Boundary Patrolling Problems

E. Kranakis Carleton University School of Computer Science Ottawa, Ontario, K1S 5B6, Canada

May, 2013

E. Kranakis Carleton University School of Computer Science Otta Boundary Patrolling Problems

Outline

- Boundary Patrolling
 - Motivation
 - Problem
 - Setting
 - Related Work
 - Results
- Different Max Speeds
 - Related Problems
- Conclusion

Boundary Patrolling

E. Kranakis Carleton University School of Computer Science Otta Boundary Patrolling Problems

Motivation

Patrolling problems in computer games

• Safeguard a given region/domain/territory from enemy invasions.

• Patrolling problems in robotics

• Patrolling is defined as the perpetual process of walking around an area in order to protect or supervise it.

Problem

- A set of *k* mobile agents are placed on the boundary of a terrain.
- An intruder attempts to penetrate to the interior of the terrain through a point of the boundary, unknown to and unseen by the agents.
- The intrusion requires some period of time t.

• The agents are required to protect the boundary, arriving before the intrusion is complete.

- Each agent *i* has its own predefined maximal speed *v_i*, for 1, 2, ..., *k*.
- Agents are deployed on the boundary and programmed to move around the boundary, without exceeding their maximum speed.

• Question:

for given speeds $\{v_1, v_2, \ldots, v_k\}$ and time τ , does there exist a deployment of agents which protects the boundary from any intruder with intrusion time not exceeding τ ?

- How do you optimize the frequency of visits to the points of the environment?
- *Idleness (or refresh time:)* is the time elapsed since the last visit of the node.
 - Idleness can be average, worst-case, experimentally verified, etc,...
- In a way, given the input parameters you want to know what is the best effort result you can accomplish!

Patrolling Strategies

• The graph (or environment) to be patrolled is usually approximated by a set of subgraphs forming a (*skeletonization*).

• A skeleton of the environment is defined over which patrolling is being conducted by the robots.

Related Work: Mostly Heuristics

• Heuristics:

- Based on variants of TSP for agents with limited resources [survey Almeida et al. 2004]
- No coordination: reasonable only for very simple agents
 - Many random walks have smaller refresh time than one [Alon et al. 2008, Elsaesser-Sauerwald 2009]
- **Centralized coordination:** two main types of heuristics [Chevaleyre 2004]

- Distributed coordination: using local information exchange
 - tokens, pebbles, white boards, ant/swarm algorithms [Yanovski et al. 2001, Elor-Bruckstein 2010]

Results

- **Goal:** minimize maximal idle time for a set of boundary patrolling robots with distinct maximal speeds $(v_1, v_2, ..., v_k)$
- Studied Environments

Studied Strategies

A 10

I ≡ ▶ < </p>

Traversal Algorithm

- The position of agent a_i at time t ∈ [0,∞) is described by the continuous function a_i(t).
- Hence respecting the maximal speed v_i of agent a_i means that for each real value t ≥ 0 and ε > 0, s.t., εv_i < 1/2, the following condition is true

$$dist(a_i(t), a_i(t+\epsilon)) \le v_i \cdot \epsilon \tag{1}$$

э

(日) (同) (三) (三)

where $dist(a_i(t), a_i(t + \epsilon))$ denotes the distance along the cycle between the positions of agent a_i at times t and $t + \epsilon$.

Definition (Traversal Algorithm)

A traversal algorithm on the cycle for k mobile agents is a k-tuple $\mathcal{A} = (a_1(t), a_2(t), \dots, a_k(t))$ which satisfies Inequality (1), for all $i = 1, 2, \dots, k$.

Definition (Idle time)

Let \mathcal{A} be a traversal algorithm for a system of k mobile agents traversing the perimeter of a circle with the circumference 1.

- The idle time induced by A at a point x of the circle, denoted by I_A(x), is the infimum over positive reals T > 0 such that for each K ≥ 0 there exists 1 ≤ i ≤ k and t ∈ [K, K + T] such that a_i(t) = x.
- O The idle time of the system of k mobile agents induced by A is defined by I_A = sup_{x∈C} I_A(x), the supremum taken over all points of the circle.
- Finally, the idle time, denoted by *I_{opt}*, of the system of *k* mobile agents is defined by *I_{opt}* = inf_A *I_A*, the infimum taken over all traversal algorithms A.

- Domain being traversed by the robots.
 - partition
 - decomposition
- Visualizing the movement of the robots
 - Using the classical concept of Distance Line Graphs: E. J. Marey. La méthode graphique. 1878.
 - The horizontal axis represents time and the vertical axis refers to the position of the corresponding agent on the circle (with 0 and 1 representing the same point).
- Proofs often elaborate.

- Algorithm 1. Proportional Partition
 - Suitable for Segments
- Algorithm 2. Uniform-Cyclic
 - Suitable for Cycles
- Algorithm 3: Hybrid
 - Combination of the above

• Algorithm 1. Proportional Partition

for k agents with maximal speeds (v_1, v_2, \ldots, v_k)

Partition the unit segment into k segments, such that the length of the *i*-th segment s_i equals v_i v_i v_i.

