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© Linear Programming
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Combinatorial Statement - Example

In a graph, the smallest number of edges in a path between two specified
vertices s and t is equal to the maximum number of s - t cuts (i.e.
subsets of edges whose removal disconnects s and t).

Primal
Dual
LT
min ¢’ x
max by
st. Ax=>b ATy <
s.t. Cc
x>0 y=
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min clTxl + C2TX2 + C3TX3 max bf)’l + sz)’2 + b3TY3

s.t. Anxt + Aaxe + A1zxz = by st. Al + Ay +ALys < a
Ao1xy + Axaxa + Axzxs > bo ALy + ALyr + Abys >
As1x1 + Aszaxz + Asaxz < bs Al + ALys + ALys = c3
x =0 y2>0
x <0 y3<0
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Farkas' Lemma

Exactly one of the following is true for the system Ax = b, x > 0:
@ There is x such that Ax = b, x > 0.
@ There isy such that ATy >0 but b7y <0

Markos Epitropou (NTUA) Combinatorial Optimization July 1, 2014 6 /21



Complementary Slackness

The duality gap ¢ x — b"y is a measure of optimality.

Complementary Slackness

Let x*, (y*,s*) be feasible for (P), (D) respectively. The following are
equivalent:

@ x* is an optimal solution to (P) and (y*,s*) is an optimal solution to

(D).
(*)TX*:O

Q@ x'sf=0,V=1,.

Q |f5j >Othenxj —O
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Totally Unimodular Matrices

Totally Unimodular Matrix

A matrix A is totally unimodular if every square submatrix has determinant
0, +1, or —1. In particular, this implies that all entries are 0, +1, or —1.

v

Integer Vertices

If A is totally unimodular and b is an integer vector, then
P = {x : Ax < b} has integer vertices.
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Primal - Dual Methods

Starting with a dual feasible solution y, the method searches for a primal
feasible solution x satisfying the complementary slackness condition with
respect to y. If such a primal feasible solution x is found, x and y form a
pair of optimum solutions. If no such primal solution is found, the method
prescribes a modification of y, after which the method iterates.

@ Solve x’ > 0, A’x’ = b (Complementary slackness)
o If no x’ exists, there exists y’ such that y’TA<0and y'"h >0
o Let o the largest real number satisfying (yo +ay’)TA < c'.
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Polyhedral Combinatorics

@ Max - Min Relations
@ Defining a polytope with linear inequalities

@ Seperation Oracle
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© Matchings
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Bipartite Matching

Konig's Theorem

For any bipartite graph G = (V, E), the cardinality of the maximum
matching max_match(G) and the cardinality of the minimum vertex cover
min_vc(G) are the same.
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Bipartite Matching

For all bipartite graphs, the incidence matrix A is totally unimodular.

max{17x: x € Pmatch(6)} = max{17x:x>0,Yve V Z Xe <1} =
ecd(v)

max{17x:x>0,Ax <1} =min{17x:y >0,ATy > 1} =

min{17y :y >0,¥(u,v) € Ey, +y, > 1}
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Matching Polytope

Matching Polytope in Bipartite Graphs

If G is bipartite, the matching polytope is determined by

@ x. > 0, for each edge e
e x(0(v)) <1, for each vertex v
Matching Polytope

For any graph G = (V, E), the matching polytope is determined by:

@ x. > 0, for each edge e
e x(0(v)) <1, for each vertex v
o x(E[U]) < |3|U|], for each U C V with |U]| odd
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Non-bipartite Cardinality Matching

Tutte-Berge Formula

For any graph G = (V, E), we have

max|l\/l| = m

T e R )

I\.)Il—l

where o(G \ U) is the number of connected components of odd size of
G\ U.

Optimality Conditions

A matching M is maximum if and only if there are no augmenting paths
with respect to M.

How can we find M-augmenting paths or decide that none exist?
Edmond’s Algorithm
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© Min Cost Flow Problem
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Problem Formulation

b-flow

Given a digraph G, capacities v : E(G) — R4, and numbers
b:V(G)— Rwith > b(v)=0,ab-flow in (G, u) is a function
veV(G)
f:E(G) = R4 with f(e) < u(e) for all e € E(G) and
> f(e)— >, f(e)=b(v)forall veV(G).

ecdt(v) ecd—(v)

@ Input: A digraph G, capacities u: E(G) — R4, numbers
b:V(G)— R with > b(v)=0, and weights c: E(G) — R.
veV(G)
@ Output: A b-flow f whose cost c(f) = > f(e)c(e) is minimum
ecE(G)
(if one exists).
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Problem Formulation

min Z c(e)xe

s.t.

o Circulation: A flow satisfying

ve V(G).

Markos Epitropou (NTUA)

e€E(G)
Z Xe — Z xe = b(v)(v € V(G))

eedt(v) ecd—(v)

xe < u(e) (e € E(G))

Xe >0 e € E(G))

> f(e) =0 for all

ecs—(v)

>, fle) -

ecédt(v)
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Flow Decomposition Theorem

Flow Decomposition Theorem
Let (G, u,s,t) be a network and let f be an s — t-flow in G. Then there
exists a family P of s — t-paths and a family C of circuits in G along with

weights h: P UC = R4 such that f(e) = > h(P) for all
PEPUC-ecE(P)

e € E(G) and |P| + [C| < |E(G)].
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Optimality Conditions

Optimality Conditions

Let (G, u, b, ¢) be an instance of the MINIMUM COST FLOW
PROBLEM. A b-flow f is of minimum cost if and only if it satisfies the
negative cycle optimality conditions: namely the residual network Gf
contains no negative cost (directed) cycle.
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Minimum Mean Cycle-Cancelling Algorithm

Algorithm:
© Find a b-flow f.

@ Find a circuit C in Gf whose mean weight is minimum. If C has
nonnegative total weight (or G is acyclic) then stop.

© Compute v = néi(nc) ur(e). Augment f along C by 7. Go to step 2.
ec

How do you implement 1 and 27
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