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Secure Distributed Computing

� Several interacting entities (players/agents) that cooperate to achieve
a common goal in the absence of a central authority.

� Players arranged in a communication network.

� Adversarial Behavior: Corrupted players controlled by a central
adversary.

Cope with corruption.
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Agreement in Unreliable Distributed Systems

Two Major (equivalent) variations of the problem [Lamport, Shostak,
Pease 1982].

Broadcast (Byzantine Generals)

The goal is to have some designated player, called the dealer, consistently
send a message to all other players.

Consensus (Byzantine Agreement)

Goal: Make all players agree on the same output value (decision) given
that every player starts with an input value.

If all correct players hold the same input value then the decision is required
to be the same as this input value.

Polynomially equivalent
(for t < n/2, where n number of players, t: number of corruptions).
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Real Broadcast with Corrupted Dealer
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Broadcast in Incomplete Networks
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Broadcast in Incomplete Networks II
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Broadcast in Incomplete Networks III
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Problem Definition

Player Set: V = {v1, v2,⋯, vn}, Corrupted Players Set:T ⊆ V.
Each v ∈ V finally outputs (decides on) a value decision(v).

Broadcast (Byzantine Generals)

Dealer D ∈ V with input value xD.
Π is a Broadcast protocol for V if it
satisfies:

1 (Consistency)
All honest players decide on
the same value decision(v).

2 (Validity)
If D is honest then all honest
players decide on the dealer’s
value xD .

Consensus (Byzantine Agreement)

Every player v ∈ V has an input
value xv. Π is a Consensus protocol
for V if it satisfies:

1 (Consistency)
All honest players decide on the
same value decision(v).

2 (Validity)
If all honest players have the
same input value x then all
honest players decide x .
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Adversary Model
Corruption Type

� Passive: Obtains all internal data of corrupted players.

� Active (Byzantine): Full control of corrupted players.

� Fail-Stop (Fault): Makes corrupted players crash at any time.

� Static/Adaptive/Mobile

Adversary’s Computing Power

� Unlimited

� Computationally Bounded
(to probabilistic polynomial time computations in a security
parameter κ).

t-Threshold Adversary: Can corrupt all player subsets of size at most t.
General Adversary: Characterized by the adversary structure Z which
enumerates all possible subsets of corrupted players.
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Communication Model

Communication Channels
� Authenticated

� Synchronous/Asynchronous
(No deterministic protocol can achieve asynchronous fault-tolerant
Broadcast [FLP85]).

� Complete/Incomplete Communication Networks

Asynchronous Model: Honest players cannot wait for messages from
more than n − t players in each round, where n is the number of players
and t the number of corruptions tolerated.
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Security

Security is defined with respect to a security parameter κ, allowing an
error probability ε that is negligible in function of κ.

� Computational/Cryptographic: Security against a computationally
bounded adversary.

� Unconditional/Information-Theoretic: Security against an
unlimited adversary.

� Perfect Security: Unconditional Security with zero error probability.

Consistently shared data: Typically a PKI.
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Efficiency and Resiliency

Communication round: All players in parallel receive the latest messages
from their neighbors, perform arbitrary local computation and finally send
new messages to their neighbors.

Efficiency and Resiliency

We want to optimize

� Bit/Message Complexity: Total number of bits/messages sent by
all honest players.

� Round Complexity: Maximum number of rounds required by any
honest player.

� Local Computation Complexity: Maximum over the local
computational worst-case complexities of all honest players.

� Resiliency: Number of corrupted players t a protocol can tolerate.

Aris Pagourtzis, Giorgos Panagiotakos, Dimitris Sakavalas Broadcast Basics 11 / 62



Efficiency and Resiliency

Communication round: All players in parallel receive the latest messages
from their neighbors, perform arbitrary local computation and finally send
new messages to their neighbors.

Efficiency and Resiliency

We want to optimize

� Bit/Message Complexity: Total number of bits/messages sent by
all honest players.

� Round Complexity: Maximum number of rounds required by any
honest player.

� Local Computation Complexity: Maximum over the local
computational worst-case complexities of all honest players.

� Resiliency: Number of corrupted players t a protocol can tolerate.

