An Introduction to Combinatorial Optimization

Markos Epitropou

National Technical University of Athens

markosepitropou@gmail.com

July 1, 2014

Markos Epitropou (NTUA)

Combinatorial Optimization

July 1, 2014 1 / 21

Image: Image:

2 Matchings

Markos Epitropou (NTUA)

Combinatorial Optimization

July 1, 2014 3 / 21

- 一司

Combinatorial Statement - Example

In a graph, the smallest number of edges in a path between two specified vertices s and t is equal to the maximum number of s - t cuts (i.e. subsets of edges whose removal disconnects s and t).

min
$$c_1^T x_1 + c_2^T x_2 + c_3^T x_3$$

s.t. $A_{11}x_1 + A_{12}x_2 + A_{13}x_3 = b_1$
 $A_{21}x_1 + A_{22}x_2 + A_{23}x_3 \ge b_2$
 $A_{31}x_1 + A_{32}x_2 + A_{33}x_3 \le b_3$
 $x_1 \ge 0$
 $x_2 \le 0$

$$\max b_1^T y_1 + b_2^T y_2 + b_3^T y_3$$
s.t. $A_{11}^T y_1 + A_{21}^T y_2 + A_{31}^T y_3 \le c_1$
 $A_{12}^T y_1 + A_{22}^T y_2 + A_{32}^T y_3 \ge c_2$
 $A_{13}^T y_1 + A_{23}^T y_2 + A_{33}^T y_3 = c_3$
 $y_2 \ge 0$
 $y_3 \le 0$

・ロト ・ 日 ・ ・ ヨ ・ ・

∃ >

Farkas' Lemma

Exactly one of the following is true for the system $Ax = b, x \ge 0$:

- There is x such that $Ax = b, x \ge 0$.
- There is y such that $A^T y \ge 0$ but $b^T y < 0$

The duality gap $c^T x - b^T y$ is a measure of optimality.

Complementary Slackness

Let x^* , (y^*, s^*) be feasible for (P), (D) respectively. The following are equivalent:

x* is an optimal solution to (P) and (y*, s*) is an optimal solution to (D).

2
$$(s^*)^T x^* = 0$$

3
$$x_j^* s_j^* = 0, \ \forall j = 1, \dots, n$$

• if
$$s_j^* > 0$$
 then $x_j^* = 0$

Totally Unimodular Matrix

A matrix A is totally unimodular if every square submatrix has determinant 0, +1, or -1. In particular, this implies that all entries are 0, +1, or -1.

Integer Vertices

If A is totally unimodular and b is an integer vector, then $P = \{x : Ax \le b\}$ has integer vertices. Starting with a dual feasible solution y, the method searches for a primal feasible solution x satisfying the complementary slackness condition with respect to y. If such a primal feasible solution x is found, x and y form a pair of optimum solutions. If no such primal solution is found, the method prescribes a modification of y, after which the method iterates.

- Solve $x' \ge 0, A'x' = b$ (Complementary slackness)
- If no x' exists, there exists y' such that $y'^T A \leq 0$ and $y'^T b > 0$
- Let α the largest real number satisfying $(y_0 + \alpha y')^T A \leq c^T$.

- Max Min Relations
- Defining a polytope with linear inequalities
- Seperation Oracle

Markos Epitropou (NTUA)

Combinatorial Optimization

July 1, 2014 11 / 21

- 一司

König's Theorem

For any bipartite graph G = (V, E), the cardinality of the maximum matching $max_match(G)$ and the cardinality of the minimum vertex cover $min_vc(G)$ are the same.

