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Graph-theoretic representation

network ←→ graph

requests ←→ pairs of nodes

connections ←→ paths

wavelengths ←→ colors

Arising graph problems are interesting per se.
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Routing and Path Coloring Problems: Other Applications

Color interpretation

Generic communication networks: time-slots.

Vehicle routing: tracks or departure time slots.

Scheduling: processors.

Compiler optimization: memory locations.
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Routing and Path Coloring – RPC (aka RWA)

Instance: Graph G(V, E), collection of requests (pairs of nodes) R =

{(s1, t1) . . . (sm, tm)}.

Feasible Solution: path and color assignment to requests in R such that

edge-intersecting paths have different colors.

Goal: minimize number of colors.
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Known results for RPC

• Chains (interval coloring): poly-time solvable [folklore, e.g. Tucker ’75].

• Rings: NP-hard, approximation ratio 2 [Raghavan, Upfal ’93], [Kak-

lamanis, Mihail, Rao ’95] (directed). Pre-routed version (circular-arc

coloring): approx. ratio 3/2 [Karapetian ’80].

Improved to ≈ 1.68 and ≈ 1.37 (for heavily loaded instances) respec-

tively, using randomized algorithms [Kumar ’98].

• Trees: NP-hard, approximation ratio 1.1 (asympt.) by 1.1 edge-coloring

[Nishizeki, Kashiwagi ’90]. Directed: 5/3-approx. [Erlebach, Jansen,

Kaklamanis, Mihail, Persiano ’99].

• Meshes: approx. ratio log log n [Rabani ’96]. Pre-routed version: No

better approx. ratio than Graph Coloring [Nomikos ’96], i.e. non-

approximable within |R|1/7−ε [Bellare, Goldreich, Sudan ’98].
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Possible approaches - variations

• directed / undirected paths

• pre-routed or not

• minimization / maximization (weighted or not)

• full / limited / no wavelength conversion

• on-line / off-line

• multiple / single fiber(s)

• full / limited switching.

Network Algorithms and Complexity NTUA-µΠλ∀ 6



The Routing and Path Multi-Coloring Problem
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Network Model

• Undirected (full-duplex).

• No wavelength conversion.

• Fixed number of wavelengths.

• Multiple fibers, full switching.

• Only active fibers are charged.

Goal: minimize (the cost of) active fibers.

Related work: [Li, Simha ’00], [Simon, Margara ’00]. Fixed number of

fibers everywhere, minimization of wavelengths per fiber.
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Routing and Path Multi-Coloring (RPMC)

Instance: graph G(V, E), collection of requests (pairs of nodes), num-

ber of colors w.

Feasible Solution: Path and color assignment to R (collisions allowed)

Goal: minimize ∑

e∈E

µ(e)

µ(e): the maximum multiplicity of any color on edge e

number of fibers per link ←→ multiplicity of colors per edge
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Complexity and approximability of RPMC

Chains: poly-time solvable [Nomikos, P., Zachos, IPL 2001]

Improved complexity: [Winkler, Zhang, SODA’03]

Rings, Stars, Spiders: NP-hard, locally near-optimal solutions,

SOL ≤ OPT + |E| ≤ 2OPT

[Nomikos, P., Zachos, IPL 2001] (pre-routed rings, rings, stars)

[Nomikos, P., Potika, Zachos, PCI’01] (spiders)

[Nomikos, P., Potika, Zachos, Networking’04] (non-uniform costs, di-

rected versions)

Trees: NP-hard, approximation ratio 4 [Chekuri, Mydlarz, Shepherd,

ICALP’03] and 1+4|E| log |V |/OPT [Erlebach, P., Potika, Stefanakos,

WG’03]

Other multiple-fiber problems: [Li, Simha, INFOCOM’00], [Simon, Margara,

ICALP’00], [Erlebach, P., Potika, Stefanakos, WG’03].
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Results in this presentation

Chains: poly-time solvable.

[Nomikos, P., Zachos ’97]

Rings, Stars, Suns: NP-hard, locally near-optimal solutions,

SOL ≤ OPT + |E| ≤ 2OPT

[Nomikos, P., Zachos ’97] (pre-routed rings),

[Nomikos, P., Zachos ’00] (rings, stars)

[Nomikos, P., Potika, Zachos ’01] (spiders or suns)

[Nomikos, P., Potika, Zachos ’04] (costs on edges, directed versions)
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Notation and Lower Bounds

• n = number of nodes

• m = number of requests or connections

• w = number of colors (wavelengths)

• L(e) = load of edge e

• L = maximum load

Lower bound: µ(e) ≥ dL(e)
w
e, hence:

OPT ≥
∑

e∈E

d
L(e)

w
e
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RPMC in Chains

Difficulty: no greedy technique seems adequate.
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Technique: reduction to Bipartite Edge Coloring

The Algorithm

• Fill to complete multiples of w and join.