Aris Pagourtzis, Giorgos Panagiotakos, Dimitris Sakavalas Broadcast Basics 11 / 62



Efficiency and Resiliency

Communication round: All players in parallel receive the latest messages
from their neighbors, perform arbitrary local computation and finally send
new messages to their neighbors.

Efficiency and Resiliency

We want to optimize

� Bit/Message Complexity: Total number of bits/messages sent by
all honest players.

� Round Complexity: Maximum number of rounds required by any
honest player.

� Local Computation Complexity: Maximum over the local
computational worst-case complexities of all honest players.

� Resiliency: Number of corrupted players t a protocol can tolerate.

Aris Pagourtzis, Giorgos Panagiotakos, Dimitris Sakavalas Broadcast Basics 11 / 62



Efficiency and Resiliency

Communication round: All players in parallel receive the latest messages
from their neighbors, perform arbitrary local computation and finally send
new messages to their neighbors.

Efficiency and Resiliency

We want to optimize

� Bit/Message Complexity: Total number of bits/messages sent by
all honest players.

� Round Complexity: Maximum number of rounds required by any
honest player.

� Local Computation Complexity: Maximum over the local
computational worst-case complexities of all honest players.

� Resiliency: Number of corrupted players t a protocol can tolerate.

Aris Pagourtzis, Giorgos Panagiotakos, Dimitris Sakavalas Broadcast Basics 11 / 62



Efficiency and Resiliency

Communication round: All players in parallel receive the latest messages
from their neighbors, perform arbitrary local computation and finally send
new messages to their neighbors.

Efficiency and Resiliency

We want to optimize

� Bit/Message Complexity: Total number of bits/messages sent by
all honest players.

� Round Complexity: Maximum number of rounds required by any
honest player.

� Local Computation Complexity: Maximum over the local
computational worst-case complexities of all honest players.

� Resiliency: Number of corrupted players t a protocol can tolerate.

Aris Pagourtzis, Giorgos Panagiotakos, Dimitris Sakavalas Broadcast Basics 11 / 62



Exponential Information
Gathering

Aris Pagourtzis, Giorgos Panagiotakos, Dimitris Sakavalas Broadcast Basics 12 / 62
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EIG Algorithm I - Information Gathering
Information Gathering

Round 1

1 Dealer sends its initial value xD to the n − 1 other players and decides
on xD .

2 Each v stores value xD in the root of treev (treev(D) ∶= xD). A
special default value of ⊥ is stored if the Dealer failed to send a
legitimate value in X .

Round h, 2 ≤ h ≤ t + 1

1 Each v broadcasts the leaves of its round (h − 1) tree.

2 Every v adds a new level to its tree, storing at node D . . .qr the value
that r claims to have stored in node D . . .q in its own treer . Again, ⊥
is used for inappropriate messages.

Intuitively, v stores in node D . . .qr the value that “r says q says . . . the
source said“.
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EIG Algorithm II - Data Conversion
After t + 1 rounds o Information Gathering, each player v computes a the
commonly agreed-upon recursive function resolve() in order to decide.

Resolve Function

(Recursive majority of descendants of node a)
For all a sequences of treev :

resolvev(a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

tree(a) , if a is a leaf;

m , If m is the majority of resolve applied

to the children of a;

⊥ , If a is not a leaf and no majority exists.

Decision

Player v decides on the value resolvev(D).
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Complexity of the EIG Algorithm

Proposition 2.1 (Lamport, Shostak, Pease 1982).

The EIG Algorithm achieves Broadcast in t + 1 rounds provided that
n ≥ 3t + 1

Bit Complexity

For any 1 ≤ h ≤ t + 1, the h-round EIG tree has O(nh−1) leaves, yielding
messages of size O(nh−1) in round h + 1. Thus, BC and LCC grow
exponential in t.

[GM98]: First (t + 1)-round fully polynomial, optimal resilience Broadcast
protocol.
[Coa87]: Binary Consensus can be used to achieve General Consensus with
an overhead of 2 extra rounds and O(n2 ⋅ b) extra communication bits,
where b ∶ maximum length of a message.
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Parameter Lower Bounds
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Threshold Adversary Model
t-Threshold Adversary

Can corrupt all player subsets of size at most t.

