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What are Distributed Algorithms? 
• Algorithms that run on networked 

processors, or on multiprocessors that share 
memory. 

• They solve many kinds of problems: 
– Communication 
– Data management 
– Resource management 
– Synchronization 
– Reaching consensus 
– Etc. 

• They work in difficult settings: 
– Concurrent activity at many processing locations 
– Uncertainty of timing, order of events, inputs 
– Failure and recovery of processors, of channels. 

• So they can be complicated: 
– Hard to design 
– Hard to prove correct 
– Hard to analyze 
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This course 
• A theoretical CS course. 

• Takes a mathematical approach to studying distributed 
algorithms. 

• Q:  What does that mean? 
• Approach: 

– Define models of distributed computing platforms. 
– Define abstract problems to solve in distributed systems. 
– Develop algorithms that solve the problems on the platforms. 
– Analyze their complexity. 
– Try to improve (“optimize”) them. 
– Identify inherent limitations, prove lower bounds and 

impossibility results. 

• Like theory for sequential algs, but more complicated. 
 

 



Distributed algorithms research 

• > 45 years, starting with Dijkstra and Lamport 

• PODC, DISC, SPAA, OPODIS; also ICDCS, STOC, FOCS, SODA,… 

• Abstract problems derived from practice, in networking and 
multiprocessor programming. 

• Static theory: 
– Assumes fixed network or shared-memory setting. 
– Participants, and their configuration, may be generally known. 

• Dynamic theory: 
– Client/server, peer-to-peer, cloud, wireless, mobile ad hoc, robot 

swarms 
– Participants may join, leave, move. 

• Theory for modern multiprocessors: 
– Multicore processors 
– Transactional memory 

 

 

 

 



Administrative info (Handout 1) 
• People and places 
• What is the course about? 
• Prerequisites 

– Math, systems, algorithms 
– Formal models of computation, e.g., automata: 

• Some courses (6.045, 6.840) study general theory of automata. 
• In 6.852, automata are tools, to model algorithms and systems. 
• Necessary, because the algorithms are complicated. 

• Source material 
– Books, papers 

• Course requirements 
– Readings 
– Problem sets 

• Given out every week, due every two weeks 
• Collaboration policy 

– Grading 
– Term projects: 

• Reading, theoretical research, or experimental research 



Topics (Handout 2) 

• Many different model assumptions: 
– Inter-process communication method: 

• Message-passing, shared memory. 

– Timing assumptions: 
• Synchronous (rounds) 
• Asynchronous (arbitrary speeds) 
• Partially synchronous (some timing 

assumptions, e.g., bounds on message 
delay, processor speeds, clock rates) 

– Failures: 
• Processor:  Stopping, Byzantine 
• Communication:  Message loss, duplication; 

Channel failures, recovery 
• Total system state corruption 

• Main organization:  By timing model. 
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Topics 

• Synchronous model:  Classes 1-8.    
– Basic, easy to use for designing algorithms. 
– Not realistic, but sometimes can be emulated in worse-behaved 

networks.  
– Impossibility results for synchronous networks carry over to 

worse networks. 

• Asynchronous:  Classes 9-22.  
– More realistic, but harder to cope with. 

• Partially synchronous:  In between.  Probably won’t have 
time this year… 
 

• Special topics at the end:  Failure detectors, self-
stabilization, biological distributed algorithms. 

 



In more detail… 

• Synchronous networks:  
– Model 
– Leader election (symmetry-breaking) 
– Network searching, spanning trees, Minimum Spanning Trees (MST’s) 
– Maximal Independent Sets (MIS’s), Coloring 
– Processor failures:  Stopping and Byzantine failures 
– Fault-tolerant consensus:  Algorithms and lower bounds 
– Other problems:  Commit, approximate agreement, k-agreement 

• Modeling asynchronous systems (I/O automata) 
• Asynchronous networks, no failures: 

– Models and proofs 
– Leader election, network searching, spanning trees, revisited. 
– Synchronizers (for emulating synchronous algorithms in asynchronous 

networks) 
– Logical time, replicated state machines. 
– Stable property detection (termination, deadlock, snapshots). 

