Oblivious k-shot Broadcasting in Ad Hoc Radio Networks

Paraschos Koutris and Aris Pagourtzis

University of Washington, Nat. Tech. University of Athens

CATS 2011, Perth

MOTIVATION

- How can we accomplish communication in networks in an energy-efficient manner?
- We study this question for Radio Networks
- How do we measure energy efficiency?
- Assuming that the nodes transmit at a fixed power level:
 - Total number of transmissions
 - The number of transmissions (shots) for each node

• Give a limited budget of k shots to each node

MOTIVATION

- How can we accomplish communication in networks in an energy-efficient manner?
- We study this question for Radio Networks
- How do we measure energy efficiency?
- Assuming that the nodes transmit at a fixed power level:
 - Total number of transmissions
 - The number of transmissions (shots) for each node

• Give a limited budget of k shots to each node

WHAT IS A RADIO NETWORK?

- A directed or undirected graph G = (V, E)
- Each node corresponds to a transmitter-receiver device
- Node ν can send a message to node u iff $(\nu, u) \in E$
- SYNCHRONIZATION: the nodes transmit only at discrete time units called *steps*

• In each step, a node can be either in *receiving* or *transmitting* mode

MODEL OF COMMUNICATION

• RADIO BROADCAST: When node v transmits message m, m is delivered to all the neighbors of v

• COLLISION: If more than one neighbor of u transmits, then u receives no message and hears only noise

BROADCASTING WITH k SHOTS

We study protocols with the following characteristics

- **BROADCASTING** (one-to-all communication):
 - A source node with a message m
 - m must be distributed to all the nodes of the network
- UNKNOWN TOPOLOGY: nodes only know the total number of nodes \boldsymbol{n}
- ENERGY EFFICIENCY: each node is limited to transmitting at most k times

Oblivious Protocols

OBLIVIOUSNESS: the decision of whether to transmit during the next step does *not* depend on the transmission history

• An oblivious protocol can be viewed as a sequence of *transmission sets*

$$\{2, 3, 5\}, \{1\}, \{7, 1, 5, 2\}, \{4\}, \ldots$$

• When a node receives m for the first time, it transmits during the first k steps it appears in a transmission set

EXAMPLE

A broadcasting scheme $T = \{(1)\}$

EXAMPLE

A broadcasting scheme $T = \{(1), (2, 3)\}$

EXAMPLE

A broadcasting scheme $T = \{(1), (2, 3), (3, 5)\}$

EXAMPLE

A broadcasting scheme $T = \{(1), (2, 3), (3, 5), (3)\}$

EXAMPLE

A broadcasting scheme $T = \{(1), (2, 3), (3, 5), (3)\}$

Related Work

Deterministic broadcasting with an unlimited number of shots

- LOWER BOUND: $\Omega(n \cdot \log D)$ [Clementi *et al.*, 2003]
- UPPER BOUND: $O(n \cdot \log n \cdot \log \log n)$ [De Marco, 2008]

Randomized broadcasting with an unlimited number of shots

• A matching UPPER and LOWER BOUND: $\Theta(D \cdot \log(n/D) + \log^2 n)$ [Alon et al., 1991], [Czumaj and Rytter, 2003], [Kowalski and Pelc, 2003]

Related Work in k-shot

k-shot broadcasting in networks with known topology

- [Gasieniec et al., 2008]
- [Kantor, Peleg *et al.*, 2009] Upper bound: $D + O(k \cdot n^{1/2k} \cdot \log^{2+1/k} n)$ Lower bound: $D + \Omega(k \cdot (n - D)^{1/2k})$

Randomized energy-efficient broadcasting in unknown networks

• [Berenbrink et al., 2009]

OUR RESULTS

LOWER BOUNDS:

- Any k-shot (k < n) oblivious protocol needs $\Omega(\frac{n^2}{k})$ steps to complete broadcasting
- Any 1-shot adaptive protocol needs $\Omega(\mathfrak{n}^2)$ steps to complete broadcasting

UPPER BOUNDS:

• There exists an oblivious algorithm which completes broadcasting in optimal $O(\frac{n^2}{k})$ time for $k\leqslant\sqrt{n}$ (and $O(n^{3/2})$ steps for $k>\sqrt{n}$)

OUR RESULTS

LOWER BOUNDS:

- Any k-shot (k < n) oblivious protocol needs $\Omega(\frac{n^2}{k})$ steps to complete broadcasting
- Any 1-shot adaptive protocol needs $\Omega(n^2)$ steps to complete broadcasting

UPPER BOUNDS:

• There exists an oblivious algorithm which completes broadcasting in optimal $O(\frac{n^2}{k})$ time for $k \leq \sqrt{n}$ (and $O(n^{3/2})$ steps for $k > \sqrt{n}$)

OUR RESULTS

LOWER BOUNDS:

- Any k-shot (k < n) oblivious protocol needs $\Omega(\frac{n^2}{k})$ steps to complete broadcasting
- Any 1-shot adaptive protocol needs $\Omega(n^2)$ steps to complete broadcasting

UPPER BOUNDS:

• There exists an oblivious algorithm which completes broadcasting in optimal $O(\frac{n^2}{k})$ time for $k\leqslant\sqrt{n}$ (and $O(n^{3/2})$ steps for $k>\sqrt{n}$)

A Lower Bound for 1-shot

THEOREM

Any 1-shot protocol needs $\Omega(n^2)$ steps to complete broadcasting.

