# Scheduling in switching networks 

Leonidas Tsepenekas

National Technical University of Athens

June 10, 2015

## Overview

(1) Introduction
(2) Gopal-Wong algorithm
(3) The A-PBS algorithm
(4) The Split-Graph algorithm
(5) A class of graphs with polynomial solution to the problem
(6) Experimental results

## A simple example



- We have two unique roles. The receivers and the transmitters.
- All communication stream goes through the black box.
- The black box is actually a crossbar network.

- The overall traffic is already known and it consists of messages between transmitter $i$ and receiver $j$ with known duration.
- Construct transmission frames.
- Objective: Minimize the total transmission time, with regards to the switching cost.


## Mathematical formulation (Graph Notation)

- The system can be seen as a bipartite graph $G(U, V, E, w)$.
- Every transmitter corresponds to a node of $U$.
- Every receiver corresponds to a node of $V$.
- A message between transmitter $u$ and receiver $v$ corresponds to an edge $(u, v) \in E$.
- The transmission time required by a communication task $e \in E$ corresponds to $w(e)$.
- We also consider $d$ to be the cost of reconfiguring the crossbar switch.


## Objective

Find a collection $\left\{M_{1}, M_{2}, \ldots, M_{s}\right\}$ of $s$ matchings (schedule) such that $\forall i, j, i \neq j: M_{i} \cap M_{j}=\varnothing, \bigcup_{i=1}^{s} M_{i}=E$ and $\sum_{i=1}^{s} w\left(M_{i}\right)+s \cdot d$ is minimized. Where $w\left(M_{i}\right)=\max \left\{w(e) \mid e \in M_{i}\right\}$.

## Important Results

- The problem in known to be NP-complete.
- It is also known to be $\frac{4}{3}-\epsilon$ inapproximable $\forall \epsilon>0$, unless $P=N P$.
- If $d=0$ then is proven to be solvable in polynomial time.
- If all the edges of the graph are of the same weight then again it is solvable in polynomial time, since it is equivalent to the bipartite edge coloring problem.
- Many clever approximation algorithms developed, as well as a very good performing heuristic.


## The Gopal-Wong algorithm $1 / 3$

- It is based on a heuristic.
- Their main concern was to minimize the number of switchings.

Lower bound on the number of switchings
$B=\max (\Delta(G),\lceil|E| / K\rceil)$, where K is the number of the available transponders.

- The algorithm indeed achieves a schedule with $B$ switchings.


## The Gopal-Wong algorithm 2/3

1 Construct a $B$-regular graph by adding new vertices and edges to $G$.
2 Assign zero weight to the newly added edges.
3 Sort the edges in ascending order, $e_{1}, e_{2}, \ldots, e_{\left|E^{\prime}\right|}$, according to weight.
$4 i \leftarrow 1, j \leftarrow 1$
$5 P \leftarrow\left\{e_{1}\right\}, \quad Q \leftarrow\left\{e_{1}\right\}$
6 while $j<B$ do
7 while $Q$ is not a perfect matching do
if there is an augmenting path for $Q$ in $P$ then
augment $Q$
else
$i \leftarrow i+1$
end
end
$P \leftarrow P \cap Q, Q \leftarrow\{ \}$
$j \leftarrow j+1$
17 end

## The Gopal-Wong algorithm 3/3

- The main intuition behind the algorithm is to group together messages of the same magnitude.
- The Gopal-Wong algorithm has unbounded approximation ratio.


## Proof

Assume $|V|=|U|=2 n+1$.
Consider also the following weight assignments: $\forall i \in[1, n+1]$, $\forall j \in[1,2(n-i)+2]: w(i, 2 i-1)=M>1, w(i+j, 2 i-1+j)=1$ Otherwise $w(i, j)=0$. If run on this graph, the algorithm gives $n+1$ matchings each containing one edge with weight $M$. Thus the total duration time is $(n+1) M$. The optimal is achieved when we take all the edges of cost $M$ in one matching and pack the rest into $n$ matchings. So the optimal cost is $M+n$ and the approximation ratio is $\frac{(n+1) M}{M+n} \approx n+1$, as $M$ goes to infinity.

## The A-PBS algorithm $1 / 2$

- Published by Afrati, Aslanidis, Bampis and Milis.
- It is based on the idea of preemption.
- Define $W(u)=\sum_{\{u, v\} \in E} w(u, v)$ and $W(G)=\max \{W(u) \mid u \in G\}$.


## The algorithm

(a) Round up the weight of every edge of the initial graph $G=(U \cup V, E, w)$ to a multiple of a given value $\alpha$. Call the obtained graph $G^{\prime}=\left(U \cup V, E, w^{\prime}\right)$.
(b) Split every edge $e_{i j}$ of $G^{\prime}$ into $w^{\prime}\left(e_{i j}\right) / \alpha$ edges having each a weight equal to $\alpha$. Call the induced polygraph $G_{\alpha}$.
(c) Find exactly $\frac{W\left(G_{\alpha}\right)}{\alpha}$ matchings in $G_{\alpha}$, covering all of its edges.

