6.852: Distributed Algorithms Fall, 2015

Lecture 2

Today's plan

- Leader election in a synchronous ring:
- Lower bound for comparison-based algorithms.
- Basic computation in general synchronous networks:
- Leader election
- Breadth-first search
- Broadcast and convergecast
- Shortest paths (Bellman-Ford)
- Reading: Sections 3.6, 4.1-4-3
- Next time:
- Shortest paths, continued
- Minimum Spanning Tree
- Maximal Independent Set
- Reading: Sections 4.3-4.5, related papers (see last slide)

Leader Election in a

Synchronous Ring

Last time

- Model for synchronous networks
- Leader election problem, in simple ring networks
- Algorithms:
- [LeLann], [Chang, Roberts]
- Pass UID tokens one way, elect max
- Proofs, using invariants
- Time complexity: n for a ring of size n
- Communication (message) complexity: $O\left(n^{2}\right)$
- [Hirshberg, Sinclair]
- Send UIDs to successively-doubled distances, in both directions.
- Message complexity: $O(n \log n)$
- Time complexity: $O(n)$ (dominated by the final phase)

Last time

- Q:Can the message complexity be lowered still more?
- Non-comparison-based algorithms
- Wait quietly until it's your "turn", determined by UID.
- Message complexity: $O(n)$
- Time complexity: $O\left(u_{\min } n\right)$ if n is known, $O\left(n 2^{u_{\min }}\right)$ if n is unknown

Lower bounds for leader election

- Q: Can we get time complexity less than n ?
- Easy $n / 2$ lower bound (n unknown)
- Suppose an algorithm always elects a leader in time $<n / 2$.
- Consider two separate rings of size n (n odd), R_{1} and R_{2}.
- Algorithm elects processes i_{1} and i_{2} respectively, each in time $<n / 2$.

- Now cut R_{1} and R_{2} at points furthest from the leaders, paste them together to form a new ring R of size $2 n$.
- Then in R, both i_{1} and i_{2} get elected, because the time until they get elected is less than the time needed for information about the pasting to propagate from the pasting points to i_{1} or i_{2}.

Lower bounds for leader election

- Q: Can we get message complexity less than $O(n \log n)$, for comparison-based algorithms?
- We can prove an $\Omega(n \log n)$ lower bound.
- Assumptions:
- Comparison-based algorithm.
- Bidirectional ring.
- Known n.
- Deterministic.

Comparison-based algorithms

- All decisions are determined only by comparisons of UIDs:
- All processes are identical, except that they have different UIDs in their start states.
- Manipulate UIDs only by copying, sending, receiving, and comparing them $(<,=,>)$.
- Use results of comparisons to decide what to do:
- State transitions,
- What (if anything) to send to your neighbors,
- Whether to elect yourself leader.

Lower bound theorem

- Theorem 1: Let A be a comparison-based algorithm that elects a leader in rings of size n. Then A has an execution in which $\Omega(n \log n)$ messages are sent by the time the leader is elected.
- This holds for any n.
- Proof overview:
- For any n, define a ring R_{n} of size n in which any leader election algorithm has:
- $\Omega(n)$ "active" rounds (in which messages are sent).
- $\Omega(n / i)$ messages sent in the $i^{t h}$ active round.
- So, $\Omega(n \log n)$ total messages.
- The key is to choose ring R_{n} with a lot of symmetry in the ordering pattern of UIDs.

Proof overview, cont'd

- Choose ring R_{n} with a lot of symmetry in the ordering pattern of UIDs.
- Informal lemma statements:
- Lemma 2: Processes whose neighborhoods have the same ordering pattern act the same, until information from outside their neighborhoods reaches them.
- Lemma 3: If two processes have large order-equivalent neighborhoods, then many active rounds are needed to break symmetry between them.
- Lemma 4: If the ring has enough processes with large-enough order-equivalent neighborhoods, then during each active round many processes send messages.
- Now, the details...

