Generalized Bipartite Matching

Peli Teloni

Network Algorithms
ulIAY

July 22, 2014

1/21

Outline

© Introduction

® Mixed Packing-Covering LP

® Rounding

© References

2/21

Introduction

Outline

© Introduction

3/21

Introduction

Real-Life situation

4/21

Introduction

Real-Life situation

4/21

Introduction

Real-Life situation

‘C@){@ e-mail from DVD-rental store

Bob

4/21

Introduction

Real-Life situation

L
&%&)

e-mail from DVD-rental store

Bob
wants to watch

a movie

4/21

Introduction

Real-Life situation

L
&%&)

e-mail from DVD-rental store

Recommended for you

Bob
wants to watch

a movie

4/21

Introduction

Real-Life situation

A
P

e

-

— e-mail from DVD-rental store
Recommended for you

Bob

wants to watch
Capote

4/21

Introduction

Bob

wants to watch

Capote

Real-Life situation

e-mail from DVD-rental store

Ordering Capote...

capote

4/21

Introduction

Real-Life situation

e-mail from DVD-rental store

Ordering Capote...
te
Bob e | DVD not

wants to watch available, try

Capote again tomorrow

4/21

Introduction
A Simple Recommender System

capote

v
»
"

5/21

Introduction
A Simple Recommender System
capote
\/
AR
W S

AHDLSIH NYIIEINY

(@ ws J

t4

Step 1: Predict preferences

co o o co [

3
2
1
1
1

o e

-
B po B Ot

5/21

Introduction
A Simple Recommender System
capote
\/
AR
W S

AHDLSIH NYIIEINY

Step 1: Predict preferences

Step 2: Recommend

preferred movies

3
2
1
1
1

5/21

Introduction

A Simple Recommender System

¢
ERASERHEAD
=
|| eraseruEaD
-l 3
&)

AHOLSIH NYIIHINY M—

Step 1: Predict preferences

Step 2: Recommend

preferred movies

2
4
1
1

5/21

Introduction

A Simple Recommender System

ssssssssss

-

capote
capote

v
Gy »
ol

Step 1: Predict preferences

Step 2: Recommend

preferred movies

2
4
1
1

5/21

Introduction

A Simple Recommender System

<
ERASERHEAD
!
| EraserHEAD
- R
ﬂ

capote
capote

v
Gy »
g L

Step 1: Predict preferences

Step 2: Recommend
preferred movies

under constraints

2
4
1
1

5/21

Introduction

capote
capote

v
Gy »
g L

A Simple Recommender System

¢
ERASERHEAD
¢
| ERASERHEAD

2
4
@

1

Step 1:

Step 2:

Predict preferences

Recommend
preferred movies
under constraints

5/21

Introduction
What we just saw

1<4d,<1

0<d, <2

6/21

Introduction
What we just saw

1<4d,<1

0<d, <2

6/21

Introduction
What we just saw

1<d,<2

0<d, <2

6/21

Introduction

What we just saw

Generalized Bipartite Matching

Input: a bipartite weighted graph G = (U, V,E) with degree constraints
Output: a max-weight subset of edges that satisfy these constraints

6/21

Introduction

Solving GBM

® Optimal solution in poly-time
* max-flow techniques
® linear programming formulation

7/21

Introduction

Solving GBM

¢ Optimal solution in poly-time
* max-flow techniques

® linear programming formulation GUROBI

OPTIMIZATION

® solvers in practice (e.g. Gurobi)

® behave well for up to medium size instances

® break down to large instances NETELIX

® at present: Netflix has 20M users, 10k's of movies

7/21

Introduction

Solving GBM

¢ Optimal solution in poly-time
® max-flow techniques

® linear programming formulation

. . . GUROBI
® solvers in practice (e.g. Gurobi) SPTiMIZATION

® behave well for up to medium size instances

® break down to large instances NETFLIN
* at present: Netflix has 20M users, 10k's of movies

® In this paper: near-optimal solution
® poly-log time
® strong approximation guarantees
e first distributed algorithm

7/21

Introduction

Overview for GBM¢

Definition of GBM¢

Given € > 0 and an instance of GBM, if GBM is
feasible then find E C E s.t.:

(1 - €)l(v)] < |Eo| < [(1+€)b(v)] YoeUUV

Y w(e) > (1—¢€)OPT
ecE

8/21

Introduction

Overview for GBM¢

Definition of GBM¢

Given € > 0 and an instance of GBM, if GBM is
feasible then find E C E s.t.:

(1 - €)l(v)] < |Eo| < [(1+€)b(v)] YoeUUV

Y w(e) > (1—¢€)OPT
ecE

Step 1: LP relaxation

® outputs "edge probabilities”
® mixed packing-covering LP
¢ distributed approximation solver

8/21

Introduction

Overview for GBM¢

Definition of GBM¢

Given € > 0 and an instance of GBM, if GBM is
feasible then find E C E s.t.