 



In more detail… 

• Asynchronous shared-memory systems, no failures: 
– Models 

– Mutual exclusion algorithms and lower bounds 

– Resource allocation, Dining Philosophers 

• Asynchronous shared-memory systems, with failures: 
– Impossibility of consensus 

– Atomic (linearizable) objects, atomic read/write registers, atomic 
snapshots 

– Wait-free computability; wait-free consensus hierarchy; wait-free vs. 
𝑓-fault-tolerant objects 

• Asynchronous networks, with failures: 
– Asynchronous networks vs. asynchronous shared-memory systems 

– Impossibility of consensus, revisited 

– Paxos consensus algorithm 

 



In more detail… 

• Failure detectors 

• Self-stabilizing algorithms 

• (Partially-synchronous systems and timing-based algorithms: 
– Models and proofs, timed I/O automata 

– Mutual exclusion, consensus 

– Clock synchronization) 

• (Distributed algorithms for dynamic networks: 
– Atomic memory 

– Virtual Nodes 

– Computing functions in dynamic networks) 

• Biological distributed algorithms 
– Social insect colony algorithms:  Foraging, task-allocation, house-

hunting 

 



Supplementary Readings (on line) 

• Other books: 
– [Attiya, Welch], general distributed algorithms 

– [Dolev], self-stabilization 

– [Peleg], local network computation 

– [Kaynar, Lynch, Segala, Vaandrager], interacting automata 
modeling for distributed algorithms/systems 

– Morgan Claypool monograph series on Distributed 
Computing Theory 

• Dijkstra Prize papers, 2000-2015 

• A variety of other interesting papers 

• Also check out proceedings for PODC, DISC, etc. 



Now start the actual course… 

• Rest of today: 

– Synchronous network model 

– Leader election problem, in simple ring networks 

• Reading:  Chapter 2; Sections 3.1-3.5. 

• Next Tuesday:  Sections 3.6, 4.1-4.3 

 

• Questions? 



Synchronous network model 

• Processes at nodes of a digraph, communicate using messages. 
• Digraph:  𝐺 =  (𝑉, 𝐸), 𝑛 =  |𝑉| 

– 𝑜𝑢𝑡𝑛𝑏𝑟𝑠𝑖 , 𝑖𝑛𝑛𝑏𝑟𝑠𝑖  

– 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗), number of hops on shortest path from 𝑖 to 𝑗. 
– 𝑑𝑖𝑎𝑚 =  𝑚𝑎𝑥𝑖𝑗 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗) 

• 𝑀:  Message alphabet, plus ⊥ placeholder 
• For each 𝑖 ∈ 𝑉, a process consisting of : 

– 𝑠𝑡𝑎𝑡𝑒𝑠𝑖 , a nonempty, not necessarily finite, set of states 
– 𝑠𝑡𝑎𝑟𝑡𝑖, a nonempty subset of 𝑠𝑡𝑎𝑡𝑒𝑠𝑖 
– 𝑚𝑠𝑔𝑠𝑖:  𝑠𝑡𝑎𝑡𝑒𝑠𝑖 × 𝑜𝑢𝑡𝑛𝑏𝑟𝑠𝑖 → 𝑀 ∪ ⊥  
– 𝑡𝑟𝑎𝑛𝑠𝑖:  𝑠𝑡𝑎𝑡𝑒𝑠𝑖 × (vectors of 𝑀 ∪ {⊥}) → 𝑠𝑡𝑎𝑡𝑒𝑠𝑖  

• Executes in rounds:   
– Apply 𝑚𝑠𝑔𝑠𝑖  to determine messages to send,  
– Send and collect messages,  
– Apply 𝑡𝑟𝑎𝑛𝑠𝑖 to determine the new state. 

 

 

 



Remarks 

• No restriction on amount of local computation. 

• Deterministic (a simplification). 

• Later, we will consider some complications: 
– Variable start times 

– Failures 

– Random choices 

• Can define “halting states”, but not used as accepting 
states as in traditional automata theory. 

• Inputs and outputs:  Can encode in the states, e.g., in 
special input and output variables. 

 



Executions 

• An execution is a mathematical notion used to 
describe how an algorithm operates. 

• Definition (p. 20): 
– State assignment:  Mapping from process indices to states. 

– Message assignment:  Mapping from ordered pairs of 
process indices to 𝑀 ∪ {⊥}. 

– Execution:  𝐶0, 𝑀1, 𝑁1, 𝐶1, M2, N2, C2, …, 
• 𝐶’s are state assignments. 

• 𝑀’s are message assignments representing messages sent. 

• 𝑁’s are message assignments representing messages received. 

• Infinite sequence, in general. 

 

 



Leader election 

• Network of processes. 

• Want to distinguish exactly one, as the leader. 

• Formally:  Eventually, exactly one process 
should output “leader” (set special 𝑠𝑡𝑎𝑡𝑢𝑠 
variable to “leader”). 

