6.852: Distributed Algorithms Fall, 2015

Instructor: Nancy Lynch TAs: Cameron Musco, Katerina Sotiraki Course Secretary: Joanne Hanley

What are Distributed Algorithms?

- Algorithms that run on networked processors, or on multiprocessors that share memory.
- They solve many kinds of problems:
 - Communication
 - Data management
 - Resource management
 - Synchronization
 - Reaching consensus
 - Etc.
- They work in difficult settings:
 - Concurrent activity at many processing locations
 - Uncertainty of timing, order of events, inputs
 - Failure and recovery of processors, of channels.
- So they can be complicated:
 - Hard to design
 - Hard to prove correct
 - Hard to analyze

This course

- A theoretical CS course.
- Takes a mathematical approach to studying distributed algorithms.
- Q: What does that mean?
- Approach:
 - Define models of distributed computing platforms.
 - Define abstract problems to solve in distributed systems.
 - Develop algorithms that solve the problems on the platforms.
 - Analyze their complexity.
 - Try to improve ("optimize") them.
 - Identify inherent limitations, prove lower bounds and impossibility results.
- Like theory for sequential algs, but more complicated.

Distributed algorithms research

- > 45 years, starting with Dijkstra and Lamport
- PODC, DISC, SPAA, OPODIS; also ICDCS, STOC, FOCS, SODA,...
- Abstract problems derived from practice, in networking and multiprocessor programming.
- Static theory:
 - Assumes fixed network or shared-memory setting.
 - Participants, and their configuration, may be generally known.
- Dynamic theory:
 - Client/server, peer-to-peer, cloud, wireless, mobile ad hoc, robot swarms
 - Participants may join, leave, move.
- Theory for modern multiprocessors:
 - Multicore processors
 - Transactional memory

Administrative info (Handout 1)

- People and places
- What is the course about?
- Prerequisites
 - Math, systems, algorithms
 - Formal models of computation, e.g., automata:
 - Some courses (6.045, 6.840) study general theory of automata.
 - In 6.852, automata are tools, to model algorithms and systems.
 - Necessary, because the algorithms are complicated.
- Source material
 - Books, papers
- Course requirements
 - Readings
 - Problem sets
 - Given out every week, due every two weeks
 - Collaboration policy
 - Grading
 - Term projects:
 - Reading, theoretical research, or experimental research

Topics (Handout 2)

- Many different model assumptions:
 - Inter-process communication method:
 - Message-passing, shared memory.
 - Timing assumptions:
 - Synchronous (rounds)
 - Asynchronous (arbitrary speeds)
 - Partially synchronous (some timing assumptions, e.g., bounds on message delay, processor speeds, clock rates)

- Failures:

- Processor: Stopping, Byzantine
- Communication: Message loss, duplication; Channel failures, recovery
- Total system state corruption
- Main organization: By timing model.

Topics

- Synchronous model: Classes 1-8.
 - Basic, easy to use for designing algorithms.
 - Not realistic, but sometimes can be emulated in worse-behaved networks.
 - Impossibility results for synchronous networks carry over to worse networks.
- Asynchronous: Classes 9-22.
 - More realistic, but harder to cope with.
- Partially synchronous: In between. Probably won't have time this year...
- Special topics at the end: Failure detectors, selfstabilization, biological distributed algorithms.

In more detail...

- Synchronous networks:
 - Model
 - Leader election (symmetry-breaking)
 - Network searching, spanning trees, Minimum Spanning Trees (MST's)
 - Maximal Independent Sets (MIS's), Coloring
 - Processor failures: Stopping and Byzantine failures
 - Fault-tolerant consensus: Algorithms and lower bounds
 - Other problems: Commit, approximate agreement, k-agreement
- Modeling asynchronous systems (I/O automata)
- Asynchronous networks, no failures:
 - Models and proofs
 - Leader election, network searching, spanning trees, revisited.
 - Synchronizers (for emulating synchronous algorithms in asynchronous networks)
 - Logical time, replicated state machines.
 - Stable property detection (termination, deadlock, snapshots).

In more detail...

- Asynchronous shared-memory systems, no failures:
 - Models
 - Mutual exclusion algorithms and lower bounds
 - Resource allocation, Dining Philosophers
- Asynchronous shared-memory systems, with failures:
 - Impossibility of consensus
 - Atomic (linearizable) objects, atomic read/write registers, atomic snapshots
 - Wait-free computability; wait-free consensus hierarchy; wait-free vs.
 f-fault-tolerant objects
- Asynchronous networks, with failures:
 - Asynchronous networks vs. asynchronous shared-memory systems
 - Impossibility of consensus, revisited
 - Paxos consensus algorithm

In more detail...

