On Nash Equilibria for a Network Creation Game Network Algorithms and Complexity

Andreas Mantis

MPLA

July 22, 2014

Andreas Mantis (MPLA) On Nash Equilibria for a Network Creation Ga

• Network design is a fundamental problem in computer science.

- Network design is a fundamental problem in computer science.
- It assumes, however, a central authority constructing the network.

- Network design is a fundamental problem in computer science.
- It assumes, however, a central authority constructing the network.
- In practice, networks are built by selfish agents. i.e the internet!

- Network design is a fundamental problem in computer science.
- It assumes, however, a central authority constructing the network.
- In practice, networks are built by selfish agents. i.e the internet!
- How bad can this lack of central authority be? (Price of Anarchy)

• n players, each one associated with a vertex.

- n players, each one associated with a vertex.
- These players have to build an undirected graph.

- n players, each one associated with a vertex.
- These players have to build an undirected graph.
- Each player installs a connection to another player (that later becomes undirected).

- n players, each one associated with a vertex.
- These players have to build an undirected graph.
- Each player installs a connection to another player (that later becomes undirected).
- Each player pays α for each connection he installs.

- n players, each one associated with a vertex.
- These players have to build an undirected graph.
- Each player installs a connection to another player (that later becomes undirected).
- Each player pays α for each connection he installs.
- Each player values small distances between him and every other vertex.

The Game - Formally

- Set of players $V = \{1, ..., n\}$.
- A strategy for a player $v \in V$ is a set of vertices $S_v \subseteq V \setminus \{v\}$.

The Game - Formally

- Set of players $V = \{1, ..., n\}$.
- A strategy for a player $v \in V$ is a set of vertices $S_v \subseteq V \setminus \{v\}$.
- $G(\vec{S}) = (V, E)$ is the result of the combination of strategies $\vec{S} = (S_1, ..., S_n)$.

- Set of players $V = \{1, ..., n\}$.
- A strategy for a player $v \in V$ is a set of vertices $S_v \subseteq V \setminus \{v\}$.
- $G(\vec{S}) = (V, E)$ is the result of the combination of strategies $\vec{S} = (S_1, ..., S_n)$.
- The set of the edges $E = \bigcup_{v \in V} \bigcup_{w \in S_v} \{v, w\}.$

- Set of players $V = \{1, ..., n\}$.
- A strategy for a player $v \in V$ is a set of vertices $S_v \subseteq V \setminus \{v\}$.
- $G(\vec{S}) = (V, E)$ is the result of the combination of strategies $\vec{S} = (S_1, ..., S_n)$.
- The set of the edges $E = \bigcup_{v \in V} \bigcup_{w \in S_v} \{v, w\}.$
- Note:Sometimes it will be convenient to consider the edges directed.

- Set of players $V = \{1, ..., n\}$.
- A strategy for a player $v \in V$ is a set of vertices $S_v \subseteq V \setminus \{v\}$.
- $G(\vec{S}) = (V, E)$ is the result of the combination of strategies $\vec{S} = (S_1, ..., S_n)$.
- The set of the edges $E = \bigcup_{v \in V} \bigcup_{w \in S_v} \{v, w\}.$
- Note:Sometimes it will be convenient to consider the edges directed.
- $Cost(v, \vec{S}) = \alpha |S_v| + \sum_{w \neq v} \delta(v, w)$, where $\delta(v, w)$ is the distance between v and w in $G(\vec{S})$.

• "How bad is the lack of central authority" in relation to what objective?

- "How bad is the lack of central authority" in relation to what objective?
- We want to minimize the total cost.

- "How bad is the lack of central authority" in relation to what objective?
- We want to minimize the total cost.
- We compare the "uncoordinated" total cost with the "coordinated" total cost.

- "How bad is the lack of central authority" in relation to what objective?
- We want to minimize the total cost.
- We compare the "uncoordinated" total cost with the "coordinated" total cost.
- In the "uncoordinated" case, we need some kind of stable situation (equilibrium).

A combination of strategies \vec{S} forms a **Nash Equilibrium** (NE) if, for any player $v \in V$ and every other combination of strategies \vec{U} that differ from \vec{S} in v's component,

 $Cost(v, \vec{S}) \leq Cost(v, \vec{U}).$

A combination of strategies \vec{S} forms a **Nash Equilibrium** (NE) if, for any player $v \in V$ and every other combination of strategies \vec{U} that differ from \vec{S} in v's component,

$$Cost(v, \vec{S}) \leq Cost(v, \vec{U}).$$

Notes:

• \vec{S} is a strong NE if for every player the inequality holds strictly.