• Gather starts and ends into groups of w, creating a bipartite graph.

• Apply bipartite edge coloring.

Complexity: O(m′ log m′), m′ ≤ m + nw.
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RPMC in Stars, Suns and Rings: NP-hardness

Decision versions of multi-coloring problems are generalizations of the

decision versions of the corresponding (single) coloring problems.

Single-fiber problems for stars, spiders and rings are NP-hard.

Network Algorithms and Complexity NTUA-µΠλ∀ 21



Algorithm for Stars

• Assign arbitrary direction to paths.

• On each ‘ray’, partition separately inward and outward paths to

groups of w paths.

• Construct bipartite graph of degree w.

• Edge-color the bipartite graph.

Proof of correctness: based on the fact dae+ dbe ≤ da + be+ 1.

SOL(e) = d
Li(e)

w
e+ d

Lo(e)

w
e ≤ d

(Li(e) + Lo(e))

w
e+ 1 ≤ OPT(e) + 1

SOL ≤ OPT + |E|

Paths of length 1 can be directed in a more clever way.
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Algorithm for Spiders

• Assign arbitrary direction to paths that traverse the center. Assign

inward direction to the remaining paths.

• On each ‘ray’, partition independently the inward and the outward

paths to groups of w paths. For inward paths, first apply the chain

technique (filling to multiples of w and joining). Collect outward

paths starting from the end.

• Construct bipartite graph of degree w.

• Edge-color the bipartite graph.

Correctness: Argument similar to the one for stars.

With appropriate modification the algorithm gives optimal solution for

the directed problem. [Nomikos, P., Potika, Zachos ’04]
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Pre-routed Rings Algorithm: Ring-PMC Problem

• Find a ‘good’ break-point.

• Transform to chain instance.

• Apply chain algorithm.

Correctness: Argument similar to the one for stars.

SOL ≤ OPT + s ≤ OPT + |E| − 2
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Ring Unfolding Technique

v

e e

v

load(e’’)=1

load(e’)=2
load(e)=3
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Algorithm for Rings (RPMC)

• Perform shortest-path routing.

• Apply the Ring-PMC algorithm.

Proof of correctness: Let e′ be the edge ‘opposite’ to e:

L(e) + L(e′) ≤ L∗(e) + L∗(e′)

Additive error due to routing: b|E|/2c (a + b ≤ c + d ⇒ dae + dbe ≤

dce+ dde+ 1) .

Additive error due to Ring-PMC algorithm: s ≤ b|E|/2c − 1.

Overall approximation: SOL ≤ OPT + |E| − 1.
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Summary

• Optimal solution for chains.

• Locally near-optimal solution for stars, suns and rings.

• All results extend to graphs with edge costs [NPPZ’04].

• The technique for suns yields an exact algorithm for the directed

problem [NPPZ’04].

• OPT + 1 approximation algorithm for the problem of minimizing

the maximum number of fibers.
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The Maximum Routing and Path Coloring
Problem
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Examples of Request Blocking

wavelength conversion

With

wavelength conversion

Without
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Network Model

• Dual fiber: each link consists of two opposite-directed fibers.

– Full-duplex communication: can be represented by undirected

graph and requests.

– One-way communication: can be represented by bidirected graph

and directed requests.

• Requests may be pre-routed or not.

• No wavelength conversion.

• Number of wavelengths is part of the input.

Goal: satisfy a maximum number of requests.
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Maximum Routing-and-Path-Coloring (MaxRPC)

Instance: graph G(V, E), collection of requests (pairs of nodes) R =

{(s1, t1) . . . (sm, tm)}, number of colors w.

Feasible Solution: path and color assignment to a subset A ⊆ R with

w colors and without color collisions.

Goal: maximize |A|.
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Variations

• Directed MaxRPC: bidirected (symmetric directed) graph, di-

rected requests and paths, collisions refer to arc-intersecting paths.

• MaxPC and Directed MaxPC: routing is given (pre-routed re-

quests).
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Complexity – approximability of MaxRPC

• Chains: poly-time solvable [Carlisle and Lloyd, DAM 1995].

• Rings: NP-hard, approximation ratio (e − 1)/e ≈ 0.632 [Wan and Liu,

DIMACS’98].