Definitions

- A round is active if some process sends a (non-null) message in that round.
- k-neighborhood of a process: The $2 k+1$ processes within distance k on both sides.
- Tuples $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ and $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ are order-equivalent provided that $u_{i} \leq u_{j}$ iff $v_{i} \leq v_{j}$ for all pairs i, j.
- Implies the same $(<,=,>)$ relationships for all corresponding pairs.
- Example: (1365279) vs. (2 798410 11)
- Two process states s and t correspond with respect to $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ and ($v_{1}, v_{2}, \ldots, v_{k}$) if they are identical except that occurrences of u_{i} in s are replaced by v_{i} in t, for every i.
- Analogous definition for corresponding messages.

Key Lemma: Lemma 2

- Lemma 2: Suppose A is a comparison-based algorithm on a synchronous ring network. Suppose i and j are processes whose sequences of UIDs in their k-neighborhoods are order-equivalent. Then at any point after at most k active rounds, the states of i and j correspond wrt their k-neighborhoods' UID sequences.
- That is, processes with order-equivalent k-neighborhoods are indistinguishable until after "enough" active rounds.
- Enough: Information has had a chance to reach the processes from outside the k-neighborhoods.
- Example: 5 and 8 have order-equivalent 3-neighborhoods, so must remain in corresponding states through 3 active rounds.

Proof of Lemma 2

- Lemma 2: Suppose i and j are processes whose sequences of UIDs in their k-neighborhoods are order-equivalent. Then at any point after $\leq k$ active rounds, the states of i and j correspond wrt their k-neighborhoods' UID sequences.
- Proof:
- Induction on $r=$ number of completed rounds (for each r, consider every i, j, and every $k \geq 0$).
- Base: $r=0$
- Start states of i and j are identical except for UIDs.
- Correspond with respect to their k-neighborhoods, for every k.
- Inductive step: Assume for $r-1$, show for r.

Proof of Lemma 2

- Lemma 2: Suppose i and j have order-equivalent k neighborhoods. Then at any point after $\leq k$ active rounds, i and j are in corresponding states wrt their k-neighborhoods.
- Inductive step:
- Assume this is true after round $r-1$, for all i, j, k.
- Prove it's true after round r, for all i, j, k.
- Fix i, j, k, where i and j have order-equivalent k-neighborhoods.
- Assume $i \neq j$ (trivial otherwise).
- Assume at most k of the first r rounds are active.
- We must show that, after r rounds, i and j are in corresponding states wrt their k-neighborhoods.
- By inductive hypothesis, after $r-1$ rounds, i and j are in corresponding states wrt their k-neighborhoods.
- If neither i nor j receives a non-null message at round r, they make corresponding transitions, to corresponding states (wrt their k neighborhoods), so the conclusion is true.
- So suppose that at least one of i, j receives a message at round r.

Proof of Lemma 2

- Lemma 2: Suppose i and j have order-equivalent k neighborhoods. Then at any point after $\leq k$ active rounds, i and j are in corresponding states wrt their k-neighborhoods.
- Inductive step, cont'd:
- So assume at least one of i, j receives a message at round r.
- Then round r is active, and the first $r-1$ rounds include at most $k-1$ active rounds.
- The ($k-1$) -neighborhoods of $i-1$ and $j-1$ are order-equivalent, since they are included within the k-neighborhoods of i and j.
- By inductive hypothesis, after $r-1$ rounds, $i-1$ and $j-1$ are in corresponding states wrt their $(k-1)$-neighborhoods, and thus wrt the k-neighborhoods of i and j.
- Thus, messages from $i-1$ to i and from $j-1$ to j at round r correspond.
- Similarly for messages from $i+1$ to i and from $j+1$ to j.
- So, i and j start round r in corresponding states and receive corresponding messages at round r, so they make corresponding transitions and end up in corresponding states at the end of round r.
- As needed.