A combination of strategies \vec{S} forms a **Nash Equilibrium** (NE) if, for any player $v \in V$ and every other combination of strategies \vec{U} that differ from \vec{S} in v's component,

$$Cost(v, \vec{S}) \leq Cost(v, \vec{U}).$$

Notes:

- \vec{S} is a strong NE if for every player the inequality holds strictly.
- Otherwise, it is a weak NE.

A combination of strategies \vec{S} forms a **Nash Equilibrium** (NE) if, for any player $v \in V$ and every other combination of strategies \vec{U} that differ from \vec{S} in v's component,

$$Cost(v, \vec{S}) \leq Cost(v, \vec{U}).$$

Notes:

- \vec{S} is a strong NE if for every player the inequality holds strictly.
- Otherwise, it is a weak NE.
- A transient NE is a weak NE where there is a sequence of moves that don't change personal cost and lead to a non-NE.

• For \vec{S} , let the total cost be $Cost(\vec{S}) = \sum_{v \in V} Cost(v, \vec{S})$.

- For \vec{S} , let the total cost be $Cost(\vec{S}) = \sum_{v \in V} Cost(v, \vec{S})$.
- The cost of the social optimum is *Cost*(*OPT*).

- For \vec{S} , let the total cost be $Cost(\vec{S}) = \sum_{v \in V} Cost(v, \vec{S})$.
- The cost of the social optimum is *Cost*(*OPT*).

Price of Anarchy

The price of anarchy ρ is defined as:

$$\rho = \max_{\vec{S} \text{ is a NE}} \frac{Cost(\vec{S})}{Cost(OPT)}$$

First, a helpful lemma.

First, a helpful lemma.

Diameter Lemma

If \vec{S} is a Nash Equilibrium (NE), the diameter of the graph $G(\vec{S})$ is at most $\alpha + 1$.

First, a helpful lemma.

Diameter Lemma

If \vec{S} is a Nash Equilibrium (NE), the diameter of the graph $G(\vec{S})$ is at most $\alpha + 1$.

Proof.

Assume that we have a NE and there is a distance $\delta(i, j) > \alpha + 1$.

First, a helpful lemma.

Diameter Lemma

If \vec{S} is a Nash Equilibrium (NE), the diameter of the graph $G(\vec{S})$ is at most $\alpha + 1$.

Proof.

Assume that we have a NE and there is a distance $\delta(i,j) > \alpha + 1$. There is no direct edge between i and j.

First, a helpful lemma.

Diameter Lemma

If \vec{S} is a Nash Equilibrium (NE), the diameter of the graph $G(\vec{S})$ is at most $\alpha + 1$.

Proof.

Assume that we have a NE and there is a distance $\delta(i,j) > \alpha + 1$. There is no direct edge between i and j.

A player decides to change strategy and form a link.

First, a helpful lemma.

Diameter Lemma

If \vec{S} is a Nash Equilibrium (NE), the diameter of the graph $G(\vec{S})$ is at most $\alpha + 1$.

Proof.

Assume that we have a NE and there is a distance $\delta(i,j) > \alpha + 1$. There is no direct edge between i and j. A player decides to change strategy and form a link. Will he gain or lose?

First, a helpful lemma.

Diameter Lemma

If \vec{S} is a Nash Equilibrium (NE), the diameter of the graph $G(\vec{S})$ is at most $\alpha + 1$.

Proof.

Assume that we have a NE and there is a distance $\delta(i,j) > \alpha + 1$. There is no direct edge between i and j. A player decides to change strategy and form a link. Will he gain or lose?

$$C'_i = C_i - \delta(i,j) + 1 + \alpha < C_i.$$

First, a helpful lemma.

Diameter Lemma

If \vec{S} is a Nash Equilibrium (NE), the diameter of the graph $G(\vec{S})$ is at most $\alpha + 1$.

Proof.

Assume that we have a NE and there is a distance $\delta(i,j) > \alpha + 1$. There is no direct edge between i and j. A player decides to change strategy and form a link. Will he gain or lose?

$$C'_i = C_i - \delta(i,j) + 1 + \alpha < C_i.$$

He will strictly gain. It cannot be a NE.

