
Secure two-party Computation
Oblivious Transfer and Secure Function

Evaluation

Panagiotis Grontas

Network Algorithms and Complexity

22.07.2014

 𝑚 parties want to jointly compute the function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑚)

 Each 𝑃𝑖 contributes 𝑥𝑖

 Can it be done?

 Without releasing no other information (𝑥𝑖) except the result

 What is the computational complexity

 What is the communication complexity

 Generalization

 Each party has its own function

 But requires input from all other

 Using a trusted third party is not acceptable

Secure Multi Party Computation

 Yao 1982

 Two millionaires want to find out who is richer

 Without revealing their fortunes

 A case of SMP:

 m=2 (Alice and Bob)

 𝑓 𝑎, 𝑏, = 𝑖𝑓 𝑎 < 𝑏 𝑡ℎ𝑒𝑛 1 𝑒𝑙𝑠𝑒 0

 𝑎, 𝑏 are bounded in range 1 to 𝑛

The millionaire problem

 Bob

 ‘creates’ 𝑛 identical boxes

 selects a number and puts it in box number 𝑏

 Fills the rest of the boxes randomly

 Alice

 Receives the boxes and opens all of them

 Leaves the first 𝑎 boxes unchanged

 Increments the rest 𝑛 − 𝑎

 Sends them to Bob

 Bob reviews the boxes

 If his number is unchanged, Alice is richer

 If his number is incremented, Bob is richer

Yao’s First Solution

Exponential Number Of
Boxes
Somebody deviates from
the protocol

Problems

 Alice and Bob want to exchange secrets 𝑠𝑎 , 𝑠𝑏 (without a TTP)

 Problems

 Cheating:

 Receive but not send or send invalid

 Timing:

 The exchange must be simultaneous

 Any EOS protocol is problematic

 𝑠𝑎 = 𝑓(𝑎1, 𝑎2, … , 𝑎𝑛)

 𝑠𝑏 = 𝑔(𝑏1, 𝑏2, … , 𝑏𝑛)

 There is a k such that 𝑠𝐴 can be computed from 𝑎1, 𝑎2, … , 𝑎𝑘 but

𝑠𝐵 cannot be computed from 𝑏1, 𝑏2, … , 𝑏𝑘−1

Exchange of secrets

 Solution:

 Construct an EOS protocol such that if Bob knows 𝑠𝑎, Alice can
construct 𝑠𝑏 .

 (Real world) assumptions:

 Alice will find out if Bob learns her secret

 Use of an invalid secret will make it useless

 Primitive: Oblivious Transfer

 The sender of a message does not know if the recipient received
the information or not

 First implementation:

 Quadratic residues (Rabin)

Oblivious transfer

Rabin’s Protocol for OT

Alice Bob

𝑛𝐴 = 𝑝𝐴𝑞𝐴

𝑥 ≤ 𝑛𝐴

𝑐 = 𝑥2 𝑚𝑜𝑑 𝑛𝐴

commit to 𝑥: 𝐸𝐾𝑏(𝑥)

𝐾𝑎
𝐾𝑏

𝐸𝐾𝑏(𝑥), c

Calculate
random root of 𝑐,
𝑥1: 𝑥1

2 = 𝑐 𝑚𝑜𝑑 𝑛𝐴

using 𝑝𝐴, 𝑞𝐴 , 𝐶𝑅𝑇
efficiently

𝑥1
Calculate
d=gcd(𝑥 − 𝑥1, 𝑛𝐴)
No good if 𝑥1 = ±𝑥

𝑃𝑟𝑜𝑏 𝐷 = 𝑝 𝑜𝑟 𝐷 = 𝑞 =
1

2

Alice transfers the factorization

of 𝒏𝑨, with probability
𝟏

𝟐

Rabin’s Protocol for EOS

Alice Bob

Oblivious transfer of 𝒏𝑨

Oblivious transfer of 𝒏𝑩

𝑣𝑏 = 0 𝑖𝑓𝑓 𝑓𝑎𝑐𝑡𝑜𝑟𝑠
𝑤ℎ𝑒𝑟𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑

𝜀𝑏 = 𝑣𝑏 ⊕ 𝑠𝑏

𝑣𝑎 = 0 𝑖𝑓𝑓 𝑓𝑎𝑐𝑡𝑜𝑟𝑠
𝑤ℎ𝑒𝑟𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑

𝜀𝑎 = 𝑣𝑎 ⊕ 𝑠𝑎

𝜀𝑎, 𝜀𝑏

𝑒𝑚𝑏𝑒𝑑 𝑠𝑎 in 𝑚𝑎

𝑐𝑎 = 𝐸𝑛𝐴
(𝑚𝑎)

