent neighborhoods.

• It remains to show:
– There are rings with many, and large, order-equivalent neighborhoods.

– Having all these order-equivalent neighborhoods implies high
communication complexity.

• First, let’s see how order-equivalent neighborhoods yield high
communication complexity…

Lemma 3
 Lemma 3: Suppose 𝐴 is a comparison-based leader-election

algorithm on a synchronous ring network, and 𝑘 is an integer.
 Suppose that, for every process 𝑖, there is another process

𝑗 such that 𝑖 and 𝑗 have order-equivalent 𝑘-neighborhoods.
 Then 𝐴 has more than 𝑘 active rounds.

 Proof: By contradiction.

 Suppose 𝐴 elects 𝑖 in at most 𝑘 active rounds.
 By assumption, there is a distinct process 𝑗 with an order-equivalent 𝑘-

neighborhood.
 By Lemma 2, 𝑖 and 𝑗 are in corresponding states, so 𝑗 is also elected—a

contradiction.

Lemma 4
 Lemma 4: Suppose 𝐴 is a comparison-based algorithm on a

synchronous ring network, and 𝑘, 𝑚 are integers.

 Suppose that the (𝑘 − 1)-neighborhood of every process is
order-equivalent to that of at least 𝑚 − 1 other processes.

 Then at least 𝑚 messages are sent in 𝐴's 𝑘𝑡ℎ active round.

 Proof:
 By definition, some process sends a message in the 𝑘𝑡ℎ

active round.

 By assumption, at least 𝑚 − 1 other processes have order-equivalent
(𝑘 − 1)-neighborhoods.

 By Lemma 2, immediately before this round, all these processes are in
corresponding states wrt their (𝑘 − 1) −neighborhoods. Thus, they all
send messages in this round, so at least 𝑚 messages are sent.

Proof of Theorem 1, cont’d
 We have shown:
 Lemma 3: Suppose that, for every process 𝑖, there is another

process 𝑗 such that 𝑖 and 𝑗 have order-equivalent 𝑘-
neighborhoods. Then 𝐴 has more than 𝑘 active rounds.

 Lemma 4: Suppose the (𝑘 − 1)-neighborhood of any process is
order-equivalent to that of at least 𝑚 − 1 other processes. Then
at least 𝑚 messages are sent in 𝐴’s 𝑘𝑡ℎ active round.

 Lemmas 3 and 4 together imply that order-equivalent
neighborhoods yield high communication complexity:
 Lemma 3 says there are many active rounds.
 Lemma 4 says that each active round has many messages.

 To finish the proof of Theorem 1, it is enough to show the
existence of rings with many, large order-equivalent
neighborhoods.

 Example special case: 𝑛 a power of 2.

𝑛 a power of 2

 Bit-reversal ring
 UID is bit-reversed process number.

 Example:

 For every segment of length 𝑛/2𝑏, there are (at least) 2𝑏 order-
equivalent segments (including the given segment).

0

3

1
5

2

7

6

4

9

8 15

14

13

12

10

11

𝑛 a power of 2

 Bit-reversal ring.
 For every segment of length 𝑛/2𝑏, there

are (at least) 2𝑏 order-equivalent
segments (including the given
segment).

 Implies that every process 𝑖 has at least
𝑛/(4𝑘) processes (including 𝑖) with
order-equivalent 𝑘-neighborhoods, for
𝑘 ≤ 𝑛/4.

0

3

1
5

2

7

6

4

9

8 15

14

13

12

10

11

 More than 𝑛/8 active rounds, by Lemma 3.

 Number of messages ≥ 𝑛/4 + 𝑛/8 + 𝑛/12 + 𝑛/16 +
 … + 2, by Lemma 4, which is Ω(𝑛 log 𝑛).

 Calculations LTTR.

Proof idea for arbitrary n

 c-symmetric ring: For every 𝑙 such that √𝑛 < 𝑙 < 𝑛, and
every sequence of length 𝑙 in the ring, there are at least ⌊𝑐𝑛 /𝑙⌋
order-equivalent occurrences.

 [Frederickson-Lynch] There exists 𝑐 such that for every positive
integer 𝑛, there is a 𝑐-symmetric ring of size 𝑛.

 Given 𝑐-symmetric ring, argue similarly to before.