We know that $Cost(v, \vec{S}) = lpha |S_v| + \sum_{w \neq v} \delta(v, w)$ and so

$$Cost(\vec{S}) = \alpha |E| + \sum_{u,v} \delta(u,v).$$

We know that $Cost(v, \vec{S}) = \alpha |S_v| + \sum_{w \neq v} \delta(v, w)$ and so

$$Cost(\vec{S}) = \alpha |E| + \sum_{u,v} \delta(u,v).$$

We have pairs that are connected. The remainder have distance of at least 2. So,

$$Cost(\vec{S}) \ge \alpha |E| + 2|E| + 2(n(n-1) - |E|)$$

= $2n(n-1) + (\alpha - 2)|E|.$

We know that $Cost(v, \vec{S}) = \alpha |S_v| + \sum_{w \neq v} \delta(v, w)$ and so

$$Cost(\vec{S}) = \alpha |E| + \sum_{u,v} \delta(u,v).$$

We have pairs that are connected. The remainder have distance of at least 2. So,

$$Cost(\vec{S}) \ge \alpha |E| + 2|E| + 2(n(n-1) - |E|)$$

= $2n(n-1) + (\alpha - 2)|E|.$

This bound is achieved by any graph of diameter at most 2.

$$Cost(\vec{S}) = \alpha |E| + \sum_{u,v} \delta(u,v).$$

 $Cost(\vec{S}) \ge 2n(n-1) + (\alpha - 2)|E|.$

$$Cost(\vec{S}) = \alpha |E| + \sum_{u,v} \delta(u, v).$$

 $Cost(\vec{S}) \ge 2n(n-1) + (\alpha - 2)|E|.$

Case 1: $\alpha < 1$. Social optimum is achieved when |E| is maximum, that is $G(\vec{S})$ is a clique.

$$Cost(\vec{S}) = \alpha |E| + \sum_{u,v} \delta(u, v).$$

 $Cost(\vec{S}) \ge 2n(n-1) + (\alpha - 2)|E|.$

Case 1: $\alpha < 1$.

Social optimum is achieved when |E| is maximum, that is $G(\vec{S})$ is a clique. From diameter lemma, a NE graph must have diameter 1 and so every NE is a clique.

$$Cost(\vec{S}) = \alpha |E| + \sum_{u,v} \delta(u,v).$$
$$Cost(\vec{S}) \ge 2n(n-1) + (\alpha-2)|E|$$

Case 1: $\alpha < 1$.

Social optimum is achieved when |E| is maximum, that is $G(\vec{S})$ is a clique. From diameter lemma, a NE graph must have diameter 1 and so every NE is a clique.

The price of anarchy $\rho = 1$.

$$Cost(\vec{S}) = \alpha |E| + \sum_{u,v} \delta(u,v).$$

 $Cost(\vec{S}) \ge 2n(n-1) + (\alpha - 2)|E|$

•

$$Cost(\vec{S}) = \alpha |E| + \sum_{u,v} \delta(u,v).$$

 $Cost(\vec{S}) \ge 2n(n-1) + (\alpha - 2)|E|.$
Case 2: $1 \le \alpha < 2$

$$\mathcal{C}ost(ec{S}) = lpha |E| + \sum_{u,v} \delta(u,v).$$

 $\mathcal{C}ost(ec{S}) \ge 2n(n-1) + (lpha - 2)|E|.$

Case 2: $1 \le \alpha < 2$

Social optimum still the complete graph.

$$Cost(\vec{S}) = lpha |E| + \sum_{u,v} \delta(u,v).$$

 $Cost(\vec{S}) \ge 2n(n-1) + (\alpha-2)|E|.$

Case 2: $1 \le \alpha < 2$

Social optimum still the complete graph.

Any NE graph has diameter at most 2, so the bound is tight.

$$Cost(\vec{S}) = lpha |E| + \sum_{u,v} \delta(u,v).$$

 $Cost(\vec{S}) \ge 2n(n-1) + (\alpha-2)|E|$

Case 2: $1 \le \alpha < 2$

Social optimum still the complete graph.

Any NE graph has diameter at most 2, so the bound is tight.

The worst possible NE will have minimized |E|, i.e n-1. So, the worst NE is a star.

$$\frac{C(\text{star})}{C(K_n)} = \frac{(n-1)(\alpha-2+2n)}{n(n-1)(\frac{\alpha-2}{2}+2)}$$

$$Cost(\vec{S}) = lpha |E| + \sum_{u,v} \delta(u,v).$$

 $Cost(\vec{S}) \ge 2n(n-1) + (\alpha-2)|E|$

Case 2: $1 \le \alpha < 2$

Social optimum still the complete graph.