- Given a 1-shot protocol, we build a chain S, where at the i-th node the transmission of m is delayed for at least n-i steps
- Each node not in S must transmit alone in order to avoid a conflict

• Why is a conflict undesirable?

The Gadget

• Nodes w_i and w_j receive the message at step T from v_S

- A conflict occurs when nodes w_i and w_j transmit simultaneously
- Since v_t has no other neighbors, v_t never gets the message

• Broadcasting would never succeed in this graph

1-Shot Examples

- A non-valid protocol:
 - $\{1\}, \{2, 3\}, \{4\}, \{3\}, \{2\}, \ldots$

- A valid protocol (Lower Bound construction)
 - $\{1, 2, 3, 4, 5\}, \{2\}, \{3\}, \{5\}, \{4\}, \{1, 2\}, \{3, 4\}, \{5\}, \ldots$

THE GENERAL LOWER BOUND

THEOREM

Any oblivious k-shot (k < n) protocol needs $\Omega(\frac{n^2}{k})$ steps to complete broadcasting.

- Generalizing the argument for the 1-shot case
- We construct the chain from subchains of k nodes
- At the i-th subchain, the transmission of \mathfrak{m} is delayed for at least $\mathfrak{n} \mathfrak{i}$ steps

◆□> ◆□> ◆豆> ◆豆> □目

A MATCHING UPPER BOUND

THEOREM

k-shot broadcasting can be completed in $O(\frac{n^2}{k})$ steps, for $k \leqslant \sqrt{n}$

The algorithm is based on the algorithm of [Chlebus et al., 2000]

- 1. We define a family of sets (lines) with some nice properties
- 2. Based on lines, we construct the procedure $\underline{\mathrm{LINE}}\xspace{-}\overline{\mathrm{TRANSMIT}}$

3. We multiplex LINE-TRANSMIT with the standard ROUND-ROBIN procedure with the appropriate ratio

Defining Lines

- Let p be the smallest prime $\geqslant \sqrt{n}$
- Node i is mapped to the point $\langle i \text{ div } p, i \text{ mod } p \rangle$

DEFINITION

A line $L_{a,b}$ with direction a and offset b is the set

$$L_{a,b} = \begin{cases} \{\langle x, y \rangle : x \equiv b \pmod{p} \} & \text{if } a = p, \\ \{\langle x, y \rangle : y \equiv a \cdot x + b \pmod{p} \} & \text{else.} \end{cases}$$

PROPERTIES OF LINES

The following combinatorial properties hold:

- $1. \ \mbox{Each}$ line contains exactly p nodes
- 2. The total number of distinct lines is $p \cdot (p+1)$
- 3. Each node belongs to p+1 lines, one in each direction
- 4. There are p disjoint lines in each direction
- 5. Two lines of different directions have exactly one common node
- 6. For any two different nodes, there is exactly one line that contains both of them

LINE-TRANSMIT

Lines as transmission sets

Procedure LINE-TRANSMIT

$$\begin{array}{l} \mbox{for } i=1,2,\ldots \mbox{ do} \\ \mbox{for } a=0,\ldots,p \mbox{ do} \\ \mbox{ a-STAGE} \\ \mbox{ for } b=0,\ldots,p-1 \mbox{ do} \\ \mbox{ | Let all nodes in } L_{a,b} \mbox{ transmit} \\ \mbox{ end} \\ \mbox{ end} \\ \mbox{ end} \\ \mbox{ end} \\ \end{array}$$

ROUND-ROBIN

The nodes transmit alone, one after the other

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Procedure ROUND-ROBIN

for
$$i = 1, 2, \dots$$
 do
for $\nu = 1, 2, \dots, p^2$ do
Let node ν transmit
end
end

A FIRST MIXING

• Multiplex ROUND-ROBIN with LINE-TRANSMIT

Odd steps: LINE-TRANSMIT

- A node v starts transmitting only after receiving m
 - 1. Transmit for k-1 times at the odd steps where ν belongs to the transmitting line
 - 2. Transmit once at the first *even* step with transmission set $\{v\}$

A BETTER MIXING

- The previous algorithm is not oblivious
- Solution: Increase the ratio of $\rm ROUND\text{-}ROBIN$ steps to $\rm LINE\text{-}TRANSMIT$ steps to K=p/k

Algorithm 3: Oblivious K-Shot

for step $i = 1, 2, \dots$ do

perform a LINE-TRANSMIT step ;

```
perform K ROUND-ROBIN steps ;
```

end

Remarks

- The proof uses amortized analysis
- Our main contribution was to make the analysis flow when the k-shot restriction holds
- COROLLARY: The algorithm of [Chlebus *et al.*, 2000] has the same time performance when we restrict the number of shots to \sqrt{n}

• We use the $\sqrt{n}\text{-shot}$ algorithm to yield an $O(n^{3/2})\text{-time}$ protocol for k-shot broadcasting with $k>\sqrt{n}$

CONCLUSIONS

- We provide the first results on deterministic k-shot broadcasting in radio networks of unknown topology
- We prove an energy-time tradeoff in broadcasting algorithms

$$\#\text{shots } \times \ \#\text{steps} = \begin{cases} \Theta(n^2) & \text{ for } k \leqslant \sqrt{n}, \\ \Omega(n^2) & \text{ and } \\ O(k \cdot n^{3/2}) & \text{ for } k > \sqrt{n}. \end{cases}$$

- Open Questions
 - match the lower bound for $k > \sqrt{n}$
 - Lower bounds for adaptive k-shot broadcasting protocols

Thank You