
6.852: Distributed Algorithms 
Fall, 2015 

Instructor:  Nancy Lynch 
TAs:  Cameron Musco, Katerina Sotiraki 

Course Secretary:  Joanne Hanley  

 



What are Distributed Algorithms? 
• Algorithms that run on networked 

processors, or on multiprocessors that share 
memory. 

• They solve many kinds of problems: 
– Communication 
– Data management 
– Resource management 
– Synchronization 
– Reaching consensus 
– Etc. 

• They work in difficult settings: 
– Concurrent activity at many processing locations 
– Uncertainty of timing, order of events, inputs 
– Failure and recovery of processors, of channels. 

• So they can be complicated: 
– Hard to design 
– Hard to prove correct 
– Hard to analyze 

 

 

 

p1 

p2 

pn 

x1 

x2 



This course 
• A theoretical CS course. 

• Takes a mathematical approach to studying distributed 
algorithms. 

• Q:  What does that mean? 
• Approach: 

– Define models of distributed computing platforms. 
– Define abstract problems to solve in distributed systems. 
– Develop algorithms that solve the problems on the platforms. 
– Analyze their complexity. 
– Try to improve (“optimize”) them. 
– Identify inherent limitations, prove lower bounds and 

impossibility results. 

• Like theory for sequential algs, but more complicated. 
 

 



Distributed algorithms research 

• > 45 years, starting with Dijkstra and Lamport 

• PODC, DISC, SPAA, OPODIS; also ICDCS, STOC, FOCS, SODA,… 

• Abstract problems derived from practice, in networking and 
multiprocessor programming. 

• Static theory: 
– Assumes fixed network or shared-memory setting. 
– Participants, and their configuration, may be generally known. 

• Dynamic theory: 
– Client/server, peer-to-peer, cloud, wireless, mobile ad hoc, robot 

swarms 
– Participants may join, leave, move. 

• Theory for modern multiprocessors: 
– Multicore processors 
– Transactional memory 

 

 

 

 



Administrative info (Handout 1) 
• People and places 
• What is the course about? 
• Prerequisites 

– Math, systems, algorithms 
– Formal models of computation, e.g., automata: 

• Some courses (6.045, 6.840) study general theory of automata. 
• In 6.852, automata are tools, to model algorithms and systems. 
• Necessary, because the algorithms are complicated. 

• Source material 
– Books, papers 

• Course requirements 
– Readings 
– Problem sets 

• Given out every week, due every two weeks 
• Collaboration policy 

– Grading 
– Term projects: 

• Reading, theoretical research, or experimental research 



Topics (Handout 2) 

• Many different model assumptions: 
– Inter-process communication method: 

• Message-passing, shared memory. 

– Timing assumptions: 
• Synchronous (rounds) 
• Asynchronous (arbitrary speeds) 
• Partially synchronous (some timing 

assumptions, e.g., bounds on message 
delay, processor speeds, clock rates) 

– Failures: 
• Processor:  Stopping, Byzantine 
• Communication:  Message loss, duplication; 

Channel failures, recovery 
• Total system state corruption 

• Main organization:  By timing model. 

 

p1 

p2 

pn 

x1 

x2 



Topics 

• Synchronous model:  Classes 1-8.    
– Basic, easy to use for designing algorithms. 
– Not realistic, but sometimes can be emulated in worse-behaved 

networks.  
– Impossibility results for synchronous networks carry over to 

worse networks. 

• Asynchronous:  Classes 9-22.  
– More realistic, but harder to cope with. 

• Partially synchronous:  In between.  Probably won’t have 
time this year… 
 

• Special topics at the end:  Failure detectors, self-
stabilization, biological distributed algorithms. 

 



In more detail… 

• Synchronous networks:  
– Model 
– Leader election (symmetry-breaking) 
– Network searching, spanning trees, Minimum Spanning Trees (MST’s) 
– Maximal Independent Sets (MIS’s), Coloring 
– Processor failures:  Stopping and Byzantine failures 
– Fault-tolerant consensus:  Algorithms and lower bounds 
– Other problems:  Commit, approximate agreement, k-agreement 

• Modeling asynchronous systems (I/O automata) 
• Asynchronous networks, no failures: 

– Models and proofs 
– Leader election, network searching, spanning trees, revisited. 
– Synchronizers (for emulating synchronous algorithms in asynchronous 

networks) 
– Logical time, replicated state machines. 
– Stable property detection (termination, deadlock, snapshots). 