Basic Computation in
General Synchronous Networks

(not just rings)

General synchronous networks

 Not just rings, but arbitrary digraphs.

 Today: Consider simple algorithms, for basic tasks

like broadcasting messages, collecting responses,
setting up communication structures.

 These algorithms are simplified versions of
algorithms that work in asynchronous networks. We
will revisit them in a few weeks.

 Soon: Maximal Independent Set, coloring.

Assumptions

• Digraph 𝐺 = (𝑉, 𝐸):
– 𝑉 = set of processes
– 𝐸 = set of communication channels
– 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗) = shortest distance from 𝑖 to 𝑗
– 𝑑𝑖𝑎𝑚 = max 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗) for all 𝑖, 𝑗
– Assume: Strongly connected (𝑑𝑖𝑎𝑚 is finite), UIDs

• Set 𝑀 of messages
• Each process has 𝑠𝑡𝑎𝑡𝑒𝑠, 𝑠𝑡𝑎𝑟𝑡, 𝑚𝑠𝑔𝑠, 𝑡𝑟𝑎𝑛𝑠.
• Processes communicate only over digraph edges.
• Generally don’t know the entire network, just local

neighborhood.
• Local names for neighbors.

– No particular order for neighbors, in general.
– But (technicality) if incoming and outgoing edges connect to same

neighbor, the names are the same (so the node “knows” this).

Leader election in general synchronous
networks

• Assume:
– UIDs with comparisons only.

– No constraints on which UIDs appear, or where they are in the graph.

– Processes know the graph diameter (or a good upper bound).

• Required: Everyone should eventually set 𝑠𝑡𝑎𝑡𝑢𝑠 {leader, non-
leader}, exactly one leader.

• We will:
– Show a basic flooding algorithm, sketch a proof using invariants.

– Show an optimized version, sketch a proof that relates it formally to the
basic algorithm (new idea: simulation relations).

• Basic flooding algorithm, any process:
– Every round: Send max UID you have seen so far to all your neighbors.

– Stop after 𝑑𝑖𝑎𝑚 rounds.

– Elect yourself iff your own UID is the max you have seen.

Basic flooding algorithm

 𝑠𝑡𝑎𝑡𝑒𝑠
 𝑢, initially UID

 𝑚𝑎𝑥𝑢𝑖𝑑, initially UID

 𝑠𝑡𝑎𝑡𝑢𝑠 {?, leader, not-leader}, initially ?

 𝑟𝑜𝑢𝑛𝑑, initially 0

 𝑚𝑠𝑔𝑠
 if 𝑟𝑜𝑢𝑛𝑑 < 𝑑𝑖𝑎𝑚 then send 𝑚𝑎𝑥𝑢𝑖𝑑 to all 𝑜𝑢𝑡𝑛𝑏𝑟𝑠

 𝑡𝑟𝑎𝑛𝑠
 increment 𝑟𝑜𝑢𝑛𝑑

 𝑚𝑎𝑥𝑢𝑖𝑑 := max (𝑚𝑎𝑥𝑢𝑖𝑑, UIDs received)

 if 𝑟𝑜𝑢𝑛𝑑 = 𝑑𝑖𝑎𝑚 then
 𝑠𝑡𝑎𝑡𝑢𝑠 := leader if 𝑚𝑎𝑥𝑢𝑖𝑑 = 𝑢, not-leader otherwise

1

5

4
3

2

6

1

2

5

3

6

4

Start configuration

Basic flooding algorithm

1

5

4
3

2

6

1

2

5

3

6

4

2

1
3

5

6

6

4

2 1

2

5

Round 1 (msgs)

Basic flooding algorithm

1

5

4
3

2

6

3

5

5

6

6

6

2

1
3

5

6

6

4

2 1

2

5

Round 1 (trans)

Basic flooding algorithm

1

5

4
3

2

6

3

5

5

6

6

6

Round 2 (start)

Basic flooding algorithm

1

5

4
3

2

6

3

5

5

6

6

6

5

3
6

5

6

6

6

5 3

5

5

Round 2 (msgs)

Basic flooding algorithm

1

5

4
3

2

6

6

5

6

6

6

6

5

3
6

5

6

6

6

5 3

5

5

Round 2 (trans)

Basic flooding algorithm

1

5

4
3

2

6

6

5

6

6

6

6

Round 3 (start)

