#### Deterministic Communication in Ad-Hoc Radio Networks with Large Labels

#### Aris Pagourtzis National Technical University of Athens

With: Leszek Gasieniec and Igor Potapov (*University of Liverpool*)

#### Ad-Hoc Radio Networks

- # Expected to play an important role in future commercial and public interest applications.
- # Suitable in situations where instant infrastructure is needed and no central system administration is available.
- **#** Typical applications include:
  - mobile communication in remote areas
  - tactical communications
  - disaster recovery situations

#### Topology of Radio Network

#Radio network is modelled as a graph G = (V, E)

V set of nodes, /V/=n

E set of connections (links)

#Graph G can be *directed* or *undirected* 

*# Ad-hoc* stands for unknown topology

#### **Communication** Protocol





# At any time step each node  $v \in V$  is either in *transmitting* or *receiving* mode





#### **Communication** Protocol

- # Transmission mode node v attempts to deliver possessed message m to all its neighbours
- \* Receiving mode node v attempts to collect a message transmitted by one of its neighbours

Warning: If more than one neighbour of *v* transmits then none of the messages reaches destination *v* 

#### **Communication** Protocol



#### **C**ommunication Primitives

# Broadcasting: one-to-all communication; a message m held originally in the source node s has to be delivered to all other nodes in the network

# Gossiping: all-to-all communication; total exchange of messages originated in every single node of the network

#### **C**rucial Parameters

#Number of nodes (size) n

#Largest label N

We are interested in time complexity!

## Complexity Bounds (I)

#Lower: <u> $\Omega(n \log n)$ </u>

#Upper: O(n<sup>2</sup>) using ROUND-ROBIN

 $= if N not O(n): O(N^2)$ 

## Complexity Bounds (II)

# Small labels: N =O(n) Broadcasting: O(n log<sup>2</sup>n) = Gossiping:  $O(n^{3/2} \log^2 n)$ Chrobak, Gasieniec, Rytter [FOCS'00] #Large labels: N = O(poly(n)) Broadcasting: O(n<sup>2</sup>) Peleg [Manuscript'00] O(n log<sup>2</sup>n) Chrobak et al. [FOCS'00]

## Complexity Bounds (III)

#Large labels: N = O(poly(n))
Gossiping

- Chrobak et al. [FOCS'00] : O(Nn<sup>1/2</sup>log<sup>2</sup>N)
- Gasieniec, Pagourtzis, Potapov [ESA'02]:
  - In directed graphs:  $O(n^{3/2} \log^3 n)$

In undirected graphs:  $O(n \log^3 n)$ 

k-selectivity



# A family  $\mathbf{F} = \{Y_1, Y_2, ...\}$  of subsets of some universe Uis said to be *k*-selective for U iff for any  $X \subseteq U$ with |X| <= k, there is a set  $Y_j \in \mathbf{F}$ , s.t.  $|X \cap Y_j| = 1$ .

k-selectivity

\* A family  $F = \{Y_1, Y_2, ...\}$  of subsets of some universe U is said to be strongly kselective for U iff for any  $X \subseteq U$ , |X| <= k, and any  $x \in X$  there is a set  $Y_j \in F$ , s.t.  $X \cap Y_j = \{x\}$ .

# A family  $F = \{Y_1, Y_2, ...\}$  of subsets of some universe U is said to be *linearly k-selective* for U iff for any  $X \subseteq U$ , |X| <= k, there exists set  $X' \subseteq X$ , s.t., |X'| > k/2 and for any  $x \in X'$  there is a set  $Y_j \in F$ , s.t.,  $X \cap Y_j = \{x\}$ .





#### Approximate neighbour count

#Run linearly selective family once in order to learn about half the neighbourhood





 $x \leq deg(v) \leq 2x$ 

#### Leader election

а



- # Binary search (e.g., for a node with the smallest label, the largest knowledge, etc.)
- # Each step of binary search implemented by a vote based on broadcasting algorithm.
- E.g., is there any node, s.t., a< label <(a+b)/2?</li>
  YES further search between a and (a+b)/2
  NO further search between (a+b)/2 and b

(a+b)/2

## Partial Gossiping

+ decrement of (active) max-in-degree to k

Time

#### # Loop

- Run N-linear selector: each node v learns about a fraction A(v), (at least half), of its neighbourhood
- Find  $v_{max}$ , s.t.,  $|A(v_{max})| \ge |A(v)|$ , for all  $v \in V$
- = Broadcast  $A(v_{max})$  to all nodes  $O(n \log^3 n)$
- For each  $v \in V$ ,  $A(v) = A(v) \setminus A(v_{max})$
- Until  $|A(v_{max})| < k/2$   $O(n^2 \log^3 n/k)$

Nodes whose original messages are already distributed become dormant (inactive)



#### Gossiping Algorithm (in directed graphs)

Perform partial gossiping O(n² log³n/k)

 and decrement of active max-in-degree

 Move remaining messages to
 dormant nodes O(nk² log n)
 Repeat all transmissions O(n² log³n/k)
 performed in partial gossiping!

Total *O(n<sup>5/3</sup>log<sup>3</sup>n)* 

where  $k=n^{1/3}$ 

Time

# Gossiping Algorithm

(in directed graphs, with Tomasz Radzik, KCL)

\* The gossiping algorithm can be tuned in the partial gossiping stage, s.t., a distance between any message and some dormant node is  $\leq k$ 

# Then the second stage can be completed in time O(k<sup>3</sup>log n)

# In total we get time complexity  $O(n^{3/2}\log^3 n)$ , with  $k=n^{1/2}$ 

(Almost) best known bound in model with small labels!

### Gossiping in Undirected Graphs

#Gossiping in connected graphs in model with known local neighbourhoods

- Find a leader λ in graph G (use binary search and broadcasting)
- Perform DFS traversal of G starting at λ
   (collect all messages while visiting G)
- Distribute compound message to all nodes in the network

All done in time  $O(n \log^3 n)$ 

### Gossiping in Undirected Graphs

# (1) Perform partial gossiping  $O(n^2 \log^3 n/k)$ - and decrement of active max-in-degree to  $\leq k$ 

# (2.a) Run strongly selective family on active
nodes only
O(k<sup>2</sup>logn)

- this creates a number of connected components with entirely known neighbourhoods

- # (2.c) Repeat transmissions from stage (2.a)
- #(3) Repeat transmissions from stage (1)

Total (k =  $n^{2/3}$ ):  $O(n^{4/3} \log^3 n)_{23}$ 

Time

#### Gossiping in Undirected Graphs

\* The gossiping algorithm can be speeded up by introduction of the system of maps

\* This leads to almost linear O(n log<sup>3</sup>n) time gossiping in undirected graphs

The lower bound  $\Omega(n \log n)$  is almost matched!

#### Conclusion

# The upper bounds in model with large labels (O(poly(n))) almost match bounds in model with small labels (O(n))

Broadcasting O(n log<sup>2</sup>n)

- Gossiping in directed graphs O(n<sup>3/2</sup>log<sup>3</sup>n)
- Gossiping in undirected graphs O(n log<sup>3</sup>n)
- # Similarly for even larger labels: N=O(n<sup>log<sup>c</sup>n</sup>)
  But: size of sets of selective families?
- What is the asymptotic complexity of gossiping in ad-hoc radio networks? In known radio networks?