 



In more detail… 

• Asynchronous shared-memory systems, no failures: 
– Models 

– Mutual exclusion algorithms and lower bounds 

– Resource allocation, Dining Philosophers 

• Asynchronous shared-memory systems, with failures: 
– Impossibility of consensus 

– Atomic (linearizable) objects, atomic read/write registers, atomic 
snapshots 

– Wait-free computability; wait-free consensus hierarchy; wait-free vs. 
𝑓-fault-tolerant objects 

• Asynchronous networks, with failures: 
– Asynchronous networks vs. asynchronous shared-memory systems 

– Impossibility of consensus, revisited 

– Paxos consensus algorithm 

 



In more detail… 

• Failure detectors 

• Self-stabilizing algorithms 

• (Partially-synchronous systems and timing-based algorithms: 
– Models and proofs, timed I/O automata 

– Mutual exclusion, consensus 

– Clock synchronization) 

• (Distributed algorithms for dynamic networks: 
– Atomic memory 

– Virtual Nodes 

– Computing functions in dynamic networks) 

• Biological distributed algorithms 
– Social insect colony algorithms:  Foraging, task-allocation, house-

hunting 

 



Supplementary Readings (on line) 

• Other books: 
– [Attiya, Welch], general distributed algorithms 

– [Dolev], self-stabilization 

– [Peleg], local network computation 

– [Kaynar, Lynch, Segala, Vaandrager], interacting automata 
modeling for distributed algorithms/systems 

– Morgan Claypool monograph series on Distributed 
Computing Theory 

• Dijkstra Prize papers, 2000-2015 

• A variety of other interesting papers 

• Also check out proceedings for PODC, DISC, etc. 



Now start the actual course… 

• Rest of today: 

– Synchronous network model 

– Leader election problem, in simple ring networks 

• Reading:  Chapter 2; Sections 3.1-3.5. 

• Next Tuesday:  Sections 3.6, 4.1-4.3 

 

• Questions? 



Synchronous network model 

• Processes at nodes of a digraph, communicate using messages. 
• Digraph:  𝐺 =  (𝑉, 𝐸), 𝑛 =  |𝑉| 

– 𝑜𝑢𝑡𝑛𝑏𝑟𝑠𝑖 , 𝑖𝑛𝑛𝑏𝑟𝑠𝑖  

– 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗), number of hops on shortest path from 𝑖 to 𝑗. 
– 𝑑𝑖𝑎𝑚 =  𝑚𝑎𝑥𝑖𝑗 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗) 

• 𝑀:  Message alphabet, plus ⊥ placeholder 
• For each 𝑖 ∈ 𝑉, a process consisting of : 

– 𝑠𝑡𝑎𝑡𝑒𝑠𝑖 , a nonempty, not necessarily finite, set of states 
– 𝑠𝑡𝑎𝑟𝑡𝑖, a nonempty subset of 𝑠𝑡𝑎𝑡𝑒𝑠𝑖 
– 𝑚𝑠𝑔𝑠𝑖:  𝑠𝑡𝑎𝑡𝑒𝑠𝑖 × 𝑜𝑢𝑡𝑛𝑏𝑟𝑠𝑖 → 𝑀 ∪ ⊥  
– 𝑡𝑟𝑎𝑛𝑠𝑖:  𝑠𝑡𝑎𝑡𝑒𝑠𝑖 × (vectors of 𝑀 ∪ {⊥}) → 𝑠𝑡𝑎𝑡𝑒𝑠𝑖  

• Executes in rounds:   
– Apply 𝑚𝑠𝑔𝑠𝑖  to determine messages to send,  
– Send and collect messages,  
– Apply 𝑡𝑟𝑎𝑛𝑠𝑖 to determine the new state. 

 

 

 



Remarks 

• No restriction on amount of local computation. 

• Deterministic (a simplification). 

• Later, we will consider some complications: 
– Variable start times 

– Failures 

– Random choices 

• Can define “halting states”, but not used as accepting 
states as in traditional automata theory. 

• Inputs and outputs:  Can encode in the states, e.g., in 
special input and output variables. 

 



Executions 

• An execution is a mathematical notion used to 
describe how an algorithm operates. 

• Definition (p. 20): 
– State assignment:  Mapping from process indices to states. 

– Message assignment:  Mapping from ordered pairs of 
process indices to 𝑀 ∪ {⊥}. 

– Execution:  𝐶0, 𝑀1, 𝑁1, 𝐶1, M2, N2, C2, …, 
• 𝐶’s are state assignments. 

• 𝑀’s are message assignments representing messages sent. 

• 𝑁’s are message assignments representing messages received. 

• Infinite sequence, in general. 

 

 



Leader election 

• Network of processes. 

• Want to distinguish exactly one, as the leader. 