– MaxPC (Pre-routed version): approx. ratio 2/3 ≈ 0.666 [Nomikos

and Zachos, ICALP-AlAsCo’97]; the same ratio for Directed MaxPC.

Improved complexity: [Nomikos, P., Zachos, Computer Networks 2003].

• Trees: NP-hard, approximation ratio ≈ 0.632 [Wan, Liu, DIMACS’98]

using [Garg, Vazirani, Yannakakis, Algorithmica 1997].

– Directed MaxRPC: [Erlebach, Jansen, ISAAC’98] for bounded-

degree approx. ratio (e-1)/e; for general trees 0.451 ratio.

• Meshes: randomized constant approximation [Wan and Liu, DIMACS’98]

using [Kleinberg and Tardos, STOC’95].

– MaxPC (Pre-routed version): No approx. ratio better than 1/|R|δ

[Nomikos and Zachos, ICALP-AlAsCo’97].
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Results in this presentation

• (2/3)-approximation algorithm for MaxRPC in rings based on the

Chain-and-Matching technique. (Previous best ratio: ≈ 0.632)

• A polynomial-time algorithm that solves Directed MaxRPC

in rings optimally for one available color; this leads to A 0.632-

approximation algorithm for arbitrary number of colors.

• Introduction of a new matching problem: w-Bounded 2-Color

Matching, and a 3/4-approximation algorithm for this problem.

• A (7/11)-approximation algorithm for Directed MaxRPC in

rings, based on the Chain-and-Matching technique, as well as on

the algorithm for w-Bounded 2-Color Matching. The second

algorithm slightly better (7/11 ≈ 0.636).

• Improvement: 7/8 for w-Bounded 2-Color Matching, yield-

ing 15/23 ≈ 0.652 for Directed MaxRPC in rings. Also, exact

randomized algorithm leading to randomized 2/3-apx. algorithm.
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Notation

• n = number of nodes

• m = number of requests

• w = number of colors (wavelengths)

• L(e) = load of edge e

• L = maximum load
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MaxRPC in Chains

• A simple algorithm: proceed from ‘left’ to ‘right’. Wherever there

are more paths than available colors, eliminate the longest paths.

• If w > L it is possible to use only L colors.
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The Chain-and-Matching Technique for Rings

with Pre-Routed Requests (Simple Form)

• ALGc: Select a separation edge, apply chain algorithm to requests

not using this edge. If colors remain unused, use them to color

requests passing through the separation edge. Call this solution

SOLc.

• ALGm: Construct a bipartite request compatibility graph. Com-

pute a maximum matching on this graph.

Color requests ‘from scratch’ using one color for each pair of the

matching, until colors or pairs finish. If pairs finish first, use the

remaining colors arbitrarily. Call this solution SOLm.

• ALG: Execute ALGc and ALGm independently, choose best solu-

tion: SOL = max(SOLc, SOLm).
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Analysis

µ: size of the maximum matching

• OPT ≤ SOLc + min(w, µ)

(because the chain algorithm is optimal and the only possible im-

provement is due to matched requests that use the separation edge

– at most w and at most µ)

• SOLm ≥ 2 ·min(w, µ)

(because pairs are colored with one color each, until there are no

more pairs or no more colors)

• OPT ≤ SOLc + 1
2SOLm ≤

3
2SOL

Remark: ALGc is a 1/2-approximation algorithm for MaxPC
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The Chain-and-Matching Technique

for rings without prior routing of requests (MaxRPC)

• The chain instance consists of all requests routed so as to avoid

some chosen edge.

• Compatible are now two requests that can be routed with non-

intersecting paths. The compatibility graph is not bipartite any

more (still it is possible to find a maximum matching efficiently).
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Analysis

µ: size of the maximum matching

• OPT ≤ SOLc + min(w, µ)

(because the chain algorithm is optimal and the only possible im-

provement is due to matched requests routed through the separa-

tion edge – at most w and at most µ)

• SOLm ≥ 2 ·min(w, µ)

(because pairs are colored with one color each, until there are no

more pairs or no more colors)

• OPT ≤ SOLc + 1
2SOLm ≤

3
2SOL

Remark: ALGc is a 1/2-approximation algorithm for MaxRPC
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Directed Maximum Routing-and-Path Coloring

• Requests, therefore also paths, are directed.

Paths intersect if they use the same arc.

• Two directions: clockwise and counterclockwise.

w colors are available per direction.

• Two requests may take the same color (compatible) iff they can be

routed in the same direction, using non-intersecting paths.

Two compatible requests are either clockwise compatible or coun-

terclockwise compatible.
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Incompatible requests

Compatible requests

Clockwise Counterclockwise
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The w-Bounded 2-Color Matching problem

• Given is a graph G with two types of edges: blue and red.

