Secure two-party Computation Oblivious Transfer and Secure Function Evaluation

Panagiotis Grontas

Network Algorithms and Complexity 22.07.2014

Secure Multi Party Computation

- * *m* parties want to jointly compute the function $f(x_1, x_2, ..., x_m)$
- * Each P_i contributes x_i
- * Can it be done?
 - * Without releasing no other information (x_i) except the result
 - * What is the computational complexity
 - * What is the communication complexity
- * Generalization
 - * Each party has its own function
 - * But requires input from all other
- * Using a trusted third party is not acceptable

The millionaire problem

- * Yao 1982
- * Two millionaires want to find out who is richer
 - * Without revealing their fortunes
- * A case of SMP:
 - * m=2 (Alice and Bob)
 - * f(a, b,) = if a < b then 1 else 0
 - * a, b are bounded in range 1 to n

Yao's First Solution

* Bob

- * 'creates' n identical boxes
- * selects a number and puts it in box number b
- * Fills the rest of the boxes randomly

* Alice

- * Receives the boxes and opens all of them
- * Leaves the first *a* boxes unchanged
- * Increments the rest n a
- * Sends them to Bob
- * **Bob** reviews the boxes
 - * If his number is unchanged, Alice is richer
 - * If his number is incremented, Bob is richer

Problems

Exponential Number Of Boxes Somebody deviates from the protocol

Exchange of secrets

- * Alice and Bob want to exchange secrets s_a , s_b (without a TTP)
- * Problems
 - * Cheating:
 - * Receive but not send or send invalid
 - * Timing:
 - * The exchange must be simultaneous
- * Any EOS protocol is problematic
 - * $s_a = f(a_1, a_2, ..., a_n)$
 - * $s_b = g(b_1, b_2, ..., b_n)$
 - * There is a k such that s_A can be computed from $a_1, a_2, ..., a_k$ but s_B cannot be computed from $b_1, b_2, ..., b_{k-1}$

Oblivious transfer

* Solution:

* Construct an EOS protocol such that if Bob knows s_a , Alice can construct s_b .

* (Real world) assumptions:

- * Alice will find out if Bob learns her secret
- * Use of an invalid secret will make it useless

* Primitive: Oblivious Transfer

- * The sender of a message does not know if the recipient received the information or not
- * First implementation:
 - * Quadratic residues (Rabin)

Rabin's Protocol for OT

Rabin's Protocol for EOS

Formalisation

(Even, Goldreich, Lempel)

An oblivious transfer OT(S, R, M) of a message M is a protocol by which a sender S, transfers to a receiver R the message M st:

- *R* gets *M* with probability ½
- The a-posteriori probability that R got M for S is 1/2
- If *R* does not receive the message he gains no helpful partial information
- Any attempt from S to deviate from the protocol is detected by R
- Formalisation of a noisy wire

1-out-of-2 Oblivious Transfer

- OT_1^2 (*S*, *R*, *M*₀, *M*₁): A protocol by which a sender *S* transfers ignorantly to a receiver *R* one message out of two.
- *R* selects which message to receive without S learning it
- R requests each message with probability 1/2

Result: OT and OT_1^2 are equivalent

OT from OT_1^2 (EGL)

- * S wants to transmit M with probability $\frac{1}{2}$ to R
- * **OT** machine flips bits M_0 , M_1 and **b**.
- * If b = 0 then send (M , M_1) to OT_1^2 machine
- * If b = 1 then send (M_1, M) to OT_1^2 machine

OT_1^2 from OT (Crepeau)

* **Random OT (R-OT)**: OT with transfer probability p* **OT**₁² can be implemented using **R-OT (OT)**

OT_1^2 from OT (Crepeau)

- * The OT protocol is applied on bit vector \vec{s} .
 - * Objective: Transfer $\approx n$
 - * $\overrightarrow{|s|} = 3n$
- * *R* inputs selector bit *b*
 - $\ast\,$ It is replaced with 2 sets of indices of length n
 - * I_b : The positions in \vec{s} where the transfer succeeded
 - * I_{1-b} : Random Positions in \vec{s}
- * S sends (M_0, M_1)
 - * $M_b(\bigoplus_{i \in I_b} \vec{s}_i)$ is actually sent for b = 0,1

OT_1^2 from OT (Crepeau, 1998)

* Analysis

- * I_b can be found wyhp
- * I_{1-b} contains at least one position where OT failed wvhp
- * OT Failure => XOR calculation Failure
- * Exactly one of them can be calculated
- * Exactly one of M_0 , M_1 can be transferred
- * We have OT_1^2

Other flavors

- * 1-out-of-*N* oblivious transfer **O** T_1^n
 - * *S* has $M_1, M_2, ..., M_N$
 - * R selects i and receives M_i
 - * *S* does not learn *i*
 - * R does not learn M_{j,j≠i}
- * k-out-of-N oblivious transfer OT_k^n
 - * Simultaneously receive k messages
- * k-out-of-N adaptive oblivious transfer OT_k^n
 - * Successive oblivious transfers
 - * Selection at each stage depends on messages previously received
- * Constructed using OT_1^2

Generic Implementation of OT_1^2

- * S, R agree on a PKCS (K, E, D) where M = C (eg. RSA)
- * *S*, *R* are semi-honest
- * <u>Objective</u>: Obliviously transmit m_0, m_1
- * R generates 2 random strings x_0 , x_1
- * To obtain m_0 :
 - * *R* sends ($E(x_0), x_1$)
 - * *S* decrypts ($D(E(x_0)), D(x_1)$) = ($x_0, D(x_1)$)
 - *~S applies XOR to tuple ($m_0 \oplus x_0, m_1 \oplus D(x_1)$)
 - * R retrieves m_0 by XORing again $(m_0 \oplus x_0 \oplus x_0, m_1 \oplus D(x_1) \oplus x_1)$