Complete Networks

Broadcast Necessary and
Sufficient Condition:
t < n/3 [LSP82]

Incomplete Networks

Broadcast Necessary and Sufficient
Condition [Dol82]:
(t < n/3) AND (t < conn(G)/2)

...

...

G
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Condition [Dol82]:
(t < n/3) AND (t < conn(G)/2)

...

...

G
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Parameter Lower Bounds -Overview

� Resiliency: n > 3t (Interactive Consistency) [PSL80]

� Bit Complexity: BC ≥ n(t + 1)/4 [DR85]

� Round Complexity: RC ≥ t + 1 [FL82, DS83]

� Connectivity of Network G: conn(G) > 2t [Dol82]
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Scenarios

� State Assignment Ci : An assignment of states to each player.

� Message assignment Mi : An assignment of a message to each
channel.

A Scenario is defined to be an infinite sequence:

σ = C0,M1,C1,M2,C2, . . .

Indistiguishable Scenarios (σ
v∼ σ′)

Two scenarios σ,σ′ are indistiguishable with respect to player v , σ
v∼ σ′ if

v has the same sequence of states, outgoing and incoming messages
(view(v)).

Scenarios σ,σ′ may be scenarios of different systems.

decision(v): deterministic function of view(v) (Perfect Security).
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Connectivity Lower Bound (conn(G) > 2t)

σ0 σ1

xD = 0 xD = 1
T = C0 T = C1

Corrupted players Ci of
scenario σi act like in σ1−i .

.

.

.

.

.

.

C0

C1

D v

G′ G′′

Dealer’s value is 1

Dealer’s value is 0

Scenario σ0

Then,
∀v ∈ G ′′, σ0

v∼ σ1 ⇒ decisionσ0(v) = desicionσ1(v)

and thus validity is violated.
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Resiliency-Example I
Assume that v0, v1, v2 solve Broadcast in two rounds given that t = 1:

1 The dealer v0 sends value

2 Each player reports the dealer’s value

Honest player v1, knowing that at most one of the v0, v2 is corrupted, has
to decide on a value that satisfies both conditions of the Broadcast
problem. Consider the following view(v1).

v0

v2v1

0

v0

v2v1

1

0
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Resiliency-Example II
Two possible scenarios σ1(corrupted v2) and σ2(corrupted v0) s.t. σ1

v1∼ σ2

(indistinguishable with respect to v1):

v0

v2v1

0 0σ1

v0

v2v1
1

0

v0

v2v1

10σ2

v0

v2v1
1

0
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Resiliency-Example III

Impossibility of Broadcast

If decision(v1) = 1 and σ1 holds, then validity is violated, thus

decision(v1) = 0 (1)

If σ2 holds then by symmetry v2 should decide on 1

decision(v1) = 1 (2)

(1), (2) ⇒ Consistency is violated.

The algorithm uses only two rounds and particular types of messages.
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Resiliency Lower Bound I
Lemma 3.1.

Three players cannot solve the Broadcast problem in the presence of one
fault (n = 3 and t = 1).

Proof. Assume the existence of algorithm A that achieves Broadcast in
system T in the presence of a corrupted player. Construct system H using
two copies of T ,

v0

v2v1

T

v0

v1

v′2

v′1

v′0v2

H

Figure: Identical copy v ′k = vk+3 of vk . Connect vk mod 6 with v(k+1) mod 6 and
v(k−1) mod 6
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Resiliency Lower Bound II

In H all players run A and have only local names for their two neighbors.

Claim

For all σH scenario of H without adversary and ∀k ∈ {0, . . . ,5}, ∃σT
scenario of T in which v(k+2) mod 3 is corrupted s.t.

σH
vk∼ σT and σH

vk+1 mod 6∼ σT

For vk and vk+1 mod 6, their views are indistinguishable from their views as
players vk mod 3 and v(k+1) mod 3 in T where the adversary corrupts
v(k+2) mod 3 by simply simulating all the remaining players of H.