- Failure detectors
- Self-stabilizing algorithms
- (Partially-synchronous systems and timing-based algorithms:
 - Models and proofs, timed I/O automata
 - Mutual exclusion, consensus
 - Clock synchronization)
- (Distributed algorithms for dynamic networks:
 - Atomic memory
 - Virtual Nodes
 - Computing functions in dynamic networks)
- Biological distributed algorithms
 - Social insect colony algorithms: Foraging, task-allocation, househunting

Supplementary Readings (on line)

- Other books:
 - [Attiya, Welch], general distributed algorithms
 - [Dolev], self-stabilization
 - [Peleg], local network computation
 - [Kaynar, Lynch, Segala, Vaandrager], interacting automata modeling for distributed algorithms/systems
 - Morgan Claypool monograph series on Distributed Computing Theory
- Dijkstra Prize papers, 2000-2015
- A variety of other interesting papers
- Also check out proceedings for PODC, DISC, etc.

Now start the actual course...

- Rest of today:
 - Synchronous network model
 - Leader election problem, in simple ring networks
- Reading: Chapter 2; Sections 3.1-3.5.
- Next Tuesday: Sections 3.6, 4.1-4.3
- Questions?

Synchronous network model

- Processes at nodes of a digraph, communicate using messages.
- Digraph: G = (V, E), n = |V|
 - outnbrs_i, innbrs_i
 - distance(i, j), number of hops on shortest path from i to j.
 - $diam = max_{ij} distance(i, j)$
- *M*: Message alphabet, plus \perp placeholder
- For each $i \in V$, a process consisting of :
 - *states*_i, a nonempty, not necessarily finite, set of states
 - start_i, a nonempty subset of states_i
 - $-\ msgs_i\colon states_i\times outnbrs_i\to M\cup\{\bot\}$
 - trans_i: states_i × (vectors of $M \cup \{\bot\}$) → states_i
- Executes in rounds:
 - Apply msgs_i to determine messages to send,
 - Send and collect messages,
 - Apply *trans*_i to determine the new state.

Remarks

- No restriction on amount of local computation.
- Deterministic (a simplification).
- Later, we will consider some complications:
 - Variable start times
 - Failures
 - Random choices
- Can define "halting states", but not used as accepting states as in traditional automata theory.
- Inputs and outputs: Can encode in the states, e.g., in special input and output variables.

Executions

- An execution is a mathematical notion used to describe how an algorithm operates.
- Definition (p. 20):
 - State assignment: Mapping from process indices to states.
 - Message assignment: Mapping from ordered pairs of process indices to $M \cup \{\bot\}$.
 - Execution: $C_0, M_1, N_1, C_1, M_2, N_2, C_2, ...,$
 - *C*'s are state assignments.
 - *M*'s are message assignments representing messages sent.
 - *N*'s are message assignments representing messages received.
 - Infinite sequence, in general.

Leader election

- Network of processes.
- Want to distinguish exactly one, as the leader.
- Formally: Eventually, exactly one process should output "leader" (set special *status* variable to "leader").
- Motivation: Leader can take charge of:
 - Communication
 - Coordinating data processing
 - Allocating resources
 - Scheduling tasks
 - Coordinating consensus protocols

- ...

Simple case: Ring network

- Variations:
 - Unidirectional or bidirectional
 - Ring size n can be known or unknown
- Numbered clockwise
- Processes don't know the numbers; know neighbors by the names "clockwise" and "counterclockwise".
- Theorem 1: Suppose all processes are identical (same sets of states, transition functions, etc.). Then it's impossible to elect a leader, even under the most favorable assumptions (bidirectional communication, ring size *n* known to all).

Proof of Theorem 1

- By contradiction. Assume an algorithm that solves the problem.
- Assume WLOG that each process has exactly one start state (if more, we could choose same one for all processes).
- Then there is exactly one execution, say:

 $- \ C_0, M_1, N_1, C_1, M_2, N_2, C_2, \dots$

- Prove by induction on the number r of completed rounds that all processes are in identical states after r ounds.
 - Generate the same messages to corresponding neighbors.
 - Receive the same messages.
 - Make the same state changes.
- Since the algorithm solves the leader election problem, someone eventually gets elected.
- Then everyone gets elected, contradiction.

So we need something more...