Any NE graph has diameter at most 2, so the bound is tight.

The worst possible NE will have minimized |E|, i.e n-1. So, the worst NE is a star.

$$\frac{C(star)}{C(K_n)} = \frac{(n-1)(\alpha-2+2n)}{n(n-1)(\frac{\alpha-2}{2}+2)}$$
$$= \frac{4}{2+\alpha} - \frac{4-2\alpha}{n(2+\alpha)} < \frac{4}{2+\alpha} \le \frac{4}{3}.$$

$$Cost(\vec{S}) = lpha |E| + \sum_{u,v} \delta(u,v).$$

 $Cost(\vec{S}) \ge 2n(n-1) + (\alpha-2)|E|$

Case 2: $1 \le \alpha < 2$

Social optimum still the complete graph.

Any NE graph has diameter at most 2, so the bound is tight.

The worst possible NE will have minimized |E|, i.e n-1. So, the worst NE is a star.

$$\frac{C(\text{star})}{C(K_n)} = \frac{(n-1)(\alpha-2+2n)}{n(n-1)(\frac{\alpha-2}{2}+2)}$$
$$= \frac{4}{2+\alpha} - \frac{4-2\alpha}{n(2+\alpha)} < \frac{4}{2+\alpha} \le \frac{4}{3}.$$

Case 3: $\alpha \ge 2$ OPT still a star and a star **is** a NE. However there may be worse NE.

Overview:

• For small values of α , things are straightforward.

- For small values of α , things are straightforward.
- For larger values ($\alpha > 2$), it gets complicated.

- For small values of α , things are straightforward.
- For larger values ($\alpha > 2$), it gets complicated.
- From Farbikant et al. there is a lower bound of 3ϵ .

- For small values of α , things are straightforward.
- For larger values ($\alpha > 2$), it gets complicated.
- From Farbikant et al. there is a lower bound of 3ϵ .
- From Fabrikant et al. there is an upper bound of $O(\sqrt{\alpha})$.

- For small values of α , things are straightforward.
- For larger values ($\alpha > 2$), it gets complicated.
- From Farbikant et al. there is a lower bound of 3ϵ .
- From Fabrikant et al. there is an upper bound of $O(\sqrt{\alpha})$.
- Trees almost always come up as NE graphs, except from the Petersen graph, where we have transient NE.

- For small values of α , things are straightforward.
- For larger values ($\alpha > 2$), it gets complicated.
- From Farbikant et al. there is a lower bound of 3ϵ .
- From Fabrikant et al. there is an upper bound of $O(\sqrt{\alpha})$.
- Trees almost always come up as NE graphs, except from the Petersen graph, where we have transient NE.
- (Tree Conjecture) There exists a constant A such that for all α > A all non-transient equilibria are trees.

- For small values of α , things are straightforward.
- For larger values ($\alpha > 2$), it gets complicated.
- From Farbikant et al. there is a lower bound of 3ϵ .
- From Fabrikant et al. there is an upper bound of $O(\sqrt{\alpha})$.
- Trees almost always come up as NE graphs, except from the Petersen graph, where we have transient NE.
- (Tree Conjecture) There exists a constant A such that for all α > A all non-transient equilibria are trees.
- Based on that conjecture, the price of anarchy is at most 5.

- For small values of α , things are straightforward.
- For larger values ($\alpha > 2$), it gets complicated.
- From Farbikant et al. there is a lower bound of 3ϵ .
- From Fabrikant et al. there is an upper bound of $O(\sqrt{\alpha})$.
- Trees almost always come up as NE graphs, except from the Petersen graph, where we have transient NE.
- (Tree Conjecture) There exists a constant A such that for all α > A all non-transient equilibria are trees.
- Based on that conjecture, the price of anarchy is at most 5.
- However that conjecture is wrong! (Albers et al.)

The Tree Conjecture states:

There exists a constant A such that for all $\alpha > A$ all non-transient Nash equilibria are trees.

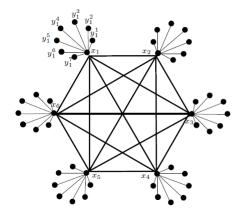
The Tree Conjecture states:

There exists a constant A such that for all $\alpha > A$ all non-transient Nash equilibria are trees.