• Formally:  Eventually, exactly one process 
should output “leader” (set special 𝑠𝑡𝑎𝑡𝑢𝑠 
variable to “leader”). 

• Motivation:  Leader can take charge of: 
– Communication 

– Coordinating data processing  

– Allocating resources 

– Scheduling tasks 

– Coordinating consensus protocols 

– … 



Simple case:  Ring network 
• Variations: 

– Unidirectional or bidirectional 
– Ring size 𝑛 can be known or unknown 

• Numbered clockwise 
• Processes don’t know the numbers; know 

neighbors by the names “clockwise” and 
“counterclockwise”. 
 

• Theorem 1:  Suppose all processes are 
identical (same sets of states, transition 
functions, etc.).  Then it’s impossible to 
elect a leader, even under the most 
favorable  assumptions (bidirectional 
communication, ring size 𝑛 known to all). 
 

 

1 

2 

3 

1 

2 

3 



Proof of Theorem 1 

• By contradiction.  Assume an algorithm that solves the 
problem. 

• Assume WLOG that each process has exactly one start state (if 
more, we could choose same one for all processes). 

• Then there is exactly one execution, say: 
– 𝐶0, 𝑀1, 𝑁1, 𝐶1, 𝑀2, 𝑁2, 𝐶2, … 

• Prove by induction on the number 𝑟 of completed rounds that 
all processes are in identical states after 𝑟 rounds. 
– Generate the same messages to corresponding neighbors. 
– Receive the same messages. 
– Make the same state changes. 

• Since the algorithm solves the leader election problem, 
someone eventually gets elected. 

• Then everyone gets elected, contradiction. 
 

 



So we need something more… 

• To solve the problem at all, we need something more---
some way of distinguishing the processes. 

• E.g., assume processes have unique identifiers (UIDs), 
which they “know”. 
– Formally, each process starts with its own UID in a special 

state variable. 

• UIDs are elements of some data type, with specified 
operations, e.g.: 
– Abstract totally-ordered set with just (<, =, >) comparisons.  
– Integers with full arithmetic. 

• Different UIDs can appear anywhere in the ring, but 
each can appear only once. 



A basic algorithm  
[LeLann] [Chang, Roberts] 

• Assumes: 
– Unidirectional communication (clockwise) 
– Processes don’t know 𝑛 
– UIDs, comparisons only 

• Idea:   
– Each process sends its UID in a message, to be relayed 

step-by-step around the ring. 
– When process receives a UID, it compares it with its own. 
– If the incoming UID is: 

• Bigger, pass it on. 
• Smaller, discard. 
• Equal, the process declares itself the leader. 

– This algorithm elects the process with the largest UID. 



In terms of our formal model: 

• 𝑀, the message alphabet:  The set of UIDs 
• 𝑠𝑡𝑎𝑡𝑒𝑠𝑖:  Consists of values for three state variables: 

– 𝑢, holds its own UID 
– 𝑠𝑒𝑛𝑑, a UID or , initially its own UID 
– 𝑠𝑡𝑎𝑡𝑢𝑠, one of {? , leader}, initially ? 

• 𝑠𝑡𝑎𝑟𝑡𝑖:  Defined by the initializations. 
• 𝑚𝑠𝑔𝑠𝑖:  Send contents of 𝑠𝑒𝑛𝑑 variable, to clockwise neighbor. 
• 𝑡𝑟𝑎𝑛𝑠𝑖:   

– Defined by pseudocode (p. 28): 
        if incoming =  𝑣, a UID, then 

        case 
              𝑣 >  𝑢:  𝑠𝑒𝑛𝑑 ∶=  𝑣 

      𝑣 =  𝑢:  𝑠𝑡𝑎𝑡𝑢𝑠 ∶= leader 
      𝑣 <  𝑢:  Do nothing. 

        endcase 

– Entire block of code is treated as atomic (performed instantaneously). 



Correctness proof 

• Prove that exactly one process ever gets 
elected leader. 

• More strongly:  

– Let 𝑖𝑚𝑎𝑥 
be the process with the max UID, 𝑢𝑚𝑎𝑥. 

– Prove: 

• 𝑖𝑚𝑎𝑥 outputs “leader” by the end of round 𝑛. 

• No other process ever outputs “leader”. 

 



𝑖𝑚𝑎𝑥 outputs “leader” after 𝑛 rounds 

• Prove using induction on the number of rounds? 
• Requires strengthening the statement, to say something 

about the situation after 𝑟 rounds, 0 ≤ 𝑟 < 𝑛.  
 