Proof of Theorem 1, cont'd

- We have shown:
- Lemma 2: Suppose i and j have order-equivalent k neighborhoods. Then at any point after $\leq k$ active rounds, i and j are in corresponding states wrt their k-neighborhoods.
- Lemma 2 implies that many active rounds are needed to break symmetry, if there are large order-equivalent neighborhoods.
- It remains to show:
- There are rings with many, and large, order-equivalent neighborhoods.
- Having all these order-equivalent neighborhoods implies high communication complexity.
- First, let's see how order-equivalent neighborhoods yield high communication complexity...

Lemma 3

- Lemma 3: Suppose A is a comparison-based leader-election algorithm on a synchronous ring network, and k is an integer. Suppose that, for every process i, there is another process j such that i and j have order-equivalent k-neighborhoods. Then A has more than k active rounds.
- Proof: By contradiction.
- Suppose A elects i in at most k active rounds.
- By assumption, there is a distinct process j with an order-equivalent k neighborhood.
- By Lemma 2, i and j are in corresponding states, so j is also elected-a contradiction.

Lemma 4

- Lemma 4: Suppose A is a comparison-based algorithm on a synchronous ring network, and k, m are integers.
Suppose that the $(k-1)$-neighborhood of every process is order-equivalent to that of at least $m-1$ other processes.
Then at least m messages are sent in A 's $k^{t h}$ active round.
- Proof:
- By definition, some process sends a message in the $k^{t h}$ active round.
- By assumption, at least $m-1$ other processes have order-equivalent ($k-1$)-neighborhoods.
- By Lemma 2, immediately before this round, all these processes are in corresponding states wrt their $(k-1)$-neighborhoods. Thus, they all send messages in this round, so at least m messages are sent.

Proof of Theorem 1, cont'd

- We have shown:
- Lemma 3: Suppose that, for every process i, there is another process j such that i and j have order-equivalent k neighborhoods. Then A has more than k active rounds.
- Lemma 4: Suppose the ($k-1$)-neighborhood of any process is order-equivalent to that of at least $m-1$ other processes. Then at least m messages are sent in A 's $k^{\text {th }}$ active round.
- Lemmas 3 and 4 together imply that order-equivalent neighborhoods yield high communication complexity:
- Lemma 3 says there are many active rounds.
- Lemma 4 says that each active round has many messages.
- To finish the proof of Theorem 1, it is enough to show the existence of rings with many, large order-equivalent neighborhoods.
- Example special case: n a power of 2 .

n a power of 2

- Bit-reversal ring
- UID is bit-reversed process number.
- Example:

- For every segment of length $n / 2^{b}$, there are (at least) 2^{b} orderequivalent segments (including the given segment).

n a power of 2

- Bit-reversal ring.
- For every segment of length $n / 2^{b}$, there are (at least) 2^{b} order-equivalent segments (including the given segment).
- Implies that every process i has at least $n /(4 k)$ processes (including i) with
 order-equivalent k-neighborhoods, for $k \leq n / 4$.
- More than $n / 8$ active rounds, by Lemma 3.
- Number of messages $\geq n / 4+n / 8+n / 12+n / 16+$ $\ldots+2$, by Lemma 4 , which is $\Omega(n \log n)$.
- Calculations LTTR.

Proof idea for arbitrary n

- c-symmetric ring: For every l such that $\sqrt{n}<l<n$, and every sequence of length l in the ring, there are at least $\lfloor c n / l\rfloor$ order-equivalent occurrences.
- [Frederickson-Lynch] There exists c such that for every positive integer n, there is a c-symmetric ring of size n.
- Given c-symmetric ring, argue similarly to before.

Basic Computation in General Synchronous Networks (not just rings)

General synchronous networks

- Not just rings, but arbitrary digraphs.