Basic flooding algorithm

1

5

4
3

2

6

6

5

6

6

6

6

5

6
6

6

6

6

6

5 6

5

6

Round 3 (msgs)

Basic flooding algorithm

1

5

4
3

2

6

6

6

6

6

6

6

5

6
6

6

6

6

6

5 6

5

6

Round 3 (trans)

Basic flooding algorithm

1

5

4
3

2

6

6

6

6

6

6

6

Round 4 (start)

Basic flooding algorithm

1

5

4
3

2

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6 6

6

6

Round 4 (msgs)

Basic flooding algorithm

1

5

4
3

2

6

6

6

6

6

6

6

Round 4 (trans)

Basic flooding algorithm

• Algorithm:

– Assume diameter is known (𝑑𝑖𝑎𝑚).

– Every round: Send the max UID you have seen to all neighbors.

– Stop after 𝑑𝑖𝑎𝑚 rounds.

– Elect self iff your own UID is the max you have seen.

• Complexity:

– Time complexity (rounds): 𝑑𝑖𝑎𝑚

– Message complexity: 𝑑𝑖𝑎𝑚 |𝐸|

• Correctness proof?

Basic flooding algorithm

Key invariant

 Invariant: Just after round 𝑟, if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗) ≤
 𝑟 then 𝑚𝑎𝑥𝑢𝑖𝑑𝑗 ≥ 𝑈𝐼𝐷𝑖.

 Proof:

 Induction on 𝑟.

 Base: 𝑟 = 0
 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗) = 0 implies 𝑖 = 𝑗, and 𝑚𝑎𝑥𝑢𝑖𝑑𝑖 = 𝑈𝐼𝐷𝑖.

 Inductive step: Assume for 𝑟 − 1, prove for 𝑟.
 Assume 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗) ≤ 𝑟.

 Then there is a node 𝑘 ∈ 𝑖𝑛𝑛𝑏𝑟𝑠𝑗
with 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑘) ≤ 𝑟 − 1.

 By inductive hypotheses, after round 𝑟 − 1, 𝑚𝑎𝑥𝑢𝑖𝑑𝑘
≥ 𝑈𝐼𝐷𝑖 .

 Since 𝑘 sends its 𝑚𝑎𝑥𝑢𝑖𝑑 to 𝑗 at round 𝑟, 𝑚𝑎𝑥𝑢𝑖𝑑𝑗 ≥ 𝑈𝐼𝐷𝑖 after
round 𝑟.

Reducing the message complexity

 Slightly improved algorithm:

 Don't send same UID twice.

 Additional state variable: 𝑛𝑒𝑤𝑖𝑛𝑓𝑜, a Boolean,
initially true

 Send 𝑚𝑎𝑥𝑢𝑖𝑑 only if 𝑛𝑒𝑤𝑖𝑛𝑓𝑜 = true

 Set 𝑛𝑒𝑤𝑖𝑛𝑓𝑜 ∶= true iff the max UID received at
this round > 𝑚𝑎𝑥𝑢𝑖𝑑.

Improved algorithm

1

5

4
3

2

6

1

2

5

3

6

4

Start configuration

Improved algorithm

1

5

4
3

2

6

1

2

5

3

6

4

2

1
3

5

6

6

4

2 1

2

5

Round 1 (msgs)

Improved algorithm

1

5

4
3

2

6

3

5

5

6

6

6

2

1
3

5

6

6

4

2 1

2

5

Round 1 (trans)

Improved algorithm

1

5

4
3

2

6

3

5

5

6

6

6

Round 2 (start)

Improved algorithm

1

5

4
3

2

6

3

5

5

6

6

6

5

3
6

6

5 3

Round 2 (msgs)

5

Improved algorithm

1

5

4
3

2

6

6

5

6

6

6

6

5

3
6

6

5 3

Round 2 (trans)

5

Improved algorithm

1

5

4
3

2

6

6

5

6

6

6

6

Round 3 (start)

Improved algorithm

1

5

4
3

2

6

6

5

6

6

6

6

6

6

6 6

Round 3 (msgs)

Improved algorithm

1

5

4
3

2

6

6

6

6

6

6

6

6

6

6 6

Round 3 (trans)

Improved algorithm

1

5

4
3

2

6

6

6

6

6

6

6

Round 4 (start)

