Deterministic Communication in Ad-Hoc Radio Networks with Large Labels

Aris Pagourtzis National Technical University of Athens

With: Leszek Gasieniec and Igor Potapov (University of Liverpool)

Ad-Hoc Radio Networks

- Expected to play an important role in future commercial and public interest applications.
- Suitable in situations where instant infrastructure is needed and no central system administration is available.
- Typical applications include:
	- mobile communication in remote areas

2

- \blacksquare tactical communications
- disaster recovery situations

Topology of Radio Network

Radio network is modelled as a graph $G = (V, E)$

- V set of nodes, $/V=n$
- E set of connections (links)
- Graph G can be directed or undirected

Ad-hoc stands for unknown topology

Communication Protocol

At any time step each node ${\bm \nu} \in {\bm \nu}$ is $\bm \nu}$ either in *transmitting* or *receiving* mode

Communication Protocol

- Transmission mode node v attempts to deliver possessed message *m* to all its neighbours
- Receiving mode node ^v attempts to collect a message transmitted by one of its neighbours
- Warning: **If** more than one neighbour of v transmits **then** none of the messages reaches destination v

Communication Protocol

Communication Primitives

Broadcasting: one-to-all communication; a message m held originally in the source node \boldsymbol{s} has to be delivered to all other \boldsymbol{s} nodes in the network

Gossiping: all-to-all communication; total exchange of messages originated in every single node of the network

Crucial Parameters

Number of nodes (size) n

Largest label N

We are interested in time complexity!

Complexity Bounds (I)

Lower: Ω(n logn)

Upper: $O(n^2)$ using ROUND-ROBIN

if N not $O(n)$: $O(N^2)$

Complexity Bounds (II)

 $\#$ Small labels: $N = O(n)$ Broadcasting: $O(n \log^2 n)$ \blacksquare Gossiping: $O(n^{3/2}log^2 n)$ Chrobak, Gasieniec, Rytter [FOCS'00] $\#$ Large labels: $N = O(poly(n))$ **Broadcasting:** O(n2) Peleg [Manuscript'00] O(n log2n) Chrobak et al. [FOCS'00]

Complexity Bounds (III)

 $\#$ Large labels: $N = O(poly(n))$ **Gossiping**

- –- *Chrobak et al. [FOCS'00] : O(Nn^{1/2}log²N)*
- –Gasieniec, Pagourtzis, Potapov [ESA'02]:

In directed graphs: $O(n^{3/2}log^3 n)$

In undirected graphs: $O(n \log^3 n)$

k-selectivity

 $\#$ A family $\mathsf{F}=\{Y_1, Y_2,...\}$ of subsets of some universe U is said to be k-selective for U iff for any $X \subseteq U$ with $/X$ /<= k , there is a set $Y_i \in F$, s.t. $/X \cap Y_i$ /=1.

k-selectivity

A family $\mathsf{F}=\{\mathcal{Y}_1,\mathcal{Y}_2,...\}$ of subsets of some universe U is said to be strongly kselective for U iff for any $X \subseteq U$, $|\hat{X}|$ <=k, and any $x \epsilon X$ there is a set Y_j \in **F**, s.t. $X \cap$ $Y_i = \{x\}.$

A family $\mathsf{F}=\{\mathcal{Y}_1,\mathcal{Y}_2,...\}$ of subsets of some universe U is said to be linearly k-selective for U iff for any $X \subseteq U$, $|X|<\infty$ k, there exists set $\mathcal{X}^{\prime}\hspace{-0.1cm}\subseteq\hspace{-0.1cm}\mathcal{X},$ s.t., $/\mathcal{X}^{\prime}\hspace{-0.1cm}/\hspace{-0.1cm}\times\hspace{-0.1cm}\mathcal{W}^{\prime}$ and for any x ∈ X^\prime there is a set $\mathcal{Y}^{}_j$ \in **F**, s.t., $X \cap$ $Y_j = \{x\}.$

Gossiping in Stars O(n logn) use linearly selective family

Approximate neighbour count

Run linearly selective family once in order to learn about half the neighbourhood

 ${\sf x}\leq\mathsf{deg(v)}\leq2{\sf x}$

Leader election

$$
O(B(n)\log(b-a))
$$

$$
O(n\log^3 n)
$$

b

- Binary search (e.g., for a node with the smallest label, the largest knowledge, etc.)
- Each step of binary search implemented by a vote based on broadcasting algorithm.
- E.g., is there any node, s.t., a label $\frac{4}{4}$ (a+b)/2? YES – further search between ^a and (a+b)/2 NO - further search between $(a+b)/2$ and b

 $a^{(a+b)/2}$

Partial Gossiping

+ decrement of (active) max-in-degree to \bm{k}

Loop

- Run N-linear selector: each node v learns about a fraction $A(v)$, (at least half), of its neighbourhood
- Find v_{max} , s.t., $|A(v_{max})| \geq |A(v)|$, for all $v \in V$
- **Broadcast** $A(V_{max})$ **to all nodes** $O(n \log^3 n)$

For each $v \in V$, $A(v) = A(v) \mid A(v_{max})$

Until $|A(V_{max})| < k/2$ $O(n^2 \log^3 n/k)$

Nodes whose original messages are already distributed become dormant (inactive)

Time

Gossiping Algorithm (in directed graphs)

Perform partial gossiping and decrement of active max-in-degree Move remaining messages to dormant nodes Repeat all transmissions performed in partial gossiping! O(n2 log3 n/k) O(n2 log3 n/k) O(nk2log n)

Total O(n^{5/3}log³n)

where $k=n^{1/3}$

Time

Gossiping Algorithm

(in directed graphs, with Tomasz Radzik, KCL)

The gossiping algorithm can be tuned in the partial gossiping stage, s.t., a distance between any message and some dormant node is $\leq k$

Then the second stage can be completed in time $O(k^3 log n)$

In total we get time complexity $O(n^{3/2}log^3 n)$, with $k=n^{1/2}$

(Almost) best known bound in model with small labels!

Gossiping in Undirected Graphs

Gossiping in connected graphs in model with known local neighbourhoods

- Find a leader λ in graph G (use binary search and broadcasting)
- Perform DFS traversal of G starting at λ (collect all messages while visiting G)
- Distribute compound message to all nodes in the network

All done in time $O(n \log^3 n)$

Gossiping in Undirected Graphs

(1) Perform partial gossiping and decrement of active max-in-degree to $\leq k$ O(n2 log3 n/k)

(2.a) Run strongly selective family on active nodes only O(k2logn)

 this creates a number of connected components with entirely known neighbourhoods

- (2.b) Perform gossiping in each connected component $O(n \log^3 n)$
- (2.c) Repeat transmissions from stage (2.a)
- (3) Repeat transmissions from stage (1)

Total $(k = n^{2/3})$: $O(n^{4/3}log^3 n)_{23}$

Time

Gossiping in Undirected Graphs

The gossiping algorithm can be speeded up by introduction of the system of maps

 $\#$ This leads to almost linear $O(n \log^3 n)$ time gossiping in undirected graphs

The lower bound \varOmega (n log n) is almost matched!

Conclusion

The upper bounds in model with large labels $(O(poly(n)))$ almost match bounds in model
with small labels $(O(n))$

 \blacksquare Broadcasting $O(n \log^2 n)$

- Gossiping in directed graphs $O(n^{3/2}log^3 n)$
- Gossiping in undirected graphs $O(n \log^3 n)$
- # Similarly for even larger labels: $N=O(n^{\log^{C}n})$ But: size of sets of selective families?
- What is the asymptotic complexity of gossiping in ad-hoc radio networks? In known radio networks?