- Today: Consider simple algorithms, for basic tasks like broadcasting messages, collecting responses, setting up communication structures.
- These algorithms are simplified versions of algorithms that work in asynchronous networks. We will revisit them in a few weeks.
- Soon: Maximal Independent Set, coloring.

Assumptions

- Digraph $G=(V, E)$:
- $V=$ set of processes
- $E=$ set of communication channels
- distance $(i, j)=$ shortest distance from i to j

- diam = max distance (i, j) for all i, j
- Assume: Strongly connected (diam is finite), UIDs
- Set M of messages
- Each process has states, start, msgs, trans.
- Processes communicate only over digraph edges.
- Generally don’t know the entire network, just local neighborhood.
- Local names for neighbors.
- No particular order for neighbors, in general.
- But (technicality) if incoming and outgoing edges connect to same neighbor, the names are the same (so the node "knows" this).

Leader election in general synchronous networks

- Assume:
- UIDs with comparisons only.
- No constraints on which UIDs appear, or where they are in the graph.
- Processes know the graph diameter (or a good upper bound).
- Required: Everyone should eventually set status $\in\{l e a d e r$, nonleader\}, exactly one leader.
- We will:
- Show a basic flooding algorithm, sketch a proof using invariants.
- Show an optimized version, sketch a proof that relates it formally to the basic algorithm (new idea: simulation relations).
- Basic flooding algorithm, any process:
- Every round: Send max UID you have seen so far to all your neighbors.
- Stop after diam rounds.
- Elect yourself iff your own UID is the max you have seen.

Basic flooding algorithm

- states
- u, initially UID
- maxuid, initially UID
- status $\in\{?$, leader, not-leader\}, initially ?
- round, initially 0
- msgs
- if round < diam then send maxuid to all outnbrs
- trans
- increment round
- maxuid := max (maxuid, UIDs received)
- if round = diam then
- status $:=$ leader if maxuid $=u$, not-leader otherwise

Basic flooding algorithm

Basic flooding algorithm

- Algorithm:
- Assume diameter is known (diam).
- Every round: Send the max UID you have seen to all neighbors.
- Stop after diam rounds.
- Elect self iff your own UID is the max you have seen.
- Complexity:
- Time complexity (rounds): diam
- Message complexity: diam $|E|$
- Correctness proof?

Key invariant

- Invariant: Just after round r, if distance $(i, j) \leq$ r then maxuid $_{j} \geq U I D_{i}$.
- Proof:
- Induction on r.
- Base: $r=0$
- distance $(i, j)=0$ implies $i=j$, and maxuid $_{i}=U D_{i}$.
- Inductive step: Assume for $r-1$, prove for r.
- Assume distance $(i, j) \leq r$.
- Then there is a node $k \in$ innbrs $_{j}$ with distance $(i, k) \leq r-1$.
- By inductive hypotheses, after round $r-1$, maxuid $_{k} \geq U I D_{i}$.
- Since k sends its maxuid to j at round r, maxuid $_{j} \geq U I D_{i}$ after round r.

Reducing the message complexity

- Slightly improved algorithm:
- Don't send same UID twice.
- Additional state variable: newinfo, a Boolean, initially true
- Send maxuid only if newinfo $=$ true
- Set newinfo $:=$ true iff the max UID received at this round $>$ maxuid.

Improved algorithm

Improved algorithm

- Improved algorithm:
- Don't send same UID twice.
- New state variable: newinfo, a Boolean, initially true
- Send maxuid only if newinfo = true
- newinfo $:=$ true iff the max UID received at this round is strictly greater than maxuid
- Algorithm sometimes improves communication cost significantly, but the worst-case bound is the same, diam $|E|$.
- Correctness Proof:
- Can prove this similarly to before.
- Or, we can use another important method for proving correctness of distributed algorithms: Simulation Relations.

