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Types of Problems

 For certain problems, input is not available from the beginning

 Certain decisions are requested on the way

 Output required



Online Algorithms 3Theory of Computation

Online vs Offline

 Online Algorithms

 Input arrives as sequence of input portions

 The system must react in response to request

 Future input is unknown

 Not optimal

 Offline Algorithms

 Entire input is given in advance

 Solve the problem at hand

 Future is known

 Optimal
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Competitive Analysis

 Big O complexity can’t be used: 

 For every algorithm there will be a sequence that makes it look 
foolish

 Competitive Ratio

 Comparison with an optimal offline algorithm processing the same 
sequence of requests

 Maximum cost over all possible input sequences divided by the cost 
of an optimal offline algorithm

 Related to minimax concept of game theory

• Online player vs Adversary
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Competitive Analysis

 A little formalism:

 costA(σ): the cost of an online algorithm A on the input sequence σ

 costOPT(σ): the cost of the optimal offline algorithm on σ

 Algorithm A is c competitive if there exists a constant b such that on 
every request sequence σ:

𝑐𝑜𝑠𝑡𝐴(𝜎) ≤ 𝑐 ∙ 𝑐𝑜𝑠𝑡𝑂𝑃𝑇(𝜎) + 𝑏



Online Algorithms 6Theory of Computation

The Ski Rental Problem

 Cost for renting a pair of skis

 Cost for buying a pair of skis

 Rent or Buy? When?

 How do we decide?

 Request = “Take a ski trip”

 Actions = “rent” | “buy” | “use skis already bought”

 Costs = 1, s, 0 respectively

 On a sequence of t requests any sensible online algorithm is of the form:

“Rent for the first k trips, then buy, then use already bought”
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The Ski Rental Problem

 Online Cost 
 t, 𝑡 ≤ 𝑘

 k+s, 𝑡 > 𝑘

 Find k that minimizes the competitive ratio. 

 For given k, k+1 maximizes the ratio
𝑘 + 𝑠

min(𝑘 + 1, 𝑠)

 For given k, k+1 requests maximize the ratio. The ratio is minimized for 
𝑘 = 𝑠 − 1

 The on-line player should rent until enough ski trips have occurred so 
that he would have done better if he had bought skis initially

 Offline Cost 

 min(s, t)
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Paging

 Memory management scheme

 Memory hierarchy

 Page fault minimization

 Set of n pages

 RAM with capacity for k pages

 The system receives requests for pages in RAM

 If the referenced page is in the RAM, the request can be served

 If not, then a page fault occurs

 The missing page is loaded from secondary storage and an online 
algorithm has to decide which page to evict
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Paging

 Common algorithms 

 LRU: evict the page in memory

that was requested least recently

 FIFO: evict the page that has been longest

in memory  

 Theorem

 FIFO and LRU are k-competitive, where k the size of main memory in 
pages

 There exists a more general class of algorithms that achieve a 
competiveness of k
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Paging

 Marking

 Each page is associated with a bit called 

mark

 Initially all pages are set as unmarked

 Stages of page requests

 A page is marked when it is first requested 

in this stage

 On a fault, an unmarked page is evicted

 Theorem

 Any marking algorithm is k-competitive
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Paging

 Theorem

 No deterministic online algorithm for the paging problem can achieve 
a ration smaller than k

 Proof

 Optimal Offline Algorithm

• Belady’s greedy algorithm

• “Sees” in the future

• On a fault, evict the page whose next request occurs furthest in 
the future
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Paging

 Proof

 A and OPT start with the same set of pages in memory

 The adversary restricts its request sequence to a set of k+1 pages, 
the pages initially in the memory and another one

 It always requests the page that is outside of the memory

 This can be continued for an arbitrary number of requests, resulting 
in a sequence σ on which A faults on every request

 What remains is to show that 𝑐𝑜𝑠𝑡𝑂𝑃𝑇(𝜎) ≤
𝜎

𝑘

 At each fault, the adversary evicts the page whose first request 
occurs furthest in the future

 The adversary is guaranteed that there will be at least k-1 pages 
requested between any two faults, so the adversary faults at most 
on every kth request
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Adversaries

 Online algorithms can achieve better performance if they are allowed to 
make random choices

 The competitive ratio of a randomized algorithm is defined with respect 
to an adversary

 There are three types of adversaries:

 oblivious adversary (weak)

• generates the whole request in advance

 adaptive online adversary (medium)

• it may observe the online algorithm and generate next request 
based to all previous requests

 adaptive offline adversary (strong)

 knows everything. Even randomization can’t face it
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Secretary Problem

 Also known as the marriage problem, the game of googol

 There is a single secretarial position to fill

 There are n applicants for the position

 The applicants can be ranked from best to worst unambiguously

 The goal is to have the highest probability of selecting the best applicant 
of the whole group

 They are interviewed sequentially in random order

 Immediately after the interview, the applicant is either accepted or 
rejected irrevocably
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Secretary Problem

 Strategy

 Naive: pick the ith candidate: 𝑃 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 =
1

𝑁

 Interview the first r applicants for r<n 

 Accept the very next applicant that is better than all the first r you 
interviewed

 A=n+1 the best applicant, r the last that will be rejected
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Secretary Problem

 Strategy

 A won’t be chosen, unless:

• 𝑛 ≥ 𝑟

• The highest applicant in [1,n] is the same as in [1,r], 𝑃 =
𝑟

𝑛

1

𝑁

𝑃 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑃 𝑟 =
1

𝑁

𝑟

𝑟
+
𝑟

𝑟 + 1
+⋯+

𝑟

𝑁 − 1
=
𝑟

𝑁
 

𝑛=𝑟

𝑁−1
1

𝑛

 For the optimal solution, P’(r)=0 => r =
1

𝑒
≈ 0.37

 Coincidentally, P 𝑟𝑚𝑎𝑥 =
1

𝑒
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Applications and Further Research

 Stock Markets

 Algorithms for stock prediction

 Large networks

 Network switches

 TCP Acknowledgement

 Robot Motion Planning

 Bin Packing

 Storage Allocation and Cache Management

 Job Scheduling
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Questions?
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