• Motivation:  Leader can take charge of: 
– Communication 

– Coordinating data processing  

– Allocating resources 

– Scheduling tasks 

– Coordinating consensus protocols 

– … 



Simple case:  Ring network 
• Variations: 

– Unidirectional or bidirectional 
– Ring size 𝑛 can be known or unknown 

• Numbered clockwise 
• Processes don’t know the numbers; know 

neighbors by the names “clockwise” and 
“counterclockwise”. 
 

• Theorem 1:  Suppose all processes are 
identical (same sets of states, transition 
functions, etc.).  Then it’s impossible to 
elect a leader, even under the most 
favorable  assumptions (bidirectional 
communication, ring size 𝑛 known to all). 
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Proof of Theorem 1 

• By contradiction.  Assume an algorithm that solves the 
problem. 

• Assume WLOG that each process has exactly one start state (if 
more, we could choose same one for all processes). 

• Then there is exactly one execution, say: 
– 𝐶0, 𝑀1, 𝑁1, 𝐶1, 𝑀2, 𝑁2, 𝐶2, … 

• Prove by induction on the number 𝑟 of completed rounds that 
all processes are in identical states after 𝑟 rounds. 
– Generate the same messages to corresponding neighbors. 
– Receive the same messages. 
– Make the same state changes. 

• Since the algorithm solves the leader election problem, 
someone eventually gets elected. 

• Then everyone gets elected, contradiction. 
 

 



So we need something more… 

• To solve the problem at all, we need something more---
some way of distinguishing the processes. 

• E.g., assume processes have unique identifiers (UIDs), 
which they “know”. 
– Formally, each process starts with its own UID in a special 

state variable. 

• UIDs are elements of some data type, with specified 
operations, e.g.: 
– Abstract totally-ordered set with just (<, =, >) comparisons.  
– Integers with full arithmetic. 

• Different UIDs can appear anywhere in the ring, but 
each can appear only once. 



A basic algorithm  
[LeLann] [Chang, Roberts] 

• Assumes: 
– Unidirectional communication (clockwise) 
– Processes don’t know 𝑛 
– UIDs, comparisons only 

• Idea:   
– Each process sends its UID in a message, to be relayed 

step-by-step around the ring. 
– When process receives a UID, it compares it with its own. 
– If the incoming UID is: 

• Bigger, pass it on. 
• Smaller, discard. 
• Equal, the process declares itself the leader. 

– This algorithm elects the process with the largest UID. 



In terms of our formal model: 

• 𝑀, the message alphabet:  The set of UIDs 
• 𝑠𝑡𝑎𝑡𝑒𝑠𝑖:  Consists of values for three state variables: 

– 𝑢, holds its own UID 
– 𝑠𝑒𝑛𝑑, a UID or , initially its own UID 
– 𝑠𝑡𝑎𝑡𝑢𝑠, one of {? , leader}, initially ? 

• 𝑠𝑡𝑎𝑟𝑡𝑖:  Defined by the initializations. 
• 𝑚𝑠𝑔𝑠𝑖:  Send contents of 𝑠𝑒𝑛𝑑 variable, to clockwise neighbor. 
• 𝑡𝑟𝑎𝑛𝑠𝑖:   

– Defined by pseudocode (p. 28): 
        if incoming =  𝑣, a UID, then 

        case 
              𝑣 >  𝑢:  𝑠𝑒𝑛𝑑 ∶=  𝑣 

      𝑣 =  𝑢:  𝑠𝑡𝑎𝑡𝑢𝑠 ∶= leader 
      𝑣 <  𝑢:  Do nothing. 

        endcase 

– Entire block of code is treated as atomic (performed instantaneously). 



Correctness proof 

• Prove that exactly one process ever gets 
elected leader. 

• More strongly:  

– Let 𝑖𝑚𝑎𝑥 
be the process with the max UID, 𝑢𝑚𝑎𝑥. 

– Prove: 

• 𝑖𝑚𝑎𝑥 outputs “leader” by the end of round 𝑛. 

• No other process ever outputs “leader”. 

 



𝑖𝑚𝑎𝑥 outputs “leader” after 𝑛 rounds 

• Prove using induction on the number of rounds? 
• Requires strengthening the statement, to say something 

about the situation after 𝑟 rounds, 0 ≤ 𝑟 < 𝑛.  
 

• Lemma 2:  For 0 ≤ 𝑟 ≤ 𝑛 − 1, after 𝑟 rounds, the 𝑠𝑒𝑛𝑑 
variable at process (𝑖𝑚𝑎𝑥 +  𝑟) 𝑚𝑜𝑑 𝑛 contains 𝑢𝑚𝑎𝑥. 