Thus, every such pair executes A in H without adversary and achieves
Broadcast. If H exhibits contradictory behavior then A cannot exist.
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Resiliency Lower Bound III

Example.
The adversary corrupts v2 in T by simulating the subsystem of H encircled

v0

v1

v′2

v′1

v′0v2

H

v0

v1
v′2 v′1

v2

v2

T

v′0
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Resiliency Lower Bound IV
Contradictory behavior of H

H involves two players v0, v
′

0 of the type corresponding to the Dealer.
Suppose they have inputs x0 ∈ {0,1} and x ′0 = 1 − x0 respectively.

v0

v2v1

σT2

v0

v1

v′2

v′1

v′0v2

σH

0

0

1

1

0 0

σH
v0∼ σT2 and σH

v1∼ σT2 ⇒ decision(v1) = 0 (1)
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Resiliency Lower Bound V

v0

v2v1

σT1

v0

v1

v′2

v′1

v′0v2

σH

0

0

1

1

1 1

v0

v2v1

σT0

v0

v1

v′2

v′1

v′0v2

σH

0

0

1

1

10

σH
v ′0∼ σT1 and σH

v2∼ σT1 ⇒
⇒ decision(v2) = 1 (2)

σH
v1∼ σT0 and σH

v2∼ σT0 ⇒
⇒ decision(v1) = decision(v2)

(3)

Relations (1), (2) and (3) yield a contradiction.
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Resiliency Lower Bound VI
Theorem 3.2.

There is no solution to the Broadcast problem for n players in the presence
of t corrupted players, if 3 ≤ n ≤ 3t

Proof.
Idea: Assume Broadcast protocol A with dealer v0 for ∣V∣ = n, ∣T ∣ ≥ n/3.
Transform A into B Broadcast protocol for players v0, v1, v2 and ∣T ∣ = 1.
Partition V0 ∪ V1 ∪ V2 = V s.t. ∀i , 1 ≤ ∣Vi ∣ ≤ t. We let each vi simulate
every v ∈ Vi (messages and computation steps).

Protocol B
Player v0: dealer in protocol B.
If in A: v ∈ Vi sends m to u ∈ Vj , i ≠ j , then
B: vi sends m to vj along with the identities of v ,u.
If in A: v ∈ Vi decides on m, then
B: vi decides on the value m. (If there are multiple values chooses one)
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Resiliency Lower Bound VII

V0

V1 V2

v0

v1 v2

For any execution a of B with TB = vj .

Let a′ be the simulated execution of A, with TA = Vj (∣TA∣ ≤ t).

Validity: From Validity in A.
Consistency: From Consistency in A.
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Bit Complexity
Theorem 3.3 (Dolev, Reischuk 1985).

Every Broadcast protocol which handles up to t corruptions (t < n − 1),
requires at least n(t + 1)/4 messages to be sent.

Proof.
Assume scenarios: σ0 with honest dealer D and xD = 0

σ1 with honest dealer D and xD = 1, and let

A(v) = {u ∈ V ∣ ∃ i ∈ N, ∃j ∈ {0,1} s.t. σj(v ,u, i) ≠ ∅ or σj(u, v , i) ≠ ∅}
(Players that communicate with v in at least one scenario).

Let ∃v ∈ V, s.t. ∣A(v)∣ < t + 1. Consider scenario
σ′: The scenario σ1 with every u ∈ A(v) behaving towards v as in σ0.

σ′
v∼ σ0 ⇒ decisionv(σ′) = 0, and

σ′
u∼ σ1 ⇒ decisionu(σ′) = 1, ∀u ∈ {H ∖ {v}}

Hence ∣A(v)∣ ≥ t + 1⇒ n(t + 1)/2 overall messages in both scenarios
⇒ At least n(t + 1)/4 messages in σ0 or σ1.
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σ′
v∼ σ0 ⇒ decisionv(σ′) = 0, and

σ′
u∼ σ1 ⇒ decisionu(σ′) = 1, ∀u ∈ {H ∖ {v}}

Hence ∣A(v)∣ ≥ t + 1⇒ n(t + 1)/2 overall messages in both scenarios
⇒ At least n(t + 1)/4 messages in σ0 or σ1.
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Locally Bounded Adversary
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Locally Bounded Adversary Model
t-Locally Bounded Adversary [Koo04]: Can corrupt at most t players
in each neighborhood.