2 For each *i*, place the *i*-th agent at any point of segment s_i .

For each *i*, the *i*-th agent moves perpetually at maximal speed, alternately visiting both endpoints of s_i.

• On unit-length segment or circle, algorithm achieves idle time:

$$I=\frac{2}{v_1+v_2+\cdots+v_k}.$$

• The idle time of any strategy on the unit-length segment or circle is bounded from below by:

$$I_{OPT} \geq \frac{1}{v_1 + v_2 + \dots + v_k}$$

In general,

Proportional-Partition is a 2-approx strategy.

• On the circle

there are some configurations for which the approximation ratio of 2 is tight.

On the segment

- **Theorem.** Proportional-Partition Strategy is optimal for 2 agents, and for any max speeds v_1, v_2 .
- **Conjecture.** Proportional-Partition Strategy is optimal for any number of agents.

- Recall the conjecture that the maximum length of the fence that can be patrolled is $(v_1 + \cdots + v_k)/2$, which is achieved by the simple strategy where each agent *i* moves back and forth in a segment of length $v_i/2$.
- Proportional-Partition Strategy is optimal for any k and any speeds s.t. v₁ = v₂ = ··· = v_k.
- Akitoshi Kawamura and Yusuke Kobayashi ¹ prove
 - Proportional-Partition Strategy is optimal for k = 3 robots.
 - Proportional-Partition Strategy is not optimal for k = 6 robots.
- Nothing known for k = 4, 5 and k > 6.

¹Fence patrolling by mobile agents with distinct speeds, ISAAC=2012=>> = ∽ < ⊂ E. Kranakis Carleton University School of Computer Science Otta Boundary Patrolling Problems

Proportional-Partition not optimal for k = 6 **robots**

 Six robots with speeds 1, 1, 1, 1, 7/3, 1/2 patroling a fence of length 7/2 with idle time T = 1.

• Proportional Partition can only patrol the length $\frac{1+1+1+1+7/3+1/2}{2} = 41/12 < 7/2$ in idle time T = 1.

Cyclic Strategies

• **Goal:** deploy (some of) the robots, all moving around the circle at the same speed, with equal spacing.

• Algorithm 2. Uniform-Cyclic

for k agents with maximal speeds (v_1, v_2, \ldots, v_k) on the circle

• Let
$$v_1 \geq v_2 \geq \cdots \geq v_k$$
.

- Choose r from the range 1..k, so as to maximize: rvr
- Place agents 1, 2, ..., r at equal distances of 1/r around the circle.
- Agents 1, 2, ..., r move perpetually counterclockwise around the circle at speed v_r.
- Agents r + 1, r + 2, ..., k are not used by the algorithm.
- **NB** Can employ this algorithm in either uni-directional or bi-directional circle.

Uniform Cyclic for k = 2

• Consider two robots with arbitrary max speeds $v_1 \ge v_2$

• In an optimal algorithm either 1) both robots patrol (left: $v_1 < 2v_2$) with the speed of the slower or 2) only the faster patrols (right: $v_1 \ge 2v_2$) while the slower robot is obsolete.

Idle time of algorithm Uniform Cyclic

- Algorithm Uniform-Cyclic achieves idle time: $I = \frac{1}{\max_{r} r v r}$.
- Since $I_{OPT} \ge \frac{1}{v_1 + v_2 + \dots + v_k}$, in general, Uniform-Cyclic is a (ln k + 1)-approximation strategy.
- On the bi-directional circle...
 - **Theorem.** Uniform-Cyclic is optimal for k = 2 agents, for any v_1, v_2 .
 - Note: Uniform-Cyclic is sometimes not optimal for $k \ge 3$.
 - On the uni-directional circle...
 - Theorem. Uniform-Cyclic Strategy is optimal for k ≤ 4 agents, for any set of max. speeds.
 - **Conjecture.** Uniform-Cyclic Strategy is optimal for any number of agents.

Proof Outline for k = 3 (1/2)

- Theorem. On the uni-directional circle, algorithm Uniform-Cyclic is optimal for k ≤ 4 agents, for any set of max. speeds.
- **Proof for** k = 3
- Let $v_1 \ge v_2 \ge v_3$
- Fix an arbitrary point x of the circle.
- Consider the infinite sequence of visits to point x by different agents.
- Define patterns as substrings of this sequence, e.g.:
 - [1,3,1] point x is visited by agent 1, next by agent 3, next by agent 1 again.
 - [2, (13)] point x is visited by agent 2, next by agents 1 and 3 (meeting at x).

- Consider forbidden patterns: patterns which cannot appear in any strategy which has smaller idle time than algorithm Uniform-Cyclic.
 - E.g.: [3, 1, 2, 3] is a forbidden pattern, since one of the time periods between visits of two successive agents is of duration at least $\frac{1}{3v_{a}}$.
- All sequences containing the meeting of agents (12) include a forbidden pattern: [(12), 1][(12), 2][1, (12)][2, (12)][3, (12), 3]
- Thus, agents 1 and 2 can never meet in a better strategy.
- Likewise, we show that no pair of agents can ever meet, and in the limit, the idle time of Uniform-Cyclic cannot be beaten.