Simulation relation

- Relates a new algorithm formally to an original one that has already been proved correct.
- Correctness then carries over from the old algorithm to the new algorithm.
- Often used to show correctness of optimized algorithms.
- Can repeat this in several stages, adding more optimizations.
- "Run the two algorithms side by side and relate them."
- Define a simulation relation between states of the two algorithms:
- Satisfied by start states.
- Preserved by every transition.
- Outputs should be the same from related states.

Simulation relation between the improved and basic algorithms

- Key invariant of the improved algorithm:
- If $i \in$ innbrs $_{j}$ and maxuid $_{i}>$ maxuid $_{j}$ then newinfo ${ }_{i}=$ true.
- That is, if i has better information than j, then i is planning to send it to j on the next round.
- Can prove this by induction on the number of rounds.
- Simulation relation: All state variables of the basic algorithm (all but newinfo) have the same values in both algorithms.
- Start condition: By definition.
- Preserved by every transition:
- Key property: maxuids are always the same in the two algorithms.
- Consider $i \in$ innbrs $_{j}$.
- If newinf $o_{i}=$ true before the step, then the two algorithms behave the same with respect to (i, j).
- Otherwise, only the basic algorithm sends a message. However, by the key invariant, this means that maxuid $_{i} \leq$ maxuid $_{j}$ before the step, and so the message has no effect in the basic algorithm anyway.

Why all these proofs?

- Distributed algorithms can be very subtle and complicated.
- Easy to make mistakes.
- Careful reasoning about algorithm steps is generally needed.
- It's more necessary here than for sequential algorithms.
- Moreover, we prefer proofs that are systematic, like invariant and simulation relation proofs.
- Structure makes it easier to design (and read) new proofs.
- Makes it possible to keep track of numerous details.
- Proofs lend themselves to machine assistance, using theoremprovers, model-checkers, etc.

Now, other problems besides leader election...

- This week:
- Breadth-First Search (BFS), B-F spanning trees
- Shortest-paths spanning treed
- Minimum Spanning Trees (MSTs)
- Maximal Independent Sets (MISs)
- Next week (Stephan Holzer):
- MIS, revisited
- Graph coloring
- MST, revisited

Breadth-First Search

Breadth-first search

- Assume:
- Strongly connected digraph, UIDs.
- No knowledge of size or diameter of the network.
- Distinguished source node (leader) i_{0}.
- Required: Breadth-first spanning tree, rooted at source node i_{0}.
- Branches are directed paths in the given digraph.
- Spanning: Includes every node.
- Breadth-first: Node at distance d from i_{0} appears at depth d in tree.
- Output: Each node (except i_{0}) sets a parent variable to indicate its parent in the tree.

Breadth-first search

Breadth-first search

Breadth-first search algorithm

- Mark nodes as they get incorporated into the tree.
- Initially, only i_{0} is marked.
- Round 1: i_{0} sends search message to out-nbrs.
- At every round: An unmarked node that receives a search message:
- Marks itself.
- Designates one process from which it received search as its parent.
- Sends search to out-nbrs at the next round.
- Q: What state variables do we need?
- Q: Why does this yield a BFS tree?

Breadth-first search

Round 1 (start)

Breadth-first search

Round 1 (msgs)

Breadth-first search

Round 1 (trans)

Breadth-first search

Round 2 (start)

Breadth-first search

Round 2 (msgs)

Breadth-first search

Breadth-first search

Round 3 (start)

Breadth-first search

Round 3 (msgs)

Breadth-first search

Breadth-first search

Round 4 (start)

Breadth-first search

Breadth-first search

Breadth-first search

Round 5 (start)

Breadth-first search

Breadth-first search

Breadth-first search algorithm

- Mark nodes as they get incorporated into the tree.
- Initially, only i_{0} is marked.
- Round 1: i_{0} sends search message to out-nbrs.
- At every round: An unmarked node that receives a search message:
- Marks itself.
- Designates one process from which it received search as its parent.
- Sends search to out-nbrs at the next round.
- Yields a BFS tree because all the branches are created synchronously.
- Time complexity: diam + 1
- Message complexity: $|E|$

Adding child pointers to BFS

- Each search message receives a response, parent or not - parent.
- Easy with bidirectional communication.
- Harder with unidirectional communication:
- E.g. could use BFS again to search for parents.
- High message bit complexity.