- To solve the problem at all, we need something more--some way of distinguishing the processes.
- E.g., assume processes have unique identifiers (UIDs), which they "know".
 - Formally, each process starts with its own UID in a special state variable.
- UIDs are elements of some data type, with specified operations, e.g.:
 - Abstract totally-ordered set with just (<, =, >) comparisons.
 - Integers with full arithmetic.
- Different UIDs can appear anywhere in the ring, but each can appear only once.

A basic algorithm [LeLann] [Chang, Roberts]

- Assumes:
 - Unidirectional communication (clockwise)
 - Processes don't know n
 - UIDs, comparisons only
- Idea:
 - Each process sends its UID in a message, to be relayed step-by-step around the ring.
 - When process receives a UID, it compares it with its own.
 - If the incoming UID is:
 - Bigger, pass it on.
 - Smaller, discard.
 - Equal, the process declares itself the leader.
 - This algorithm elects the process with the largest UID.

In terms of our formal model:

- *M*, the message alphabet: The set of UIDs
- *states*_i: Consists of values for three state variables:
 - u, holds its own UID
 - *send*, a UID or \perp , initially its own UID
 - status, one of {?, leader}, initially ?
- *start_i*: Defined by the initializations.
- msgs_i: Send contents of send variable, to clockwise neighbor.

```
• trans<sub>i</sub>:
```

- Defined by pseudocode (p. 28):

```
if incoming = v, a UID, then
```

case

```
v > u: send := v

v = u: status := leader

v < u: Do nothing.

endcase
```

- Entire block of code is treated as atomic (performed instantaneously).

Correctness proof

- Prove that exactly one process ever gets elected leader.
- More strongly:
 - Let i_{max} be the process with the max UID, u_{max} .
 - Prove:
 - i_{max} outputs "leader" by the end of round n.
 - No other process ever outputs "leader".

i_{max} outputs "leader" after n rounds

- Prove using induction on the number of rounds?
- Requires strengthening the statement, to say something about the situation after r rounds, $0 \le r < n$.
- Lemma 2: For $0 \le r \le n 1$, after r rounds, the send variable at process $(i_{max} + r) \mod n$ contains u_{max} .
- That is, u_{max} makes its way systematically around the ring.
- Proof :
 - Induction on r.
 - Base: By the initialization.
 - Inductive step: Because everyone else lets u_{max} pass through.
- Use Lemma 2 for r = n 1, and a little argument about the n^{th} round to show that the correct output happens.
 - When u_{max} arrives at i_{max} , i_{max} sets its *status* to leader.

Uniqueness

- No one except i_{max} ever outputs "leader".
- Again, strengthen claim:
- Lemma 3: For any $r \ge 0$, after r rounds, if $i \ne i_{max}$ and j is any process in the interval $[i_{max}, i)$, then j's send doesn't contain u_i .
- Thus, u_i doesn't get past i_{max} when moving around the ring.
- Proof:
 - Induction on *r*.
 - Key fact: i_{max} discards u_i (if it hasn't already been discarded).
- Use Lemma 3 to show that no one except i_{max} ever receives its own UID, so no one else ever elects itself.

Invariant proofs

- Lemmas 2 and 3 are examples of invariants---properties that are true in all reachable states.
- Another invariant: If r = n then the *status* variable of i_{max} = leader.
- Usually proved by induction on the number of steps in an execution.
 - Usually need to strengthen them, to prove them by induction.
 - Inductive step requires case analysis.
- In this class:
 - We'll outline key steps of invariant proofs, not present all details.
 - We'll assume you could fill in the details if necessary.
 - You should work out at least a few examples in detail.
- Invariant proofs are overkill for this simple example, but:
 - Similar proofs work for much harder synchronous algorithms.
 - Also for asynchronous algorithms, and partially synchronous algorithms.
 - The properties, and proofs, are more subtle in those settings.
- Invariants are the most useful tool for proving properties of distributed algorithms.

Complexity bounds

- What to measure?
 - Time = number of rounds until "leader": n
 - Communication = number of single-hop messages: $\leq n^2$
- Variations:
 - Non-leaders announce "non-leader":
 - Any process announces "non-leader" as soon as it sees a UID higher than its own.
 - No extra costs.
 - Everyone announces who the leader is:
 - At end of *n* rounds, everyone knows the max.
 - No extra costs.
 - Relies on synchrony and knowledge of *n*.
 - Or, leader sends a special "report" message around the ring.
 - Total time: $\leq 2n$
 - Communication: $\leq n^2 + n$
 - Doesn't rely on synchrony or knowledge of n.