(1 - e)l(v)] < |Eo| < [(1+€)b(v)] YoelUUV

Y w(e) > (1—¢€)OPT

ecE
Step 1: LP relaxation Step 2: Rounding
® outputs "edge probabilities” ® outputs actual matching
® mixed packing-covering LP ¢ distributed dependent
¢ distributed approximation solver ® keeps approx. guarantees

8/21

Mixed Packing-Covering LP

Outline

® Mixed Packing-Covering LP

9/21

Mixed Packing-Covering LP

max w- T

st. Pr<p
Cx>c
x>0

® subclass of LPs
® non negative coefficients/variables
e facility location, circuit routing etc.

10/21

Mixed Packing-Covering LP

subclass of LPs

max w- X ° non negative coefficients/variables

s.t. Pz <p facility location, circuit routing etc.

Cz> ¢ LPgem is an example of LPvmpc

® constraints: Ms
20 . .
° variables and weights: Bs

max . w(e)z.
eeE

s.t. > z.<b(v)

eckE,

> ze >1(v)

eckE,

z. € {0,1}

10/21

Mixed Packing-Covering LP

MPCSolver

11/21

Mixed Packing-Covering LP

MPCSolver

el4 e 0.8 0.3 olb

11/21

Mixed Packing-Covering LP

MPCSolver

el4 e 0.8 0.3 olb

11/21

Mixed Packing-Covering LP

MPCSolver

e14 o 1 (.3 olb

11/21

Mixed Packing-Covering LP

MPCSolver

e 14 o 1 o1 eolb

11/21

Mixed Packing-Covering LP

MPCSolver

repeat:
compute yi(z) = exp(u(Piz — 1)) for i€ [m]
compute z;(z) = exp(u(l — C;z)) for i€ [k]
for 7=1,...,n

Py
if oy = 1 —a then z; = max{z;(1+ 5),5}
J

T
iF By >14a then =, =z,;(1 —p5)

T
Cjz

until convergence

11/21

Mixed Packing-Covering LP

MPCSolver

repeat:
compute yi(z) = exp(u(Pix — 1)) for i€ [m]
compute z;(z) = exp(u(l — C;z)) for i€ [k]
for 5=1,...,n

PjTy
if ar, <1—athen u; =max{z;(1+5) 6}
J
. P-Ty
if o >1+q then z; =2;(1—p)
J

until convergence

O (e% ln3(kmMnxmax)> rounds J

11/21

Mixed Packing-Covering LP

Practical MPCSolver

® Fast convergence: poly-log rounds
® Almost feasible: constraints satisfied up to (1=+¢€)

¢ Easy to implement: matrix-vector operations

12/21

Mixed Packing-Covering LP

Practical MPCSolver

® Fast convergence: poly-log rounds

® Almost feasible: constraints satisfied up to (1=+¢€)
¢ Easy to implement: matrix-vector operations

® Parallelization

® Shared-memory: straightforward
® Shared-nothing: clever data partitioning

12/21

Mixed Packing-Covering LP

Practical MPCSolver

® Fast convergence: poly-log rounds

® Almost feasible: constraints satisfied up to (1+¢)
¢ Easy to implement: matrix-vector operations

® Parallelization

® Shared-memory: straightforward
® Shared-nothing: clever data partitioning

® Near-optimality: objective at least (1 —¢e)OPT
® compute bounds on objective
Amin (only covering)
® Amax (only packing)
* add constraint wlx >A
® binary search for A

® at most log, log;_. (Qﬁ;‘() steps

12/21

Rounding

Outline

® Rounding

13/21

Rounding

GBM Rounding

Input: a solution of GBM, (near-optimal, €-feasible, fractional)
Output: an integral solution that preserves

O c-feasibility

@ near-optimality

14/21

Rounding

GBM Rounding

Input: a solution of GBM¢ (near-optimal, €-feasible, fractional)
Output: an integral solution that preserves