Three Case Studies

- Can the ability of agents to change directions improve the idle time?
 - We have shown that this is not the case for any setting involving *k* = 2 agents.
 - However, there are settings already for k = 3 agents, when using negative speeds (i.e., reversing direction) by the participating agents leads to a better idle time.
- Three Case Studies
 - Proportional Partition Algorithm
 - Uniform Cyclic Algorithm
 - Hybrid Algorithm

Case Study: Proportional Partition

- Horizontal axis represents time; vertical axis refers to the position of the corresponding agent on the circle (with 0 and 1 representing the same point)
- Two-directional circle, $k = 3, v_1 = 1, v_2 = 1/2, v_3 = 1/3$

• Proportional-Partition Algorithm:

$$I = \frac{1}{1 + 1/2 + 1/3} = \frac{12}{11}$$

E. Kranakis Carleton University School of Computer Science Otta Boundary Patrolling Problems

Case Study: Uniform

- Horizontal axis represents time; vertical axis refers to the position of the corresponding agent on the circle (with 0 and 1 representing the same point)
- Two-directional circle, $k = 3, v_1 = 1, v_2 = 1/2, v_3 = 1/3$

• Uniform-Cyclic:

- A "partition" strategy may not necessarily be optimal.
- Instead robots are allocated "overlapping" subdomains dynamically.
- In the picture below

by reversing direction, a faster robot can help a slower moving robot reduce the idle time.

Case Study: Hybrid

- Horizontal axis represents time; vertical axis refers to the position of the corresponding agent on the circle (with 0 and 1 representing the same point)
- There exist settings such that in order to achieve the optimal idle time, some agents need to move in both directions.
- two-directional circle, $k = 3, v_1 = 1, v_2 = 1/2, v_3 = 1/3$

• A hybrid strategy:

$$I = 35/36 < 1$$

Lonely Runners

E. Kranakis Carleton University School of Computer Science Otta Boundary Patrolling Problems

Similarities to Lonely Runner (Willis 1967)

- **Problem** There are *k* runners on a unit circle, running perpetually around with **constant** speeds {*v*₁, *v*₂,..., *v*_k}.
- They all start together from the same starting spot and continue running at their own speed forever.
- They never vary their speeds, stop, or interfere with each other.

• **Question:** Is it always true that for every runner, at some moment in time, their distance from the nearest runner will be at least 1/k?

- 40 years of incremental progress.
- Solved for $k \leq 6$.

k	Year Proved	Proved by
3	1972	Betke and Wills; Cusick
4	1984	Cusick and Pomerance; Bienia et al.
5	2001	Bohman, Holzman, Kleitman; Renault
6	2008	Barajas and Serra

- Problem difficult even for specific speeds.
- Some very recent progress using dynamic systems theory.
- Problem related to Diophantine approximation theory (Littlewood's conjecture) and number theory (Goldbach's and Polignac's conjectures).

Example: Runners from the Origin

- k runners start at 0, running at speeds 1, 2, ..., k.
- **Question:** Will there be a time when each runner will be distance at least $\frac{2}{k}$ from the start?
- Claim: With positive probability there will be no runners in the interval I = [-a, a], for some a.
 - Let E_i be the event that the *i*-th runner is in the interval *I*.
 - Since cycle has length one and a runner with speed *i* performs *i* laps in a unit of time, $Pr[E_i] = 2a$, for each *i*.
 - Therefore $\Pr[\exists (runner in the interval I)] \le \sum_{i=1}^{k} 2a = 2ka$.
 - For $a < \frac{1}{2k}$ we derive that

 $Pr[no runner is in the interval I] \ge 1 - 2ka > 0.$

• Recall *I* has length 2*a*, which is $\approx \frac{1}{k}$, when $a \approx \frac{1}{2k}$.

- One of the main difficulties is that robots get to choose their speeds (up to a max value).
- What is the optimal solution to the boundary patrolling problem on the circle for agents with known maximal speeds?

• solved for $k \leq 2$.

- Is a Proportional-Partition strategy optimal on the segment?
 - proved for $k \leq 2$.
- Is Uniform-Cyclic strategy optimal on uni-directional cycle?
 proved for k ≤ 4.
- Which strategies will work best for patroling problems in geometric scenarios (area patrolling) and in graphs?

→ Ξ →

• How about fragmented domains?

- J. Czyzowicz, L. Gasieniec. A. Kosowski, E. Kranakis. Boundary Patrolling by Mobile Agents with Distinct Maximal Speeds. In proceedings of 19th European Symposium on Algorithms. ESA 2011.
- A. Collins, J. Czyzowicz, L. Gasieniec, A. Kosowski, E. Kranakis, D. Krizanc, R. Martin, O. Morales Ponce. Optimal Patrolling of Fragmented Boundaries. SPAA 2013.