Termination for BFS

- Suppose i_{0} wants to know when the BFS tree is completed.
- Assume each search message receives a response, parent or not - parent.
- After a node has received responses to all its outgoing search messages, it knows who its children are, and knows they are all marked.
- The leaves of the tree discover who they are (they receive only not - parent responses).
- Convergecast:
- Starting from the leaves, the nodes fan in complete messages to i_{0}, along the edges of the BFS tree.
- A node can send a complete message to its parent after:
- It has received responses to all its outgoing search messages (so it knows who its children are), and
- It has received complete messages from all its children.
- When i_{0} has received complete messages from all its children, it knows that the BFS tree is completed.

Convergecast

Applications of BFS

- Message broadcast:
- Can broadcast a message while setting up the BFS tree ("piggyback" the message).
- Or, first establish a BFS tree, with child pointers, then use it for broadcasting.
- Can reuse the tree for many broadcasts
- Each takes time only O (diameter), messages $O(n)$.
- Now assume bidirectional edges (undirected graph).

Applications of BFS

- Global computation:
- Sum, max, or any kind of data aggregation: Convergecast on BFS tree.
- Complexity: Time O (diam); Messages $O(n)$
- Leader election (without knowing diameter)
- Everyone starts BFS, determines max UID.
- Complexity: Time O (diam); Messages $O(n|E|)$ (actually, $O(\operatorname{diam}|E|))$.
- Compute diameter:
- All do BFS.
- Convergecast to find height of each BFS tree.
- Convergecast again to find max of all heights.

Shortest Paths

Shortest paths

- Motivation: Establish a structure for efficient communication.
- Generalizes Breadth-First Search.
- Now edges have associated costs (weights), $w_{i j}$ for edge (i, j).
- Assume:
- Strongly connected digraph, root i_{0}.
- Weights (nonnegative reals) on edges.
- Weights represent some type of communication cost, e.g. latency.
- UIDs.
- Nodes know weights of incident edges.
- Nodes know n (use this just for termination).
- Required:
- Shortest-paths tree, giving shortest path from i_{0} to every other node.
- Shortest path = path with minimum total weight.
- Each node should output:
- Its weighted distance from i_{0}, and
- Its parent on a shortest path from i_{0}.

Shortest paths

Shortest paths

Shortest paths algorithm

- Bellman-Ford (adapted from sequential Bellman-Ford algorithm)
- Each process maintains:
- dist, shortest distance it knows about so far, from i_{0}
- parent, its parent in some path with total weight = dist
- round
- Initially:
$-i_{0}$ has dist $=0$, all others have dist $=\infty$.
- Everyone's parent $=\perp$.
- At each round, each process:
- Sends dist to all outnbrs
- Relaxation step:
- Compute new dist $=\min \left(\right.$ dist min $_{j}\left(\right.$ dist $\left.\left._{j}+w_{j i}\right)\right)$.
- If dist decreases then reset parent to the corresponding innbr.
- Stop after $n-1$ rounds.
- Then (claim) each process's dist contains its distance from i_{0}, parent contains the parent on a shortest path from i_{0}.

Next time

- More distributed algorithms for general synchronous networks:
- Shortest paths, Bellman-Ford algorithm, continued
- Minimum spanning tree, Gallager-Humblet-Spira algorithm
- Maximal independent set, Luby's algorithm
- Readings:
- Sections 4.3-4.5.
- [Gallager, Humblet, Spira] (optional)
- [Luby] (optional)
- [Metivier, Robson,...] (optional)