It has been proven that:

For any positive integer n_0 , there exists a graph built by $n > n_0$ players that **contains cycles** and forms a strong Nash Equilibrium, for any α , with $1 < \alpha < \sqrt{n/2}$.

Disproving the Tree Conjecture



• Let's consider the case where $\alpha \ge 12n \log n$. We will prove a constant upper bound for the price of anarchy.

- Let's consider the case where $\alpha \ge 12n \log n$. We will prove a constant upper bound for the price of anarchy.
- Given a NE graph $G(\vec{S})$, we need the concept of Shortest Path Tree rooted at a certain vertex throughout the proofs.

- Let's consider the case where α ≥ 12n log n. We will prove a constant upper bound for the price of anarchy.
- Given a NE graph $G(\vec{S})$, we need the concept of Shortest Path Tree rooted at a certain vertex throughout the proofs.
- T(u) construction: u is the root. A vertex is at layer i, if it doesn't exist in a previous layer and there is an edge in G(S) from another vertex at layer i 1.

- Let's consider the case where α ≥ 12n log n. We will prove a constant upper bound for the price of anarchy.
- Given a NE graph $G(\vec{S})$, we need the concept of Shortest Path Tree rooted at a certain vertex throughout the proofs.
- T(u) construction: u is the root. A vertex is at layer i, if it doesn't exist in a previous layer and there is an edge in G(S) from another vertex at layer i 1.
- The edges of T(u) so far, are called *tree edges*.

- Let's consider the case where $\alpha \ge 12n \log n$. We will prove a constant upper bound for the price of anarchy.
- Given a NE graph $G(\vec{S})$, we need the concept of Shortest Path Tree rooted at a certain vertex throughout the proofs.
- T(u) construction: u is the root. A vertex is at layer i, if it doesn't exist in a previous layer and there is an edge in G(S) from another vertex at layer i 1.
- The edges of T(u) so far, are called *tree edges*.
- We add the rest of the edges upon T(u) which we call *non-tree edges*.

- Let's consider the case where $\alpha \ge 12n \log n$. We will prove a constant upper bound for the price of anarchy.
- Given a NE graph $G(\vec{S})$, we need the concept of Shortest Path Tree rooted at a certain vertex throughout the proofs.
- T(u) construction: u is the root. A vertex is at layer i, if it doesn't exist in a previous layer and there is an edge in G(S) from another vertex at layer i 1.
- The edges of T(u) so far, are called *tree edges*.
- We add the rest of the edges upon T(u) which we call *non-tree edges*.
- T(u) is not a tree. It is $G(\vec{S})$ layered with distinguished edges.

Types of vertices

Let $G(\vec{S})$ be an NE graph and let $u \in V$. Let T(u) be a shortest path tree rooted at u. We say that a vertex $v \in V$, at a depth smaller than $6 \log n$ in T(u) is:

- Expanding: v has at least two chidren and one descendant in the Boundary level.
- **Neutral:** v has exactly one child and at least one descendant in the Boundary level.
- Degenerate: v has no descendants in the Boundary level.

Types of vertices

Neutral

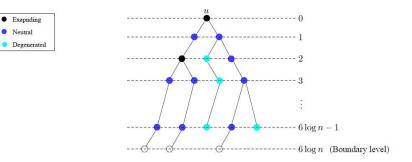


Figure 5: A classification of the vertices of T(u).

Structure of the proof:

 We prove that if α ≥ 12n log n, then every Nash Equilibrium graph is a tree.

Structure of the proof:

- We prove that if α ≥ 12n log n, then every Nash Equilibrium graph is a tree.
- From previous work with the Tree conjecture, we have an upper bound of 5.

Structure of the proof:

- We prove that if α ≥ 12n log n, then every Nash Equilibrium graph is a tree.
- From previous work with the Tree conjecture, we have an upper bound of 5.
- We will improve that upper bound to 1.5. How? The main steps follow:

Structure of the proof:

- We prove that if α ≥ 12n log n, then every Nash Equilibrium graph is a tree.
- From previous work with the Tree conjecture, we have an upper bound of 5.
- We will improve that upper bound to 1.5. How? The main steps follow:
- Given that range of α , every NE graph has girth at least $12 \log n$.