···

· · ·

· · ·
{At most t

corruptions { At most t
corruptions

{

At most t
corruptions

Assumptions

� Honest Dealer

� Incomplete Network

� Byzantine Adversary

� Perfect Security

� Synchronous Channels

� Authenticated Channels

Results for Broadcast with honest dealer directly apply in the wireless Ad
Hoc model due to consistency of local Broadcasts.
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Broadcast With Locally Bounded Adversary

Topological restrictions on the adversary’s corruption capacity

� Tolerate more corruptions

� Local restrictions → local criteria for Ad Hoc network Broadcast.

Definitions

� t-Local Set: A set W , s.t. ∣W ∩N(v)∣ ≤ t, ∀v ∈ V.

� t-Locally Safe Algorithm: Never causes a node to decide on an
incorrect message under any t-local corruption set.

� t-Locally Resilient Algorithm: Achieves Broadcast under any
t-local set of corrupted players (locally tolerates t-corruptions).
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Main Question
Define the class of graphs where achieving Broadcast in the t-locally
bounded model is possible (for a given t ∈ N).

G

∃ t-locally resilient algorithm

Main Question Rephrased

� For a given graph and dealer determine the maximum number of
corruptions tmax that can be locally tolerated.

� To this end: Introduce graph parameters to bound tmax.
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The Certified Propagation Algorithm
Certified Propagation Algorithm (CPA) [Koo04]

1 The dealer D sends its initial value xD all of its neighbors, decides on
xD and terminates.

2 If a node decides on a value through a decision rule, it sends it to all
its neighbors and terminates.

Decision Rules
(i) (Neighbors of the dealer) Upon receiving the message xD from the

dealer, decide on xD .
(ii) Upon receiving message m from t + 1 distinct neighbors, decide on m.

D
... ... ...

· · ·
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Certified Propagation Algorithm (CPA) [Koo04]

1 The dealer D sends its initial value xD all of its neighbors, decides on
xD and terminates.

2 If a node decides on a value through a decision rule, it sends it to all
its neighbors and terminates.

Decision Rules
(i) (Neighbors of the dealer) Upon receiving the message xD from the

dealer, decide on xD .
(ii) Upon receiving message m from t + 1 distinct neighbors, decide on m.

D · · ·
... ... ...

{ At most t
corruptions

At least 1 honest
sends m

decision on an
incorrect value
is impossible
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Resilience of CPA

Definition 4.1 (Max CPA Resilience).

tCPA
max (G ,D) ∶ The maximum number of corruptions that can be locally

tolerated by CPA, for a G and dealer D.

L U
Safety

0

Adversary may
Win

Adversary Wins

tCPAmax

{ n
t

estimation

A first goal: Approximate the value tCPA
max by computing upper and lower

bounds.
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A Lower Bound on tCPAmax

Graph parameter of [PP05]

For a graph G and dealer D,
X(G ,D): Maximum integer x s.t. every node v has at least x neighbors
closer to D than v is.

Theorem 1 (Sufficient Condition [PP05]).

For every graph G , dealer D and integer t < X(G ,D)/2, CPA is t-locally
resilient ⇒ tCPA

max ≥ ⌈X/2⌉ − 1
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Proof Sketch
Observation

The criterion implies a level ordering of the nodes w.r.t. the distance
from the dealer. In a synchronous setting, information is propagated one
level in each round.

t < X(G ,D)/2⇒X(G ,D) ≥ 2t + 1

· · ·

...

· · ·

D

· · ·
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Proof Sketch - CPA Round 2
Observation

The criterion implies a level ordering of the nodes w.r.t. the distance
from the dealer. In a synchronous setting, information is propagated one
level in each round.

t < X(G ,D)/2⇒X(G ,D) ≥ 2t + 1

...

D

· · ·

· · ·

· · ·
{ At most t corruptions
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Proof Sketch - CPA Round k
Observation

The criterion implies a level ordering of the nodes w.r.t. the distance
from the dealer. In a synchronous setting, information is propagated one
level in each round.

t < X(G ,D)/2⇒X(G ,D) ≥ 2t + 1

...

D

· · ·

· · ·

· · ·
{ At most t corruptions

{ At most t corruptions
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Non-Tightness of the Lower Bound
Condition t < X(G ,D)/2 is not necessary for CPA.