• That is, 𝑢𝑚𝑎𝑥 makes its way systematically around the ring. 
• Proof :   

– Induction on 𝑟. 
– Base:  By the initialization. 
– Inductive step:   Because everyone else lets 𝑢𝑚𝑎𝑥 pass through. 

 

• Use Lemma 2 for 𝑟 =  𝑛 − 1, and a little argument about the 
𝑛𝑡ℎ round to show that the correct output happens. 
– When 𝑢𝑚𝑎𝑥 arrives at 𝑖𝑚𝑎𝑥 , 𝑖𝑚𝑎𝑥 

sets its 𝑠𝑡𝑎𝑡𝑢𝑠 to leader. 



Uniqueness 

• No one except 𝑖𝑚𝑎𝑥 ever outputs “leader”. 

• Again, strengthen claim: 

• Lemma 3:  For any 𝑟 ≥ 0, after 𝑟 rounds, if 𝑖  𝑖𝑚𝑎𝑥 and 𝑗 is any 
process in the interval [𝑖𝑚𝑎𝑥, 𝑖), then 𝑗’s 𝑠𝑒𝑛𝑑 doesn’t contain 𝑢𝑖. 

• Thus, 𝑢𝑖 doesn’t get past 𝑖𝑚𝑎𝑥 
when moving around the ring. 
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• Proof: 
– Induction on 𝑟. 
– Key fact:  𝑖𝑚𝑎𝑥 discards 𝑢𝑖 (if it hasn’t already 

been discarded). 
 

• Use Lemma 3 to show that no one except 
𝑖𝑚𝑎𝑥 ever receives its own UID, so no one 
else ever elects itself. 



Invariant proofs 

• Lemmas 2 and 3 are examples of invariants---properties that are true in 
all reachable states.  

• Another invariant:  If 𝑟 =  𝑛 then the 𝑠𝑡𝑎𝑡𝑢𝑠 variable of 𝑖𝑚𝑎𝑥 = leader. 
• Usually proved by induction on the number of steps in an execution. 

– Usually need to strengthen them, to prove them by induction. 
– Inductive step requires case analysis. 

• In this class: 
– We’ll outline key steps of invariant proofs, not present all details. 
– We’ll assume you could fill in the details if necessary.  
– You should work out at least a few examples in detail. 

• Invariant proofs are overkill for this simple example, but:  
– Similar proofs work for much harder synchronous algorithms. 
– Also for asynchronous algorithms, and partially synchronous algorithms. 
– The properties, and proofs, are more subtle in those settings.  

• Invariants are the most useful tool for proving properties of distributed 
algorithms. 



Complexity bounds 

• What to measure? 
– Time = number of rounds until “leader”:   𝑛 

– Communication = number of single-hop messages:   𝑛2 

• Variations: 
– Non-leaders announce “non-leader”:   

• Any process announces “non-leader” as soon as it sees a UID higher than its 
own. 

• No extra costs. 

– Everyone announces who the leader is: 
• At end of 𝑛 rounds, everyone knows the max. 

– No extra costs. 

– Relies on synchrony and knowledge of 𝑛. 

• Or, leader sends a special “report” message around the ring. 

– Total time:   2𝑛 

– Communication:   𝑛2 
+  𝑛 

– Doesn’t rely on synchrony or knowledge of 𝑛. 



Halting 

• Formally:  Add halt states, special “looping” states 
from which all transitions leave the state unchanged, 
and that generate no messages. 

• For all problem variations: 
– Can halt after 𝑛 rounds. 

• Depends on synchrony and knowledge of 𝑛. 

– Or, halt after receiving leader’s “report” message. 
• Does not depend on synchrony or knowledge of 𝑛 

• Q:  Can a process just halt (for the basic problem) 
after it sees and relays some UID larger than its own? 

• No---it must stay alive to relay later messages. 
 



Reducing the communication complexity 
[Hirschberg, Sinclair] 

• 𝑂(𝑛 log 𝑛), rather than 𝑂(𝑛2) 
• Assumptions: 

– Bidirectional communication 
– Ring size not known. 
– UIDs with comparisons only 

• Idea:   
– Successive doubling strategy 

• Used in many distributed algorithms where network size is unknown. 
– Each process sends a UID token in both directions, to successively greater 

distances (double each time). 
– Going outbound:  Token is discarded if it reaches a node whose UID is 

bigger. 
– Going inbound:  Everyone passes the token back. 
– Process begins next phase only if/when it gets both its tokens back. 
– Process that gets its own token in outbound direction, elects itself the 

leader.   