Improved algorithm

1

5

4
3

2

6

6

6

6

6

6

6

6

6

6

Round 4 (msgs)

Improved algorithm

1

5

4
3

2

6

6

6

6

6

6

6

Round 4 (trans)

Improved algorithm

 Improved algorithm:
 Don't send same UID twice.
 New state variable: 𝑛𝑒𝑤𝑖𝑛𝑓𝑜, a Boolean, initially true
 Send 𝑚𝑎𝑥𝑢𝑖𝑑 only if 𝑛𝑒𝑤𝑖𝑛𝑓𝑜 = true
 𝑛𝑒𝑤𝑖𝑛𝑓𝑜 ∶= true iff the max UID received at this round is

strictly greater than 𝑚𝑎𝑥𝑢𝑖𝑑

 Algorithm sometimes improves communication cost
significantly, but the worst-case bound is the same,
𝑑𝑖𝑎𝑚 |𝐸|.

 Correctness Proof:
 Can prove this similarly to before.
 Or, we can use another important method for proving

correctness of distributed algorithms: Simulation Relations.

Simulation relation

 Relates a new algorithm formally to an original one that has
already been proved correct.

 Correctness then carries over from the old algorithm to the new
algorithm.

 Often used to show correctness of optimized algorithms.

 Can repeat this in several stages, adding more optimizations.

 “Run the two algorithms side by side and relate them.”

 Define a simulation relation between states of the two
algorithms:
 Satisfied by start states.

 Preserved by every transition.

 Outputs should be the same from related states.

Simulation relation between the improved
and basic algorithms

• Key invariant of the improved algorithm:
– If 𝑖 ∈ 𝑖𝑛𝑛𝑏𝑟𝑠𝑗

and 𝑚𝑎𝑥𝑢𝑖𝑑𝑖 > 𝑚𝑎𝑥𝑢𝑖𝑑𝑗
 then 𝑛𝑒𝑤𝑖𝑛𝑓𝑜𝑖

= true.
– That is, if 𝑖 has better information than 𝑗, then 𝑖 is planning to send it to

𝑗 on the next round.
– Can prove this by induction on the number of rounds.

• Simulation relation: All state variables of the basic algorithm (all
but 𝑛𝑒𝑤𝑖𝑛𝑓𝑜) have the same values in both algorithms.

• Start condition: By definition.
• Preserved by every transition:

– Key property: 𝑚𝑎𝑥𝑢𝑖𝑑s are always the same in the two algorithms.
– Consider 𝑖 ∈ 𝑖𝑛𝑛𝑏𝑟𝑠𝑗.
– If 𝑛𝑒𝑤𝑖𝑛𝑓𝑜𝑖 = true before the step, then the two algorithms behave the

same with respect to (𝑖, 𝑗).
– Otherwise, only the basic algorithm sends a message. However, by the

key invariant, this means that 𝑚𝑎𝑥𝑢𝑖𝑑𝑖
 𝑚𝑎𝑥𝑢𝑖𝑑𝑗 before the step, and

so the message has no effect in the basic algorithm anyway.

Why all these proofs?

• Distributed algorithms can be very subtle and complicated.

• Easy to make mistakes.

• Careful reasoning about algorithm steps is generally needed.

• It’s more necessary here than for sequential algorithms.

• Moreover, we prefer proofs that are systematic, like invariant and
simulation relation proofs.

• Structure makes it easier to design (and read) new proofs.

• Makes it possible to keep track of numerous details.

• Proofs lend themselves to machine assistance, using theorem-
provers, model-checkers, etc.

Now, other problems besides leader
election…

• This week:
– Breadth-First Search (BFS), B-F spanning trees

– Shortest-paths spanning treed

– Minimum Spanning Trees (MSTs)

– Maximal Independent Sets (MISs)

• Next week (Stephan Holzer):
– MIS, revisited

– Graph coloring

– MST, revisited

Breadth-First Search

Breadth-first search

• Assume:
– Strongly connected digraph, UIDs.
– No knowledge of size or diameter of the network.
– Distinguished source node (leader) 𝑖0.

• Required: Breadth-first spanning tree, rooted at
source node 𝑖0.
– Branches are directed paths in the given digraph.
– Spanning: Includes every node.
– Breadth-first: Node at distance 𝑑 from 𝑖0 appears at depth

𝑑 in tree.
– Output: Each node (except 𝑖0) sets a 𝑝𝑎𝑟𝑒𝑛𝑡 variable to

indicate its parent in the tree.