• Lemma 2:  For 0 ≤ 𝑟 ≤ 𝑛 − 1, after 𝑟 rounds, the 𝑠𝑒𝑛𝑑 
variable at process (𝑖𝑚𝑎𝑥 +  𝑟) 𝑚𝑜𝑑 𝑛 contains 𝑢𝑚𝑎𝑥. 

• That is, 𝑢𝑚𝑎𝑥 makes its way systematically around the ring. 
• Proof :   

– Induction on 𝑟. 
– Base:  By the initialization. 
– Inductive step:   Because everyone else lets 𝑢𝑚𝑎𝑥 pass through. 

 

• Use Lemma 2 for 𝑟 =  𝑛 − 1, and a little argument about the 
𝑛𝑡ℎ round to show that the correct output happens. 
– When 𝑢𝑚𝑎𝑥 arrives at 𝑖𝑚𝑎𝑥 , 𝑖𝑚𝑎𝑥 

sets its 𝑠𝑡𝑎𝑡𝑢𝑠 to leader. 



Uniqueness 

• No one except 𝑖𝑚𝑎𝑥 ever outputs “leader”. 

• Again, strengthen claim: 

• Lemma 3:  For any 𝑟 ≥ 0, after 𝑟 rounds, if 𝑖  𝑖𝑚𝑎𝑥 and 𝑗 is any 
process in the interval [𝑖𝑚𝑎𝑥, 𝑖), then 𝑗’s 𝑠𝑒𝑛𝑑 doesn’t contain 𝑢𝑖. 

• Thus, 𝑢𝑖 doesn’t get past 𝑖𝑚𝑎𝑥 
when moving around the ring. 

imax 

i 

j 

• Proof: 
– Induction on 𝑟. 
– Key fact:  𝑖𝑚𝑎𝑥 discards 𝑢𝑖 (if it hasn’t already 

been discarded). 
 

• Use Lemma 3 to show that no one except 
𝑖𝑚𝑎𝑥 ever receives its own UID, so no one 
else ever elects itself. 



Invariant proofs 

• Lemmas 2 and 3 are examples of invariants---properties that are true in 
all reachable states.  

• Another invariant:  If 𝑟 =  𝑛 then the 𝑠𝑡𝑎𝑡𝑢𝑠 variable of 𝑖𝑚𝑎𝑥 = leader. 
• Usually proved by induction on the number of steps in an execution. 

– Usually need to strengthen them, to prove them by induction. 
– Inductive step requires case analysis. 

• In this class: 
– We’ll outline key steps of invariant proofs, not present all details. 
– We’ll assume you could fill in the details if necessary.  
– You should work out at least a few examples in detail. 

• Invariant proofs are overkill for this simple example, but:  
– Similar proofs work for much harder synchronous algorithms. 
– Also for asynchronous algorithms, and partially synchronous algorithms. 
– The properties, and proofs, are more subtle in those settings.  

• Invariants are the most useful tool for proving properties of distributed 
algorithms. 



Complexity bounds 

• What to measure? 
– Time = number of rounds until “leader”:   𝑛 

– Communication = number of single-hop messages:   𝑛2 

• Variations: 
– Non-leaders announce “non-leader”:   

• Any process announces “non-leader” as soon as it sees a UID higher than its 
own. 

• No extra costs. 

– Everyone announces who the leader is: 
• At end of 𝑛 rounds, everyone knows the max. 

– No extra costs. 

– Relies on synchrony and knowledge of 𝑛. 

• Or, leader sends a special “report” message around the ring. 

– Total time:   2𝑛 

– Communication:   𝑛2 
+  𝑛 

– Doesn’t rely on synchrony or knowledge of 𝑛. 



Halting 

• Formally:  Add halt states, special “looping” states 
from which all transitions leave the state unchanged, 
and that generate no messages. 

• For all problem variations: 
– Can halt after 𝑛 rounds. 

• Depends on synchrony and knowledge of 𝑛. 

– Or, halt after receiving leader’s “report” message. 
• Does not depend on synchrony or knowledge of 𝑛 

• Q:  Can a process just halt (for the basic problem) 
after it sees and relays some UID larger than its own? 

• No---it must stay alive to relay later messages. 
 



Reducing the communication complexity 
[Hirschberg, Sinclair] 

• 𝑂(𝑛 log 𝑛), rather than 𝑂(𝑛2) 
• Assumptions: 

– Bidirectional communication 
– Ring size not known. 
– UIDs with comparisons only 

• Idea:   
– Successive doubling strategy 

• Used in many distributed algorithms where network size is unknown. 
– Each process sends a UID token in both directions, to successively greater 

distances (double each time). 
– Going outbound:  Token is discarded if it reaches a node whose UID is 

bigger. 
– Going inbound:  Everyone passes the token back. 
– Process begins next phase only if/when it gets both its tokens back. 
– Process that gets its own token in outbound direction, elects itself the 

leader.   