Structure of the proof:

- We prove that if α ≥ 12n log n, then every Nash Equilibrium graph is a tree.
- From previous work with the Tree conjecture, we have an upper bound of 5.
- We will improve that upper bound to 1.5. How? The main steps follow:
- Given that range of α , every NE graph has girth at least $12 \log n$.
- Given the girth, the diameter is at most $6 \log n$ and so $G(\vec{S})$ is a tree.

Structure of the proof:

- We prove that if α ≥ 12n log n, then every Nash Equilibrium graph is a tree.
- From previous work with the Tree conjecture, we have an upper bound of 5.
- We will improve that upper bound to 1.5. How? The main steps follow:
- Given that range of α , every NE graph has girth at least $12 \log n$.
- Given the girth, the diameter is at most $6 \log n$ and so $G(\vec{S})$ is a tree.
- Given that we have a tree of that depth, we prove the bound.

If $G(\vec{S})$ is an equilibrium graph whose girth is at least $12 \log n$ then the diameter of $G(\vec{S})$ is at most $6 \log n$ and $G(\vec{S})$ is a tree.

Proof:

For contradiction, assume that $G(\vec{S})$ has diameter > 6 log *n*.

If $G(\vec{S})$ is an equilibrium graph whose girth is at least $12 \log n$ then the diameter of $G(\vec{S})$ is at most $6 \log n$ and $G(\vec{S})$ is a tree.

Proof:

For contradiction, assume that $G(\vec{S})$ has diameter > 6 log *n*. Let $u \in V$ be one of the endpoints of the diameter.

If $G(\vec{S})$ is an equilibrium graph whose girth is at least $12 \log n$ then the diameter of $G(\vec{S})$ is at most $6 \log n$ and $G(\vec{S})$ is a tree.

Proof:

For contradiction, assume that $G(\vec{S})$ has diameter > 6 log *n*. Let $u \in V$ be one of the endpoints of the diameter. We consider a shortest path tree rooted on u.

If $G(\vec{S})$ is an equilibrium graph whose girth is at least $12 \log n$ then the diameter of $G(\vec{S})$ is at most $6 \log n$ and $G(\vec{S})$ is a tree.

Proof:

For contradiction, assume that $G(\vec{S})$ has diameter $> 6 \log n$.

Let $u \in V$ be one of the endpoints of the diameter.

We consider a shortest path tree rooted on u.

Since u is a diameter endpoint, u is either a Neutral or an Expanding vertex.

If $G(\vec{S})$ is an equilibrium graph whose girth is at least $12 \log n$ then the diameter of $G(\vec{S})$ is at most $6 \log n$ and $G(\vec{S})$ is a tree.

Proof:

For contradiction, assume that $G(\vec{S})$ has diameter > 6 log *n*.

Let $u \in V$ be one of the endpoints of the diameter.

We consider a shortest path tree rooted on u.

Since u is a diameter endpoint, u is either a Neutral or an Expanding vertex.

We will show that the number of descendants at the Boundary level is at least n, which is a contradiction.

So, that means that the large-diameter assumption is false and $G(\vec{S})$ is a tree.

So, that means that the large-diameter assumption is false and $G(\vec{S})$ is a tree.

Let $v \in V$.

So, that means that the large-diameter assumption is false and $G(\vec{S})$ is a tree.

Let $v \in V$.

We denote with d the depth of v in T(u).

So, that means that the large-diameter assumption is false and $G(\vec{S})$ is a tree.

Let $v \in V$.

We denote with d the depth of v in T(u).

We denote with b the number of neutral vertices on the path from u to v.

So, that means that the large-diameter assumption is false and $G(\vec{S})$ is a tree.

Let $v \in V$.

We denote with d the depth of v in T(u).

We denote with b the number of neutral vertices on the path from u to v. We label a vertex with (d, b).

So, that means that the large-diameter assumption is false and $G(\vec{S})$ is a tree.

Let $v \in V$.

We denote with d the depth of v in T(u).

We denote with b the number of neutral vertices on the path from u to v. We label a vertex with (d, b).

The root for example is (0,0).

So, that means that the large-diameter assumption is false and $G(\vec{S})$ is a tree.

Let $v \in V$.

We denote with d the depth of v in T(u).

We denote with b the number of neutral vertices on the path from u to v. We label a vertex with (d, b).

The root for example is (0,0).

Let v be a non-degenerate vertex whose label is (d, b) and let N(d, b) be a lower bound on the number of descendants at the Boundary level.

So, that means that the large-diameter assumption is false and $G(\vec{S})$ is a tree.