OT and SFE: Yao's construction

- * Oblivious transfer implies secure function evaluation
- \ast Use oblivious transfer to compute any function f
 - * Express *f* as a circuit *C*
 - * Construct a protocol that computes C
 - * Parties provide inputs
 - * They only learn the output
 - * All intermediate values are never revealed
 - * Random inputs
 - * Random outputs
 - * Garbled truth tables
- * Security against semi honest (passive) players

An OR Gate with OT

- *S* contributes s and *R* contributes r
- Step 1: *S* transforms truth table
 - selects random
 permutations v: {0,1} →
 {0,1}
 - Applies permutations to truth table
 - Selects 4 encryption decryption functions (E_0^S, D_0^S) , $(E_1^S, D_1^S), (E_0^R, D_0^R), (E_1^R, D_1^R)$
 - Applies encryption functions to the result according to the position
 - Send the table and v_r to the R

S	r	s OR r
0	0	0
0	1	1
1	0	1
1	1	1

S	r	s OR r
$v_s(0)$	$v_r(0)$	$E_{v_{s}(0)}^{s}(E_{v_{R}(0)}^{R}(0))$
$v_s(0)$	$v_r(1)$	$E_{\nu_{s}(0)}^{s}(E_{\nu_{R}(1)}^{R}(1))$
$v_s(1)$	$v_r(0)$	$E_{\nu_{s}(1)}^{S}(E_{\nu_{R}(0)}^{R}(1))$
$v_s(1)$	$v_r(1)$	$E_{v_{s}(1)}^{S}(E_{v_{R}(1)}^{R}(1))$

An OR Gate with OT (2)

- * Step 2: S computes its part
 - * $v_s(s)$
 - * Sends $(v_s(s), D_{v_s(s)}^S)$
- * Step 3: R computes its part
 - * $v_R(r)$
 - * In order to decrypt $D_{v_R(r)}^R$ is required
 - * How to get it without revealing $v_R(r)$?
 - * $OT_1^2(S, R, D_0^R, D_1^R)$

Question: Why not send both D_0^R , D_1^R ?

S	r	s OR r
$v_s(0)$	$v_r(0)$	$E_{v_{s}(0)}^{s}(E_{v_{R}(0)}^{R}(0))$
$v_s(0)$	$v_r(1)$	$E_{v_{s}(0)}^{S}(E_{v_{R}(1)}^{R}(1))$
$v_s(1)$	$v_r(0)$	$E_{v_{s}(1)}^{s}(E_{v_{R}(0)}^{R}(1))$
$v_s(1)$	$v_r(1)$	$E_{v_{s}(1)}^{S}(E_{v_{R}(1)}^{R}(1))$

Finally: Peel off the desired row $D_{v_R(r)}^R(D_{v_S(0)}^S(E_{v_S(0)}^S(E_{v_R(1)}^R(1))))$

and informs R

In reality ...

- * The rows of the table are randomly permuted
- * The result is a random permutation as well
- * View everything as keys (6 keys / gate)

S	r	s OR r	Computation
k_0^S	k_0^R	k_0^{OR}	$E_{k_0^S}(E_{k_0^R}(k_0^{OR}))$
k_0^S	k_1^R	k_1^{OR}	$E_{k_0^S}(E_{k_1^R}(k_1^{OR}))$
k_1^S	k_0^R	k_1^{OR}	$E_{k_1^S}(E_{k_0^R}(k_1^{OR}))$
k_1^S	k_1^R	k_1^{OR}	$E_{k_1^S}(E_{k_1^R}(k_1^{OR}))$

Building up the circuit

- * After computing each gate g, both S, R have access to k_x^g
- * This is used as input to another gate
- * The output gates will contain the circuit's output w_i
- * Each digit is decrypted using output tables
- * S constructs the circuit
 - * In case of multiple inputs, copy the key
 - * In case of multiple inputs, same output key
- * *R* uses oblivious transfer for each bit of its input
- * And computes the result
- * Complexity:
 - * Computation: O(|C|) 6 keys per gate / 8 encryptions per gate / 2 decryptions per gate
 - * Communication: O(|C|) Round complexity: constant
- * Proof of security and correctness (Lindell, Pinkas 2006)

Bibliography

- * Yao, A. C. "Protocols for secure computations" (FOCS 1982): 160–164
- * Rabin M. O. **"How to exchange secrets by oblivious transfer."**, TR-81, Harvard University, 1981
- * S. Even, O. Goldreich, and A. Lempel. 1985. A randomized protocol for signing contracts. *Commun. ACM* 28, 6 (June 1985), 637-647
- Claude Crépeau. 1987. Equivalence Between Two Flavours of Oblivious
 Transfers. In A Conference on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology (CRYPTO '87, UK, 350-354.
- Yehuda Lindell and Benny Pinkas. 2009. A Proof of Security of Yao's
 Protocol for Two-Party Computation. J. Cryptol. 22, 2 (April 2009), 161-188
- * Ostrofski R., CS 282A/MATH 209A: Foundations of Cryptography, Lecture 10, Oblivious Transfer
- * Gabriel Bender, **Cryptography and Secure Two-Party Computation**, August 21, 2006, http://www.math.uchicago.edu/~may/VIGRE/VIGRE2006/PAPERS/Bender.pdf