In terms of formal model: 

• Needs local process description. 

• Involves bookkeeping, with hop counts. 

• LTTR (p. 33) 



Complexity bounds 

• Time:  

– Worse than [LCR] but still 𝑂(𝑛). 

– Time for each phase is twice the previous, so total 
time is dominated by last complete phase 
(geometric series). 

– Last phase is 𝑂(𝑛), so total is also. 



Communication bound:  𝑂(𝑛 log 𝑛) 

• 1 + ⌈log 𝑛⌉ phases, numbered 0,1,2, … 
• Phase 0:  All send messages one hop both ways,  4𝑛 messages. 
• Phase 𝑘 >  0:   

– Within any block of 2𝑘-1 + 1 consecutive processes, at most one is still 
alive at the start of phase 𝑘. 
• Others’ tokens discarded in earlier phases, stop participating. 

– So at most ⌊𝑛 / (2𝑘-1 + 1) ⌋ start phase 𝑘. 
– Total number of messages at phase 𝑘  4 (2𝑘⌊𝑛 / (2𝑘−1 + 1) ⌋ )  8𝑛 
 
 
 
 
 
 

• So total communication  8 𝑛 (1 +  log 𝑛 )  =  𝑂(𝑛 log 𝑛) 
 

Out and back,  
both directions 

Distance 



Non-comparison-based algorithms 

• Q:  Can we improve on worst-case 𝑂(𝑛 log 𝑛) messages to elect 
a leader in a ring, if UIDs can be manipulated using arithmetic? 

• Yes, easily! 
• Consider case where: 

– 𝑛 is known, 
– Ring is unidirectional, 
– UIDs are positive integers, allowing arithmetic. 

• Algorithm: 
– Phases 1,2,3, … , each consisting of 𝑛 rounds 
– Phase 𝑘  

• Devoted to UID 𝑘. 
• If process has UID 𝑘, circulates it at beginning of phase 𝑘. 
• Others who receive it pass it on, then become passive (or halt). 

• Elects min. 



Complexity bounds 

• Communication:   
– Just 𝑛 (one-hop) messages 

• Time: 
– 𝑢𝑚𝑖𝑛 

𝑛 
– Practical only if the UIDs are small integers. 

 

• Q: What if 𝑛 is unknown? 
• Can still get 𝑂(𝑛) messages, though now the time is even worse:  

𝑂(2𝑢𝑚𝑖𝑛 
𝑛). 

– VariableSpeeds algorithm, Section 3.5.2. 
– Different UIDs travel around the ring at different speeds, smaller UIDs 

traveling faster. 
– UID 𝑢 moves one hop every 2𝑢 rounds. 
– Smallest UID gets all the way around before next smallest has gone half-

way, etc. 



Lower bound 

 Q:  Can we get smaller message complexity for 
comparison-based algorithms? 

 Ω(𝑛 log 𝑛) lower bound (next time). 

 Assumptions 

 Comparison-based algorithm, 

 Deterministic, 

 Unique start state (except for UID). 



Comparison-based algorithms 

 All decisions determined only by relative order 
of UIDs: 

 Identical start states, except for UID. 

 Manipulate UIDs only by copying, sending, receiving, 
and comparing them (<, =, >). 

 Can use results of comparisons to decide what to do: 

 State transition 

 What (if anything) to send to neighbors 

 Whether to elect self leader 



Lower bound proof:  Overview 
 For any 𝑛, there is a ring 𝑅𝑛 of size 𝑛 in which any leader 

election algorithm has: 
 Ω(𝑛) “active” rounds (in which messages are sent). 

 Ω(𝑛 / 𝑖) messages sent in the 𝑖𝑡ℎ active round. 

 Therefore, Ω(𝑛 log 𝑛) messages total. 

 Choose ring 𝑅𝑛 with a great deal of symmetry in ordering 
pattern of UIDs. 

 Key lemma:  Processes whose neighborhoods have the same 
ordering pattern act the same, until information from outside 
their neighborhoods reaches them. 
 Need many active rounds to break symmetry. 

 During those rounds, symmetric processes send together. 

 Details next time (tricky, read ahead, Section 3.6). 



Next time… 

• Lower bound on communication for comparison-based 
leader election algorithms in rings, in detail. 

• Basic computational tasks in general synchronous 
networks: 

– Leader election, breadth-first search, shortest paths, 
broadcast and convergecast. 

• Readings: 

– Sections 3.6, 4.1-4.3. 


