А $\lambda \gamma$ о́pı $\theta \mu$ оı $\Delta ⿺ 𠃊 \tau v ́ \omega v ~ к \alpha ı ~ П о \lambda v \pi \lambda о к о ́ \tau \eta \tau \alpha ~$
（ЕМП，МПЛА）

To Про́ $\beta \lambda \eta \mu \alpha$ Routing and Path Coloring $\kappa \alpha \iota$ oı $\varepsilon \varphi \alpha \rho \mu о \gamma \varepsilon ́ \varsigma ~ \tau o v ~ \sigma \varepsilon ~ \pi \lambda \eta ́ \rho \omega \varsigma ~ о \pi \tau \iota \kappa \alpha ́ ~ \delta i ́ \kappa \tau v \alpha ~$

Evðарıбтíç：ol $\delta \iota \alpha \varphi \alpha ́ v \varepsilon ı \varepsilon \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma ~ \beta \alpha \sigma i ́ \sigma \tau \eta \kappa \alpha \nu ~ \varepsilon v ~ \mu \varepsilon ́ \rho \varepsilon ı ~ \sigma \tau \eta \nu ~$
 （E日viкó Мєгбóßıo Подvєє χ vєío，2002）

Optical Fibers

- High transmission rate
- Low bit error rate
- The bottleneck lies in converting an electronic signal to optical and vice versa

All-Optical Networks

- All physical connections are optical
- Multiplexing is achieved through wavelength division multiplexing (WDM): in each fiber multiple colors are used
- Switching on routers is done passively and thus more effectively (no conversion from electrical to optical)
- Two network nodes communicate using one light beam: a single wavelength is used for each connection

Graph Representation

- All physical links are represented as graph edges
- Communication among nodes is indicated by paths
- Paths are assigned colors (wavelengths)
- Overlapping paths (i.e. sharing at least one edge) are assigned different colors

Graph Topologies

Graph Coloring (GC)

- Input: Graph G
- Feasible solution: Coloring of V using different colors for adjacent vertices
- Goal: Minimize the number of colors used, i.e. find chromatic number $\chi(G)$
- NP-hard
- There is no approximation algorithm of ratio n^{ε} for some $\varepsilon>0$ (polyAPX-hard)
- Lower bound for $\chi(G)$: order (size) ω of maximum clique of G

Edge Coloring (EC)

- Input: Graph G
- Feasible solution: Coloring of E using different colors for adjacent edges
- Goal: Minimize the number of colors used, i.e. find chromatic index $\chi^{\prime}(G)$
- Lower bound for $\chi^{\prime}(G)$: maximum degree $\Delta(G)$
- [Vizing'64]: between $\Delta(G)$ and $\Delta(G)+1$ (simple graphs) between $\Delta(G)$ and $3 \Delta(G) / 2$ (multigraphs)
- [Holyer'80]: NP-complete whether $\Delta(G)$ or $\Delta(G)+1$
- $4 / 3$-approximable in simple graphs and multigraphs
- Best possible approximation unless $\mathrm{P}=\mathrm{NP}$

Path Coloring (PC)

- Input: Graph G, set of paths P
- Feasible solution: Coloring of paths s.t. overlapping paths are not assigned the same color
- Goal: Minimize the number of colors used
- Lower bound: maximum load L
- We can reduce it to GC by representing paths as vertices and overlapping paths as edges (conflict graph)
- Improved lower bound: order ω of the maximum clique of the conflict graph

Path Coloring (PC)

- Corresponding decision problem is NP-complete
- In general topologies the problem is poly-APX-hard
- Proof: Reduction of GC to PC in meshes [Nomikos'96]

Chain PC

- Solved optimally in polynomial time with exactly L colors

Ring PC

- Also known as Arc Coloring
- NP-complete [GJMP 80]
- Easily obtained appr. factor 2 :

Remove edge e and color resulting chain. Color all remaining paths that pass through e with new colors (one for each path)

$$
\begin{aligned}
& S O L_{C} \leq L \\
& S O L \leq S O L_{C}+L \leq 2 \cdot O P T
\end{aligned}
$$

- W. K. Shih, W. L. Hsu: appr. factor $5 / 3$
- I. Karapetian: appr. factor $3 / 2$
- Idea: Use of maximum clique of conflict graph

Ring PC

- V. Kumar: With high probability appr. factor 1.36
- Idea: Use of multicommodity flow problem

Star PC

NP-completeness: Reduction of EC to Star PC

Approximation ratio: at least 4/3

Star PC: Approximability

Reduction of Star PC to EC in multigraphs

Approximation ratio: 4/3

Tree PC

Recursive Algorithm

if tree is a star then color it approximately

else

- Subdivide the tree by "breaking" one of its internal edges
- Color the resulting subtrees
- Join sub-instances by rearranging colors

Tree PC (ii)

$$
\begin{aligned}
& P_{1}=\left\{q=p \cap T_{1} \mid p \in P\right\} \\
& P_{2}=\left\{q=p \cap T_{2} \mid p \in P\right\}
\end{aligned}
$$

(ii)

Approximation ratio equal to the one achieved by the approximate Star PC algorithm, thus 4/3

Bounded Degree Tree PC

- Trees of bounded degree are reduced by the above reduction to multigraphs of bounded size
- EC in bounded size multigraphs can be solved optimally in polynomial time

Generalized Tree (S, d) PC

- Finite set of graphs S
- Tree of degree at most d^{\bullet}

- Optimally (exactly) solvable in polynomial time

Idea:

- Since graphs are finite, coloring can be done in $|P|^{f(S, d)}$
- Recursive algorithm, color rearrangement
- Application: Backbone Networks of customized LANs

Directed Graphs

PC in directed graphs

- D-Chain PC: Reduced to two undirected instances
- D-Ring PC: As above
- D-TreePC: Approximated within a $5 / 3$ factor. Least possible factor is $4 / 3$, though the algorithm known is the best possible among all greedy algorithms [Erlebach, Jansen, Kaklamanis, Persiano'97]
- D-TreePC: Not solved optimally in bounded degree trees

Routing and Path Coloring (RPC)

- Input: Graph G, set of requests $R \subseteq V^{2}$
- Feasible solution: Routing of requests in R via a set of paths P and color assignment to P in such a way that overlapping paths are not assigned the same color
- Goal: Minimize the number of colors used

In acyclic graphs (trees, chains) RPC and PC coincide

Ring RPC

"Cut-a-link" technique [Raghavan-Upfal'94]

- Pick an edge e
- Route all requests avoiding edge e
- Solve chain instance with L colors

Thm: The above is a 2-approximation algorithm
Proof: $L<=2 L_{o p t}<=2$ OPT
V. Kumar: 1.68-approximation with high probability

Tree of Rings RPC

Approximation ratio 3

RPC in (bi)directed topologies

- In acyclic topologies PC and RPC coincide
- In rings there is a simple 2-approximation algorithm.
- In trees of rings the same as before technique gives approximation ratio $10 / 3(=2 \times 5 / 3)$