Breadth-first search

1

5

4
3

2

6

Breadth-first search

1

5

4
3

2

6

Breadth-first search algorithm

 Mark nodes as they get incorporated into the tree.
 Initially, only 𝑖0 is marked.
 Round 1: 𝑖0 sends 𝑠𝑒𝑎𝑟𝑐ℎ message to out-nbrs.
 At every round: An unmarked node that receives a

𝑠𝑒𝑎𝑟𝑐ℎ message:
 Marks itself.
 Designates one process from which it received 𝑠𝑒𝑎𝑟𝑐ℎ as its

parent.
 Sends 𝑠𝑒𝑎𝑟𝑐ℎ to out-nbrs at the next round.

 Q: What state variables do we need?
 Q: Why does this yield a BFS tree?

Breadth-first search

1

5

4
3

2

6

Round 1 (start)

Breadth-first search

1

5

4
3

2

6

Round 1 (msgs)

s

Breadth-first search

1

5

4
3

2

6

Round 1 (trans)

s

Breadth-first search

1

5

4
3

2

6

Round 2 (start)

Breadth-first search

1

5

4
3

2

6

Round 2 (msgs)

s

s

Breadth-first search

1

5

4
3

2

6

Round 2 (trans)

s

s

Breadth-first search

1

5

4
3

2

6

Round 3 (start)

Breadth-first search

1

5

4
3

2

6

Round 3 (msgs)

s

s

s

s

s

Breadth-first search

1

5

4
3

2

6

Round 3 (trans)

s

s

s

s

s

Breadth-first search

1

5

4
3

2

6

Round 4 (start)

Breadth-first search

1

5

4
3

2

6

Round 4 (msgs)

s
s

s

Breadth-first search

1

5

4
3

2

6

Round 4 (trans)

s
s

s

Breadth-first search

1

5

4
3

2

6

Round 5 (start)

Breadth-first search

1

5

4
3

2

6

Round 5 (msgs)

Breadth-first search

1

5

4
3

2

6

Round 5 (trans)

Breadth-first search algorithm
 Mark nodes as they get incorporated into the tree.
 Initially, only 𝑖0 is marked.
 Round 1: 𝑖0 sends 𝑠𝑒𝑎𝑟𝑐ℎ message to out-nbrs.
 At every round: An unmarked node that receives a

𝑠𝑒𝑎𝑟𝑐ℎ message:
 Marks itself.
 Designates one process from which it received 𝑠𝑒𝑎𝑟𝑐ℎ as its

parent.
 Sends 𝑠𝑒𝑎𝑟𝑐ℎ to out-nbrs at the next round.

 Yields a BFS tree because all the branches are created
synchronously.

 Time complexity: 𝑑𝑖𝑎𝑚 + 1
 Message complexity: |𝐸|

Adding child pointers to BFS

• Each 𝑠𝑒𝑎𝑟𝑐ℎ message receives a response, 𝑝𝑎𝑟𝑒𝑛𝑡 or
𝑛𝑜𝑡 − 𝑝𝑎𝑟𝑒𝑛𝑡.

• Easy with bidirectional communication.
• Harder with unidirectional communication:
• E.g. could use BFS again to search for parents.

– High message bit complexity.

Termination for BFS
• Suppose 𝑖0 wants to know when the BFS tree is completed.
• Assume each 𝑠𝑒𝑎𝑟𝑐ℎ message receives a response, 𝑝𝑎𝑟𝑒𝑛𝑡 or

𝑛𝑜𝑡 − 𝑝𝑎𝑟𝑒𝑛𝑡.
• After a node has received responses to all its outgoing

𝑠𝑒𝑎𝑟𝑐ℎ messages, it knows who its children are, and knows
they are all marked.

• The leaves of the tree discover who they are (they receive
only 𝑛𝑜𝑡 − 𝑝𝑎𝑟𝑒𝑛𝑡 responses).

• Convergecast:
– Starting from the leaves, the nodes fan in 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 messages to 𝑖0,

along the edges of the BFS tree.
– A node can send a 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 message to its parent after:

• It has received responses to all its outgoing 𝑠𝑒𝑎𝑟𝑐ℎ messages (so it knows
who its children are), and

• It has received 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 messages from all its children.