Halting

- Formally: Add halt states, special "looping" states from which all transitions leave the state unchanged, and that generate no messages.
- For all problem variations:
 - Can halt after n rounds.
 - Depends on synchrony and knowledge of *n*.
 - Or, halt after receiving leader's "report" message.
 - Does not depend on synchrony or knowledge of \boldsymbol{n}
- Q: Can a process just halt (for the basic problem) after it sees and relays some UID larger than its own?
- No---it must stay alive to relay later messages.

Reducing the communication complexity [Hirschberg, Sinclair]

- $O(n \log n)$, rather than $O(n^2)$
- Assumptions:
 - Bidirectional communication
 - Ring size not known.
 - UIDs with comparisons only
- Idea:
 - Successive doubling strategy

- Each process sends a UID token in both directions, to successively greater distances (double each time).
- Going outbound: Token is discarded if it reaches a node whose UID is bigger.
- Going inbound: Everyone passes the token back.
- Process begins next phase only if/when it gets both its tokens back.
- Process that gets its own token in outbound direction, elects itself the leader.

In terms of formal model:

- Needs local process description.
- Involves bookkeeping, with hop counts.
- LTTR (p. 33)

Complexity bounds

- Time:
 - Worse than [LCR] but still O(n).
 - Time for each phase is twice the previous, so total time is dominated by last complete phase (geometric series).
 - Last phase is O(n), so total is also.

Communication bound: $O(n \log n)$

- 1 + [log *n*] phases, numbered 0,1,2, ...
- Phase 0: All send messages one hop both ways, $\leq 4n$ messages.
- Phase k > 0:
 - Within any block of $2^{k-1} + 1$ consecutive processes, at most one is still alive at the start of phase k.
 - Others' tokens discarded in earlier phases, stop participating.
 - So at most $\lfloor n / (2^{k-1} + 1) \rfloor$ start phase k.
 - Total number of messages at phase $k \le 4 (2^k \lfloor n / (2^{k-1} + 1) \rfloor) \le 8n$

• So total communication $\leq 8 n (1 + \lceil \log n \rceil) = O(n \log n)$

Non-comparison-based algorithms

- Q: Can we improve on worst-case $O(n \log n)$ messages to elect a leader in a ring, if UIDs can be manipulated using arithmetic?
- Yes, easily!
- Consider case where:
 - -n is known,
 - Ring is unidirectional,
 - UIDs are positive integers, allowing arithmetic.
- Algorithm:
 - Phases 1,2,3, ..., each consisting of n rounds
 - Phase k
 - Devoted to UID k.
 - If process has UID k, circulates it at beginning of phase k.
 - Others who receive it pass it on, then become passive (or halt).
- Elects min.

Complexity bounds

- Communication:
 - Just n (one-hop) messages
- Time:
 - $u_{min} n$
 - Practical only if the UIDs are small integers.
- **Q**: What if *n* is unknown?
- Can still get O(n) messages, though now the time is even worse: $O(2^{umin}n)$.
 - VariableSpeeds algorithm, Section 3.5.2.
 - Different UIDs travel around the ring at different speeds, smaller UIDs traveling faster.
 - UID u moves one hop every 2^u rounds.
 - Smallest UID gets all the way around before next smallest has gone halfway, etc.

Lower bound

- Q: Can we get smaller message complexity for comparison-based algorithms?
- $\Omega(n \log n)$ lower bound (next time).
- Assumptions
 - Comparison-based algorithm,
 - Deterministic,
 - Unique start state (except for UID).

Comparison-based algorithms

- All decisions determined only by relative order of UIDs:
 - Identical start states, except for UID.
 - Manipulate UIDs only by copying, sending, receiving, and comparing them (<, =, >).
 - Can use results of comparisons to decide what to do:
 - State transition
 - What (if anything) to send to neighbors
 - Whether to elect self leader

Lower bound proof: Overview

- For any n, there is a ring R_n of size n in which any leader election algorithm has:
 - $\Omega(n)$ "active" rounds (in which messages are sent).
 - $\Omega(n / i)$ messages sent in the i^{th} active round.
 - Therefore, $\Omega(n \log n)$ messages total.
- Choose ring R_n with a great deal of symmetry in ordering pattern of UIDs.
- Key lemma: Processes whose neighborhoods have the same ordering pattern act the same, until information from outside their neighborhoods reaches them.
 - Need many active rounds to break symmetry.
 - During those rounds, symmetric processes send together.
- Details next time (tricky, read ahead, Section 3.6).

Next time...

- Lower bound on communication for comparison-based leader election algorithms in rings, in detail.
- Basic computational tasks in general synchronous networks:
 - Leader election, breadth-first search, shortest paths, broadcast and convergecast.
- Readings:
 - Sections 3.6, 4.1-4.3.