· · ·

...
· · ·

D

· · ·

· · ·

Level k − 1

Level k

2t + 1−mk −mk+1
messages

...
· · ·

mk messages
mk+1 messages

v

Level k + 1

Node v with distance(v ,D) = k may collect t + 1 identical values from
decided neighbors in distance k and k + 1 as well.
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A Better Topological Parameter for CPA
Condition of [PP05]

A player will decide if he has at least 2t + 1 decided neighbors in smaller
distance from the dealer than he is.

Generalized Notion of Levels

· · ·

L1

...
L2

Lm−1

D

2t+ 1

v1 v2t+1

vn

· · · · · ·

Lm

· · ·
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A New Parameter for Bounding tCPAmax

Definitions [LPS13]

For a graph G = (V ,E) with dealer-node D,

Minimum k-Level Ordering Lk(G ,D):
A partition V = ⋃m

i=1 Li ,m ∈ N, s.t. L1 = N(D) and each level Li contains
all the nodes that have at least k neighbors in the union of previous levels.

K(G ,D) def .= max{k ∈ N ∣ ∃ Minimum k-Level Ordering Lk(G ,D)}
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Lower Bound on tCPAmax

Theorem 5.1 (Sufficient Condition).

For every graph G , dealer D and t ∈ N, if t < K(G ,D)/2 then CPA is
t-locally resilient.

⇒ tCPA
max ≥ ⌈K(G ,D)/2⌉ − 1

Proof Sketch.
∃Lk(G ,D) with k ≥ 2t + 1.

Decided
Round 1: L1 = N(D)
Round 2: L1⋃L2

⋮
Round m: ⋃m

j=1 Lj = V

· · ·

D

2t+ 1

v1 v2t+1

vn

· · · · · ·

L1

...

L2

Lm−1

Lm
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· · · · · ·

· · ·

{ At most t corruptions

Lm

At most t
corrupted, decided
neighbors of v ∈ Lm
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An equivalent Parameter [IS10]

Observation

Parameter K(G ,D) equals X̃ (G ,D) of [IS10], which is defined using
different kind of orderings.

Definition of K(G ,D) implies improved complexity, namely,

[IS10]: O(E ⋅V )
K(G ,D): O(E log δ)

where δ = minv∈V∖N(D) deg(v).
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Non-Tightness of the Lower Bound

Proposition 5.2.

There exists a family of instances, s.t. CPA is (K(G ,D) − 1)-locally
resilient.

K(G ,D) = t + 1
· · ·

t+ 1 players } 2t subsets

· · ·

D

v1 v2 v2t
K2t}

· · · · · · · · ·

Proof Sketch. Due to trade-off of corruptions in the interconnected
neighborhoods, each player receives at least t + 1 correct messages, thus
CPA is t-locally resilient.
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Upper Bound on tCPAmax

Theorem 5.3 (Necessary Condition).

For any graph G , dealer D and t ≥ K(G ,D), CPA is not t-locally resilient
⇒ tCPA

max ≤ K(G ,D) − 1

Observation (Proof Sketch)

If t ≥ K(G ,D) ⇒ ∄Lt+1(G ,D). Even with no corruption at all there will
always be a player who doesn’t get t + 1 messages from decided neighbors.
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Condition/Bounds Overview I
G

CPA is t-locally resilient

t < X (G,D)/2

∃ a t-locally resilient algorithm

t < K(G,D)/2

t < K(G,D)

K(G,D) ≥ X (G,D) All inclusions
are strict

Safety

0

Adversary may
Win

Adversary Wins
t

tCPAmax

K/2 K

X/2
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2-Approximation of tCPAmax

Existence check of Lk(G ,D) with BFS variation in O(∣E ∣) time.

Approximation Algorithm for Optimal t

1 Compute K(G ,D) (log δ existence checks) O(∣E ∣ log δ).

2 Return ⌈K(G ,D)/2⌉ − 1 > ⌈tCPA
max /2⌉ − 1

Tight Example.

· · · · · · · · ·· · ·
t+ 1 players } 2t subsets

· · ·

D

v1 v2 v2t
K2t}
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Determining tCPAmax Exactly
With GT̄ we denote the node induced subgraph of G on the node set
V ∖T .