Let $v \in V$.

We denote with d the depth of v in T(u).

We denote with b the number of neutral vertices on the path from u to v. We label a vertex with (d, b).

The root for example is (0,0).

Let v be a non-degenerate vertex whose label is (d, b) and let N(d, b) be a lower bound on the number of descendants at the Boundary level.

Claim

$$N(d,b) \geq 2^{\frac{6\log n-d}{2} - (2\log n-b)}$$

That implies that $N(0,0) \ge n$ which is what we want to prove.

So, if it has girth at least $12 \log n$, NE graph $G(\vec{S})$ is a tree. Do all NE graphs for $\alpha \ge 12n \log n$ have that property?

So, if it has girth at least $12 \log n$, NE graph $G(\vec{S})$ is a tree. Do all NE graphs for $\alpha \ge 12n \log n$ have that property?

Lemma 5

Let $G(\vec{S})$ be an equilibrium graph and c any positive constant. If $\alpha > cn \log n$ then the length of the girth of $G(\vec{S})$ is at least $c \log n$.

So, if it has girth at least $12 \log n$, NE graph $G(\vec{S})$ is a tree. Do all NE graphs for $\alpha \ge 12n \log n$ have that property?

Lemma 5

Let $G(\vec{S})$ be an equilibrium graph and c any positive constant. If $\alpha > cn \log n$ then the length of the girth of $G(\vec{S})$ is at least $c \log n$.

Proof.

Assume the size of the minimal cycle is $c \log n$.

So, if it has girth at least $12 \log n$, NE graph $G(\vec{S})$ is a tree. Do all NE graphs for $\alpha \ge 12n \log n$ have that property?

Lemma 5

Let $G(\vec{S})$ be an equilibrium graph and c any positive constant. If $\alpha > cn \log n$ then the length of the girth of $G(\vec{S})$ is at least $c \log n$.

Proof.

Assume the size of the minimal cycle is $c \log n$.

Let \boldsymbol{u} be a vertex on that cycle and consider the benefit of a cycle edge for $\boldsymbol{u}.$

So, if it has girth at least $12 \log n$, NE graph $G(\vec{S})$ is a tree. Do all NE graphs for $\alpha \ge 12n \log n$ have that property?

Lemma 5

Let $G(\vec{S})$ be an equilibrium graph and c any positive constant. If $\alpha > cn \log n$ then the length of the girth of $G(\vec{S})$ is at least $c \log n$.

Proof.

Assume the size of the minimal cycle is $c \log n$.

Let \boldsymbol{u} be a vertex on that cycle and consider the benefit of a cycle edge for $\boldsymbol{u}.$

The benefit for an edge is at most $(c \log n - 1)n < \alpha$.

So, if it has girth at least $12 \log n$, NE graph $G(\vec{S})$ is a tree. Do all NE graphs for $\alpha \ge 12n \log n$ have that property?

Lemma 5

Let $G(\vec{S})$ be an equilibrium graph and c any positive constant. If $\alpha > cn \log n$ then the length of the girth of $G(\vec{S})$ is at least $c \log n$.

Proof.

Assume the size of the minimal cycle is $c \log n$.

Let u be a vertex on that cycle and consider the benefit of a cycle edge for u.

The benefit for an edge is at most $(c \log n - 1)n < \alpha$. This is not an equilibrium graph. Contradiction.

For $\alpha \ge 12n \log n$ the price of anarchy is bounded by $1 + \frac{6n \log n}{\alpha} < 1.5$ and any equilibrium graph is a tree.

For $\alpha \ge 12n \log n$ the price of anarchy is bounded by $1 + \frac{6n \log n}{\alpha} < 1.5$ and any equilibrium graph is a tree.

Proof.

The social optimum is a star graph with cost at least $\alpha(n-1) + 2(n-1)^2$

For $\alpha \ge 12n \log n$ the price of anarchy is bounded by $1 + \frac{6n \log n}{\alpha} < 1.5$ and any equilibrium graph is a tree.

Proof.

The social optimum is a star graph with cost at least $\alpha(n-1) + 2(n-1)^2$ By Proposition 1, we know that every NE graph is a tree with maximal depth 6 log *n*.

For $\alpha \ge 12n \log n$ the price of anarchy is bounded by $1 + \frac{6n \log n}{\alpha} < 1.5$ and any equilibrium graph is a tree.

Proof.