O e-feasibility

@ near-optimality

I[dea |: independent rounding

® Satisfies (2) in expectation

® Violates (1)

14/21

Rounding

GBM Rounding

Input: a solution of GBM¢ (near-optimal, €-feasible, fractional)
Output: an integral solution that preserves

O e-feasibility

@ near-optimality

I[dea |: independent rounding

® Satisfies (2) in expectation

® Violates (1)

14/21

Rounding

GBM Rounding

Input: a solution of GBM¢ (near-optimal, €-feasible, fractional)
Output: an integral solution that preserves

O e-feasibility

@ near-optimality

I[dea |: independent rounding

® Satisfies (2) in expectation

® Violates (1)

14/21

Rounding

GBM Rounding

Input: a solution of GBM¢ (near-optimal, €-feasible, fractional)
Output: an integral solution that preserves

O e-feasibility

@ near-optimality

I[dea I: independent rounding

® Satisfies (2) in expectation
® Violates (1)

® need for dependent rounding

14/21

Rounding

Dependent Rounding

Warm up

Randomized sequential Rounding [Gandhi et al. 2006]

15/21

Rounding

Dependent Rounding

Warm up

Randomized sequential Rounding [Gandhi et al. 2006]

O find a fractional cycle or maximal path

15/21

Rounding

Dependent Rounding

Warm up

Randomized sequential Rounding [Gandhi et al. 2006]
O find a fractional cycle or maximal path

® round at least | edge on the cycle/path

15/21

Rounding

Dependent Rounding

Warm up

Randomized sequential Rounding [Gandhi et al. 2006]
O find a fractional cycle or maximal path

® round at least | edge on the cycle/path

1.7 e 10 e 10
.3 1
0.4 1
140 140

® repeat

15/21

Rounding

Dependent Rounding

Warm up

Randomized sequential Rounding [Gandhi et al. 2006]
O find a fractional cycle or maximal path
® round at least | edge on the cycle/path
® repeat

e 10

15/21

Rounding

Dependent Rounding

Warm up

Randomized sequential Rounding [Gandhi et al. 2006]
O find a fractional cycle or maximal path

® round at least | edge on the cycle/path

oll o 17 o L0 e 10
1
1/
! 1
1
200 14 @ 140

® repeat

15/21

Rounding

Distributed Rounding

¢ Partition edges to compute nodes

® size of each node: number of vertices
® each node: same number of edges

Full graph

16/21

Rounding

Distributed Rounding

¢ Partition edges to compute nodes

® size of each node: number of vertices
® each node: same number of edges

Full graph

16/21

Rounding

Distributed Rounding

Partition edges to compute nodes

® size of each node: number of vertices
® each node: same number of edges

local cycle = global cycle

* local maximal path % global maximal path

° M b i Node 1

Full graph Node 2

16/21

Rounding

DDRounding

O Partition edges uniformally (fractional only)
® Process local cycles

® k compute nodes, m vertices = O(mk) edges left
©® merge remaining fractional edges (conceptually)
O Repeat until graph small

® Run sequential version (cycles, max. paths)

17/21

Rounding

DDRounding

O Partition edges uniformally (fractional only)
® Process local cycles

® k compute nodes, m vertices = O(mk) edges left
©® merge remaining fractional edges (conceptually)
O Repeat until graph small
® Run sequential version (cycles, max. paths)

n = rlte

number of edges

time: O (r*7[c/v])

7 =0(@""7) size of node

17/21

Rounding

DDRounding in Practice

Edges already partitioned by MPCSolver

Empirical: most work done in first iteration

Scales nicely

Further communication improvement:

halving available nodes at each iteration
so, e.g. only odd nodes send their data

Further time improvement:

a node performs cycle detection using DFS

when cycle hit, an edge is rounded

restart DFS?

nol decompose cycle C to paths C; and C, (reverse)
replace DFS stack of C with maxCy,Cp

mark node if no cycle found

18/21

References

Outline

© References

19/21

References

References

@ Rainer Gemulla.
presentation.

@ Faraz Makari Manshadi, Baruch Awerbuch, Rainer Gemulla, Rohit Khandekar, Julian
Mestre, and Mauro Sozio.
A distributed algorithm for large-scale generalized matching.

20/21

Thank youl

21/21

	Introduction
	Mixed Packing-Covering LP
	Rounding
	References