Definition 5.4 (t-safety threshold).

For graph G , dealer D and positive integer t, the t-safety threshold is the
quantity M(G ,D, t) = min

T ∶ t-local set
K(GT̄ ,D).

Theorem 5.5 (Necessary and Sufficient Condition).

For a graph G = (V ,E) and dealer D, CPA is t-locally resilient iff
M(G ,D, t) ≥ t + 1.

Corollary 5.6.

T (G ,D) = max{t ∈ N ∣ M(G ,D, t) ≥ t + 1} = tCPA
max (G ,D)
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Determining tCPAmax Exactly
Proof Sketch.
Since decision on an incorrect value is impossible, we can assume wlog
that the corrupted players send nothing.

G

“⇐′′ If M(G ,D, t) ≥ t + 1, each player has at least t + 1 decided
neighbors in all possible GT̄ .

“⇒′′′ If M(G ,D, t) ≤ t, then there exists a player that won’t have
t + 1 decided neighbors in all possible GT̄ .
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A Simpler Characterization of tCPAmax

Definition 5.7 (t-Partial Local Pair Cut).

Let C be a node-cut of G , partitioning V ∖C into sets A,B ≠ ∅ s.t. D ∈ A.
C is a t-partial local pair cut (t-plp cut) in G ,D if there exists a partition
C = T ∪H where T is t-local and ∀w ∈ B, ∣N (w) ∩H ∣ ≤ t (H is t-local
w.r.t. B).

D w

T

A B

≤ t

H

G
(t-local)

Equivalent Necessary and sufficient
condition

Theorem 5.8.

For G ,D, CPA is t-locally resilient iff
no t-plp cut exists.

tCPA
max (G ,D) = max{t ∈ N ∣ ∄t − plp cut in G ,D}
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CPA Uniqueness in Ad Hoc Networks

Ad Hoc Network Model

Nodes know only their own labels, the labels of their neighbors and the
label of the dealer. An ad hoc algorithm operates under these assumptions.

CPA Uniqueness Conjecture

No ad hoc algorithm can locally tolerate more traitors than CPA.

Observation: There exists a non-safe algorithm (Relaxed Propagation
algorithm [PP05]) which locally tolerates more traitors than CPA in
certain families of graphs.

Theorem 5.9.

Let A be a t-locally safe ad hoc Broadcast algorithm. If A is t-locally
resilient for a graph G with dealer D then CPA is t-locally resilient for
G ,D.
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Proof Sketch

Assume that CPA is not t-locally resilient in G ,D, then there exists a t-plp
cut C = T ∪H in G ,D.

Let G ′ be the graph which results if we remove the edges that connect the
set A ∪T with H. Then H is t-local in G ′.

D w

T

A B

≤ t

≤ t

H

G

Using A, w decides on the same value in σ0, σ1, thus A is not t-locally
safe.
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Complexity of Computing tCPAmax

To show that the computation of tCPA
max is NP-hard it suffices to show that

the following decisional problem is NP-hard.

pLPC Problem

Given a graph G , a dealer-node D and integer t determine whether there
exists a t-plp cut in G ,D.

Theorem 5.10.

pLPC is NP-hard.

Observation

A polynomially bounded adversary is unable to design an optimal attack
unless P = NP.
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Overview of Conditions II

G t < LPC(G,D)

∃ a t-locally resilient algorithm

∃ a t-locally resilient
safe Ad-Hoc algorithm⇔

CPA is t-locally resilient (t ≤ T (G,D))

t < K(G,D)/2⇔ t < ˜X (G,D)/2

t < X (G,D)/2

[Pelc, Peleg 2005]
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Conclusions and Open Problems

Better approximation of tCPA
max

What is the best attack a polynomially bounded adversary could deploy?
In other words,

� Obtain a better approximation algorithm (ideally a PTAS) for tCPA
max .

� A graph parameter more accurate than K.

Model Variations

� Global/Partial Knowledge of Topology [PPS14].

� General Adversary.

� Computation of tCPA
max in specific network topologies.

� Wireless Networks (Collision Avoidance).
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