In terms of formal model: 

• Needs local process description. 

• Involves bookkeeping, with hop counts. 

• LTTR (p. 33) 



Complexity bounds 

• Time:  

– Worse than [LCR] but still 𝑂(𝑛). 

– Time for each phase is twice the previous, so total 
time is dominated by last complete phase 
(geometric series). 

– Last phase is 𝑂(𝑛), so total is also. 



Communication bound:  𝑂(𝑛 log 𝑛) 

• 1 + ⌈log 𝑛⌉ phases, numbered 0,1,2, … 
• Phase 0:  All send messages one hop both ways,  4𝑛 messages. 
• Phase 𝑘 >  0:   

– Within any block of 2𝑘-1 + 1 consecutive processes, at most one is still 
alive at the start of phase 𝑘. 
• Others’ tokens discarded in earlier phases, stop participating. 

– So at most ⌊𝑛 / (2𝑘-1 + 1) ⌋ start phase 𝑘. 
– Total number of messages at phase 𝑘  4 (2𝑘⌊𝑛 / (2𝑘−1 + 1) ⌋ )  8𝑛 
 
 
 
 
 
 

• So total communication  8 𝑛 (1 +  log 𝑛 )  =  𝑂(𝑛 log 𝑛) 
 

Out and back,  
both directions 

Distance 



Non-comparison-based algorithms 

• Q:  Can we improve on worst-case 𝑂(𝑛 log 𝑛) messages to elect 
a leader in a ring, if UIDs can be manipulated using arithmetic? 

• Yes, easily! 
• Consider case where: 

– 𝑛 is known, 
– Ring is unidirectional, 
– UIDs are positive integers, allowing arithmetic. 

• Algorithm: 
– Phases 1,2,3, … , each consisting of 𝑛 rounds 
– Phase 𝑘  

• Devoted to UID 𝑘. 
• If process has UID 𝑘, circulates it at beginning of phase 𝑘. 
• Others who receive it pass it on, then become passive (or halt). 

• Elects min. 



Complexity bounds 

• Communication:   
– Just 𝑛 (one-hop) messages 

• Time: 
– 𝑢𝑚𝑖𝑛 

𝑛 
– Practical only if the UIDs are small integers. 

 

• Q: What if 𝑛 is unknown? 
• Can still get 𝑂(𝑛) messages, though now the time is even worse:  

𝑂(2𝑢𝑚𝑖𝑛 
𝑛). 

– VariableSpeeds algorithm, Section 3.5.2. 
– Different UIDs travel around the ring at different speeds, smaller UIDs 

traveling faster. 
– UID 𝑢 moves one hop every 2𝑢 rounds. 
– Smallest UID gets all the way around before next smallest has gone half-

way, etc. 



Lower bound 

 Q:  Can we get smaller message complexity for 
comparison-based algorithms? 

 Ω(𝑛 log 𝑛) lower bound (next time). 

 Assumptions 

 Comparison-based algorithm, 

 Deterministic, 

 Unique start state (except for UID). 



Comparison-based algorithms 

 All decisions determined only by relative order 
of UIDs: 

 Identical start states, except for UID. 

 Manipulate UIDs only by copying, sending, receiving, 
and comparing them (<, =, >). 

 Can use results of comparisons to decide what to do: 

 State transition 

 What (if anything) to send to neighbors 

 Whether to elect self leader 



Lower bound proof:  Overview 
 For any 𝑛, there is a ring 𝑅𝑛 of size 𝑛 in which any leader 

election algorithm has: 
 Ω(𝑛) “active” rounds (in which messages are sent). 

 Ω(𝑛 / 𝑖) messages sent in the 𝑖𝑡ℎ active round. 

 Therefore, Ω(𝑛 log 𝑛) messages total. 

 Choose ring 𝑅𝑛 with a great deal of symmetry in ordering 
pattern of UIDs. 

 Key lemma:  Processes whose neighborhoods have the same 
ordering pattern act the same, until information from outside 
their neighborhoods reaches them. 
 Need many active rounds to break symmetry. 

 During those rounds, symmetric processes send together. 

 Details next time (tricky, read ahead, Section 3.6). 



Next time… 

• Lower bound on communication for comparison-based 
leader election algorithms in rings, in detail. 

• Basic computational tasks in general synchronous 
networks: 

– Leader election, breadth-first search, shortest paths, 
broadcast and convergecast. 

• Readings: 

– Sections 3.6, 4.1-4.3. 