• When 𝑖0 has received 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 messages from all its
children, it knows that the BFS tree is completed.

Convergecast

complete complete

complete

Complete!

complete

complete

complete

complete

Applications of BFS

 Message broadcast:
 Can broadcast a message while setting up the BFS

tree (“piggyback” the message).

 Or, first establish a BFS tree, with child pointers,
then use it for broadcasting.
 Can reuse the tree for many broadcasts

 Each takes time only 𝑂(𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟), messages 𝑂(𝑛).

 Now assume bidirectional edges (undirected
graph).

Applications of BFS

 Global computation:
 Sum, max, or any kind of data aggregation: Convergecast on

BFS tree.

 Complexity: Time 𝑂(𝑑𝑖𝑎𝑚); Messages 𝑂 𝑛

 Leader election (without knowing diameter)
 Everyone starts BFS, determines max UID.

 Complexity: Time 𝑂(𝑑𝑖𝑎𝑚); Messages 𝑂(𝑛 |𝐸|) (actually,
𝑂(𝑑𝑖𝑎𝑚 |𝐸|)).

 Compute diameter:
 All do BFS.

 Convergecast to find height of each BFS tree.

 Convergecast again to find max of all heights.

Shortest Paths

Shortest paths
• Motivation: Establish a structure for efficient communication.

– Generalizes Breadth-First Search.
– Now edges have associated costs (weights), 𝑤𝑖𝑗 for edge 𝑖, 𝑗 .

• Assume:
– Strongly connected digraph, root 𝑖0.
– Weights (nonnegative reals) on edges.

• Weights represent some type of communication cost, e.g. latency.

– UIDs.
– Nodes know weights of incident edges.
– Nodes know 𝑛 (use this just for termination).

• Required:
– Shortest-paths tree, giving shortest path from 𝑖0 to every other node.
– Shortest path = path with minimum total weight.
– Each node should output:

• Its weighted distance from 𝑖0, and
• Its parent on a shortest path from 𝑖0.

Shortest paths

1

5

4
3

2

6

7

8
6

4

3

9

2

5 11

10

1

Shortest paths

1

5

4
3

2

6

3

0

7

8
6

4

3

9

2

5 11

10

1

10

6

2

9

Shortest paths algorithm
• Bellman-Ford (adapted from sequential Bellman-Ford algorithm)
• Each process maintains:

– 𝑑𝑖𝑠𝑡, shortest distance it knows about so far, from 𝑖0

– 𝑝𝑎𝑟𝑒𝑛𝑡, its parent in some path with total weight = 𝑑𝑖𝑠𝑡
– 𝑟𝑜𝑢𝑛𝑑

• Initially:
– 𝑖0 has 𝑑𝑖𝑠𝑡 = 0, all others have 𝑑𝑖𝑠𝑡 = ∞.
– Everyone’s 𝑝𝑎𝑟𝑒𝑛𝑡 = ⊥.

• At each round, each process:
– Sends 𝑑𝑖𝑠𝑡 to all 𝑜𝑢𝑡𝑛𝑏𝑟𝑠
– Relaxation step:

• Compute new 𝑑𝑖𝑠𝑡 = min (𝑑𝑖𝑠𝑡, 𝑚𝑖𝑛𝑗(𝑑𝑖𝑠𝑡𝑗
+ 𝑤𝑗𝑖)).

• If 𝑑𝑖𝑠𝑡 decreases then reset 𝑝𝑎𝑟𝑒𝑛𝑡 to the corresponding 𝑖𝑛𝑛𝑏𝑟.

• Stop after 𝑛 − 1 rounds.
• Then (claim) each process’s 𝑑𝑖𝑠𝑡 contains its distance from 𝑖0,

𝑝𝑎𝑟𝑒𝑛𝑡 contains the parent on a shortest path from 𝑖0.

Next time

• More distributed algorithms for general
synchronous networks:
– Shortest paths, Bellman-Ford algorithm, continued
– Minimum spanning tree, Gallager-Humblet-Spira

algorithm
– Maximal independent set, Luby’s algorithm

• Readings:
– Sections 4.3-4.5.
– [Gallager, Humblet, Spira] (optional)
– [Luby] (optional)
– [Metivier, Robson,…] (optional)