The social optimum is a star graph with cost at least $\alpha(n-1) + 2(n-1)^2$ By Proposition 1, we know that every NE graph is a tree with maximal depth 6 log *n*.

Therefore the cost of every NE graph is bounded by $\alpha(n-1) + 6n^2 \log n$. and the price of anarchy is bounded by

For $\alpha \ge 12n \log n$ the price of anarchy is bounded by $1 + \frac{6n \log n}{\alpha} < 1.5$ and any equilibrium graph is a tree.

Proof.

The social optimum is a star graph with cost at least $\alpha(n-1) + 2(n-1)^2$ By Proposition 1, we know that every NE graph is a tree with maximal depth 6 log *n*.

Therefore the cost of every NE graph is bounded by $\alpha(n-1) + 6n^2 \log n$. and the price of anarchy is bounded by

$$\frac{\alpha(n-1) + 6n^2 \log n}{\alpha(n-1) + 2(n-1)^2} \le 1 + \frac{6n^2 \log n}{\alpha n + 2(n-1)^2 - \alpha} \le 1 + \frac{6n \log n}{\alpha}$$

Improving upper bound for the Price of Anarchy

We examined the case where $\alpha \geq 12n \log n$. What happens with the other case?

Improving upper bound for the Price of Anarchy

We examined the case where $\alpha \geq 12n \log n$. What happens with the other case?

We present the following theorem with no proof.

Theorem 3

Let $\alpha > 0$. For any Nash Equilibrium N, the price of anarchy is bounded by $15(1 + (\min\{\frac{\alpha^2}{n}, \frac{n^2}{\alpha}\})^{1/3})$.

We examined the case where $\alpha \geq 12n \log n$. What happens with the other case?

We present the following theorem with no proof.

Theorem 3

Let $\alpha > 0$. For any Nash Equilibrium N, the price of anarchy is bounded by $15(1 + (\min\{\frac{\alpha^2}{n}, \frac{n^2}{\alpha}\})^{1/3})$.

Note:

• This is a result for every value of α .

We examined the case where $\alpha \geq 12n \log n$. What happens with the other case?

We present the following theorem with no proof.

Theorem 3

Let $\alpha > 0$. For any Nash Equilibrium N, the price of anarchy is bounded by $15(1 + (\min\{\frac{\alpha^2}{n}, \frac{n^2}{\alpha}\})^{1/3})$.

Note:

- This is a result for every value of α .
- For $\alpha = O(\sqrt{n})$, the price of anarchy is bounded by a constant.

• For very large values of α ($\geq 12n \log n$) we have a very good PoA.

- For very large values of α ($\geq 12n \log n$) we have a very good PoA.
- For values $O(\sqrt{n})$ we have a good PoA (constant).

- For very large values of α ($\geq 12n \log n$) we have a very good PoA.
- For values $O(\sqrt{n})$ we have a good PoA (constant).
- For intermediate values of α , we have at most $15(1 + (\min\{\frac{\alpha^2}{n}, \frac{n^2}{\alpha}\})^{1/3}).$

- For very large values of α ($\geq 12n \log n$) we have a very good PoA.
- For values $O(\sqrt{n})$ we have a good PoA (constant).
- For intermediate values of α , we have at most $15(1 + (\min\{\frac{\alpha^2}{n}, \frac{n^2}{\alpha}\})^{1/3}).$
- All in all, selfish nodes don't behave too bad in this game.

- For very large values of α ($\geq 12n \log n$) we have a very good PoA.
- For values $O(\sqrt{n})$ we have a good PoA (constant).
- For intermediate values of α , we have at most $15(1 + (\min\{\frac{\alpha^2}{n}, \frac{n^2}{\alpha}\})^{1/3}).$
- All in all, selfish nodes don't behave too bad in this game.
- PoA is bounded for non-trivial values of α . It pays to divide the cases "correctly".

- Alex Fabrikant, Ankur Luthr, Elitza Maneva, Christos H. Papadimitriou and Scott Shenker On a network creation game Proceedings of the twenty-second annual symposium on Principles of distributed computing 1-58113-708-7 Boston, Massachusetts 347-351 2003 10.1145/872035.872088 ACM
- Albers, Susanne and Eilts, Stefan and Even-Dar, Eyal and Mansour, Yishay and Roditty, Liam, On Nash Equilibria for a Network Creation Game, Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA '06, 2006, 0-89871-605-5, Miami, Florida, 89–98

Thank you!