## The A-PBS algorithm 2/2

- A straight forward lower bound of the problem is $W(G)+d \cdot \Delta(G)$.


## A-PBS $(\mathrm{d}+1)$ has approximation ratio $2-\frac{1}{d+1}$

- The cost of the algorithm is $\frac{W\left(G_{\alpha}\right)}{\alpha} \cdot \alpha+\frac{W\left(G_{\alpha}\right)}{\alpha} \cdot d$.
- Because of the rounding $W\left(G_{\alpha}\right) \leq W(G)+(\alpha-1) \Delta(G)$.
- Thus, the total cost is bounded above by $W(G)+(\alpha-1) \Delta(G)+\frac{W(G)+(\alpha-1) \Delta(G)}{\alpha} \cdot d=$ $\frac{d+\alpha}{\alpha} \cdot(W(G)+(\alpha-1) \Delta(G))$.
- Given that $\alpha=d+1$ we get

$$
\cos t \leq \frac{2 d+1}{d+1}(W(G)+d \cdot \Delta(G))=\left(2-\frac{1}{d+1}\right) \cdot O P T .
$$

## The Spilt-Graph algorithm $1 / 3$

## SGA

(a) Split the initial graph $G(U, V, E)$ in two graphs $G_{M}\left(U, V, E_{M}\right)$ and $G_{m}\left(U, V, E_{m}\right)$, where $E_{m}=\{e \mid e \in E, w(e)<d\}$ and $E_{M}=\{e \mid e \in E, w(e) \geq d\}$.
(b) Use Routine 1 to find a maximal matching $M$ in $G_{M}$.
(c) Use Routine 2 to calculate the weight of the matching to be removed. Remove the corresponding parts of the edges.
(d) Add edges to $M$ from $E_{m}$ to maximize its cardinality and remove them form $E_{m}$.
(e) From the induced graph move all edges of weight less than $d$ to $E_{m}$.
(f) Repeat until $E_{M}=\varnothing$.
(g) Calculate $\Delta_{m}$ matchings in $G_{m}$, where $\Delta_{m}$ is the maximum degree.

## The Spilt-Graph algorithm 2/3

## Routine 1

(a) $M=\varnothing$
(b) Sort all nodes in decreasing order according to their work $(W(u))$. Let $L$ be the induced list.
(c) Let $x$ be the first node in $L$. Find his first neighbour in $L$, say $y$, and increase $M \leftarrow M \cup\{x, y\}$. Remove $x, y$ from $L$.
(d) Repeat until $M$ is maximal.

The idea behind the above routine is to reduce as much as possible the workload of $G_{M}$.

## The Spilt-Graph algorithm 3/3

## Routine 2

(a) For each $e \in M$, with corresponding weight $w(e)$, calculate what the value $W\left(G^{\prime}\right)$ would be if all the edges in the matching were to be reduce be $w(e)$. Edges with weight less than $w(e)$ are completely removed. Then set:

$$
r(e)= \begin{cases}w(e) & \text { if } W\left(G^{\prime}\right)=W(G)-w(e) \\ 0 & \text { otherwise }\end{cases}
$$

(b) Calculate $R=\max \{r(e) \mid e \in M\}$.
(c) For each edge $e \in M$ set its new weight

$$
w^{\prime}(e)= \begin{cases}w(e)-R & \text { if } w(e)>R \\ 0 & \text { otherwise }\end{cases}
$$

## A polynomial solution to the problem $1 / 2$

## Definition

A weighted bipartite graph will be called unvarying if the number of edges of any specific weight $w$ incident to any node $u$ is less than or equal to the number of edges of the same weight, which are adjacent to the node with the maximum degree.

## A-PBS-UN

(a) Split the graph in $|W|$ graphs $G_{1}, G_{2}, \ldots, G_{|W|}$, each having edges of the same weight, where $|W|$ is the number of different edge weights appearing in $G$.
(b) Find exactly $\Delta\left(G_{i}\right)$ matchings in $G_{i}$ so that the union of these matchings covers all edges of $G_{i}$.
(c) The union of the $|W|$ matchings found is an optimal solution.

## A polynomial solution to the problem $2 / 2$

## A-PBS-UN is optimal

- Let $G_{1}, G_{2}, \ldots, G_{a}$ be the unique weight graphs.
- Let $u$ with $d(u)=\Delta(G)$. $G$ unvarying $\Longrightarrow$ there are exactly $\Delta\left(G_{i}\right)$ edges of weight $i$ incident to $u$. Thus

$$
\Delta(G)=\sum_{i=1}^{a} \Delta\left(G_{i}\right) \text { and } W(G) \geq W(u)=\sum_{i=1}^{a} i \cdot \Delta\left(G_{i}\right)
$$

- The cost of each graph is $d \cdot \Delta\left(G_{i}\right)+i \cdot \Delta\left(G_{i}\right)$.
- The total cost is $\sum_{i=1}^{a}\left(d \cdot \Delta\left(G_{i}\right)+i \cdot \Delta\left(G_{i}\right)\right) \leq d \cdot \Delta(G)+W(G)$


## Experimental results