For all bipartite graphs, the incidence matrix A is totally unimodular.

$$\max\{\mathbf{1}^T x : x \in P_{match(G)}\} = \max\{\mathbf{1}^T x : x \ge 0, \forall v \in V \sum_{e \in \delta(v)} x_e \le 1\} =$$

$$\max\{1^T x : x \ge 0, Ax \le 1\} = \min\{1^T x : y \ge 0, A^T y \ge 1\} = \min\{1^T y : y \ge 0, \forall (u, v) \in Ey_u + y_v \ge 1\}$$

Matching Polytope in Bipartite Graphs

If G is bipartite, the matching polytope is determined by

- $x_e \ge 0$, for each edge e
- $x(\delta(v)) \leq 1$, for each vertex v

Matching Polytope

For any graph G = (V, E), the matching polytope is determined by:

- $x_e \ge 0$, for each edge e
- $x(\delta(v)) \leq 1$, for each vertex v
- $x(E[U]) \leq \lfloor \frac{1}{2} |U| \rfloor$, for each $U \subseteq V$ with |U| odd

Tutte-Berge Formula

For any graph G = (V, E), we have

$$\max_{M} |M| = \min_{U \subseteq V} \frac{1}{2}(|V| + |U| - o(G \setminus U))$$

where $o(G \setminus U)$ is the number of connected components of odd size of $G \setminus U$.

Optimality Conditions

A matching M is maximum if and only if there are no augmenting paths with respect to M.

How can we find *M*-augmenting paths or decide that none exist?

Edmond's Algorithm

b-flow

Given a digraph G, capacities $u : E(G) \to \mathcal{R}_+$, and numbers $b : V(G) \to \mathcal{R}$ with $\sum_{v \in V(G)} b(v) = 0$, a **b-flow** in (G, u) is a function $f : E(G) \to \mathcal{R}_+$ with $f(e) \le u(e)$ for all $e \in E(G)$ and $\sum_{e \in \delta^+(v)} f(e) - \sum_{e \in \delta^-(v)} f(e) = b(v)$ for all $v \in V(G)$.

- Input: A digraph G, capacities $u : E(G) \to \mathcal{R}_+$, numbers $b : V(G) \to \mathcal{R}$ with $\sum_{v \in V(G)} b(v) = 0$, and weights $c : E(G) \to \mathcal{R}$.
- Output: A b-flow f whose cost c(f) = ∑_{e∈E(G)} f(e)c(e) is minimum (if one exists).

・何・ ・ヨト ・ヨト ・ヨ

Problem Formulation

$$\begin{array}{l} \min \ \sum_{e \in E(G)} c(e) x_e \\ \text{s.t.} \ \sum_{e \in \delta^+(v)} x_e - \sum_{e \in \delta^-(v)} x_e = b(v) (v \in V(G)) \\ x_e \leq u(e) \qquad (e \in E(G)) \\ x_e \geq 0 \qquad (e \in E(G)) \end{array}$$

• Circulation: A flow satisfying $\sum_{e \in \delta^+(v)} f(e) - \sum_{e \in \delta^-(v)} f(e) = 0$ for all $v \in V(G)$.

(日) (周) (三) (三)

Flow Decomposition Theorem

Let (G, u, s, t) be a network and let f be an s - t-flow in G. Then there exists a family \mathcal{P} of s - t-paths and a family \mathcal{C} of circuits in G along with weights $h : \mathcal{P} \cup \mathcal{C} \Rightarrow \mathcal{R}_+$ such that $f(e) = \sum_{P \in \mathcal{P} \cup \mathcal{C} : e \in E(P)} h(P)$ for all $e \in E(G)$ and $|\mathcal{P}| + |\mathcal{C}| \le |E(G)|$.

Optimality Conditions

Let (G, u, b, c) be an instance of the MINIMUM COST FLOW PROBLEM. A b-flow f is of minimum cost if and only if it satisfies the negative cycle optimality conditions: namely the residual network G_f contains no negative cost (directed) cycle.

Algorithm:

- Find a b-flow f.
- Find a circuit C in G_f whose mean weight is minimum. If C has nonnegative total weight (or G_f is acyclic) then stop.

Sompute $\gamma = \min_{e \in E(C)} u_f(e)$. Augment f along C by γ . Go to step 2.

How do you implement 1 and 2?