• The goal is to find a matching that maximizes

min(w, µr) + min(w, µb)

µb are the matched blue edges, µr the red ones.

Such a matching is not necessarily maximum!

w-Bounded 2-Color Matching is NP-complete in general graphs.

Complexity open in request-compatibility graphs.
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A 3/4-approximation for w-Bounded 2-Color Matching

• Compute a maximum matching M .

If both blue and red edges in M are ≤ w or both are ≥ w, stop:

M is a maximum w-bounded two-color matching.

Otherwise:

– Let blue edges be more than w, red edges fewer. Compute a

maximum matching Mr on the red subgraph.

– Replace unnecessary blue edges in M by red edges in Mr at the

cost of (at most) two blue edges for one new red.

Key idea: superimposing M and Mr we obtain a graph of de-

gree 2, consisting of chains and cycles that alternate between M

and Mr.

It can be shown that the cardinality of the new matching is at least

3/4 times the cardinality of a maximum w-bounded 2-color matching.
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The Algorithm for Directed MaxRPC in Rings (Simple Form)

• ALGc: Select a separation edge, route all requests avoiding this

edge and use chain algorithm twice; Use remaining colors (if any)

arbitrarily: SOLc.

• ALGm: Construct a request compatibility graph with two types of

edges: red and blue. Compute an (as large as possible) w-bounded

two-color matching on this graph, i.e. a matching that contains at

most w edges of each color.

For each direction, color requests ‘from scratch’ using one color for

each pair of the matching that follows this direction, until no more

colors or no more pairs; if pairs finish first in some direction, use

remaining colors arbitrarily: SOLm.

• ALG: Execute ALGc and ALGm independently, choose best solu-

tion: SOL = max(SOLc, SOLm).
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Analysis of the algorithm for Directed MaxRPC in rings

Theorem: Using a ρ-approximation algorithm for w-Bounded 2-Color

Matching the algorithm for Directed MaxRPC in rings has ap-

proximation ratio

(ρ + 1)/(ρ + 2)

Proof: We apply similar arguments as before, taking into account that

there are w colors per direction.

• Define Bopt (Bsol): cardinality of the largest possible (algorithm’s

solution resp.) w-bounded 2-color matching.

• OPT ≤ SOLc + Bopt

• SOLm ≥ 2 ·Bsol + 2 · w −Bsol = 2 · w + Bsol ≥ Bopt + ρ ·Bopt

• OPT ≤ SOLc+
1

(ρ+1)SOLm ≤ (1+ 1
ρ+1 )·SOL⇒ SOL ≥ ρ+1

ρ+2 ·OPT
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Approximation ratio for Directed MaxRPC in rings

Using the previous theorem:

• The 3/4-approximation algorithm for w-Bounded 2-Color Match-

ing, yields a 7/11 ≈ 0.636-approximation algorithm for Directed

MaxRPC in rings.

• Improvement: A new 7/8-approximation algorithm for w-Bounded

2-Color Matching, yields a 15/23 ≈ 0.652-approximation al-

gorithm for Directed MaxRPC in rings. Also, an exact RNC

algorithm leads to randomized 2/3-apx. algorithm.
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A 0.632-approximation algorithm

for Directed MaxRPC in rings

• There is an algorithm that solves the problem for one color opti-

mally: once we route a pair of requests in opposite directions in

such a way that underlying paths overlap, the routing of the re-

maining requests is unique. We then choose a maximum subset of

non-intersecting requests.

• By a known argument, using the 1-color algorithm repeatedly w

times we obtain a (1−(1−1/w)w)-approximation algorithm for the

problem with w colors. For large w this gets close to (e − 1)/e ≈

0.632.

• Comparison: the 15/23 ≈ 0.652-algorithm gives a better approxi-

mation guarantee for large w:

∀w ≥ 10, 1− (1−
1

w
)w ≤

15

23
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Conclusions - Open Problems

• We have obtained 2/3-approximation for undirected MaxRPC,

15/23 for the directed case, and 2/3 whp. (Note also: all chain

algorithms achieve 1/2-approximation.)

• Further improvements [Caragiannis’07]: 3/4 for undirected MaxRPC,

≈ 0.7 for directed case. Results extend to MaxPC; ≈ 0.67 for

weighted MaxPC.

• Can these ratios be further improved? Upper bounds? PTAS?

• Other topologies: trees, trees of rings, meshes?

• Model variations: weighted requests, (full/limited) wavelength con-

version, on-line, multiple fibers (full/limited).
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