𝑒𝑚𝑏𝑒𝑑 𝑠𝑏 in 𝑚𝑏

𝑐𝑏 = 𝐸𝑛𝐵
(𝑚𝑏)

𝑐𝑎, 𝑐𝑏

𝑣𝑏 = 0
→ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑜𝑓𝑐𝑎

𝑣𝑎 = 0
→ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑜𝑓𝑐𝑏

If Bob decrypts 𝑐𝑎 then Alice
knows that 𝑣𝑏 = 0 and as a
result 𝜀𝑏 = 𝑠𝑏

Formalisation
(Even, Goldreich, Lempel)

An oblivious transfer 𝑂𝑇(𝑆, 𝑅,𝑀) of a message 𝑀 is a
protocol by which a sender 𝑆, transfers to a receiver 𝑅 the
message 𝑀 st:
• 𝑅 gets 𝑀 with probability ½
• The a-posteriori probability that 𝑅 got 𝑀 for 𝑆 is 1/2

• If 𝑅 does not receive the
message he gains no helpful
partial information

• Any attempt from 𝑆 to
deviate from the protocol is
detected by 𝑅

• Formalisation of a noisy wire

𝑆 𝑅𝑶𝑻
𝑴

𝑴

#

𝑶𝑻𝟏
𝟐 (𝑺, 𝑹,𝑴𝟎, 𝑴𝟏): A protocol by which a sender 𝑆

transfers ignorantly to a receiver 𝑅 one message out
of two.

𝑅 selects which message to receive without S
learning it

𝑅 requests each message with probability 1/2

1-out-of-2 Oblivious Transfer

𝐑𝐞𝐬𝐮𝐥𝐭: 𝑂𝑇 𝑎𝑛𝑑 𝑂𝑇1
2 are equivalent

𝑆 𝑅
𝒃

𝑴𝒃

𝑶𝑻𝟏
𝟐

𝑂𝑇 from 𝑂𝑇1
2 (EGL)

𝑆 𝑅

𝑶𝑻 𝑴𝑴

#

𝑴𝟎

𝑴𝟏

𝒃

𝑴𝒃

𝑶𝑻𝟏
𝟐

 𝑆 wants to transmit 𝑴 with probability ½ to 𝑅

 𝑶𝑻 machine flips bits 𝑴𝟎 ,𝑴𝟏 and 𝒃.

 If b = 0 then send (𝑴 ,𝑴𝟏) to 𝑶𝑻𝟏
𝟐 machine

 If b = 1 then send (𝑴𝟏 ,𝑴) to 𝑶𝑻𝟏
𝟐 machine

 Random OT (R-OT): OT with transfer probability 𝑝

 𝑶𝑻𝟏
𝟐 can be implemented using R -OT (OT)

𝑂𝑇1
2 from 𝑂𝑇 (Crepeau)

𝑆 𝑅

𝑶𝑻𝟏
𝟐

𝑴𝟏

𝑴𝟐

𝒃

𝑴𝒃

𝑶𝑻

 The OT protocol is applied on bit vector 𝑠.

 Objective: Transfer ≈ 𝑛

 𝑠 = 3𝑛

 𝑅 inputs selector bit 𝑏

 It is replaced with 2 sets of indices of length 𝑛
 𝐼𝑏: The positions in 𝑠 where the transfer succeeded

 𝐼1−𝑏: Random Positions in 𝑠

 𝑆 sends (𝑀0, 𝑀1)

 𝑀𝑏(⨁𝒊∈𝐼𝑏
 𝑠𝒊) is actually sent for 𝑏 = 0,1

𝑂𝑇1
2 from 𝑂𝑇 (Crepeau)

 Analysis

 𝐼𝑏 can be found wvhp

 𝐼1−𝑏 contains at least one position where OT failed wvhp

 OT Failure => XOR calculation Failure

 Exactly one of them can be calculated

 Exactly one of 𝑴𝟎,𝑴𝟏 can be transferred

 We have 𝑶𝑻𝟏
𝟐

𝑂𝑇1
2 from 𝑂𝑇 (Crepeau, 1998)

 1-out-of-𝑁 oblivious transfer 𝑶𝑻𝟏
𝒏

 𝑆 has 𝑴𝟏,𝑴𝟐, … ,𝑴𝑵

 𝑅 selects 𝑖 and receives 𝑴𝒊

 𝑆 does not learn 𝑖

 𝑅 does not learn 𝑴𝒋,𝒋≠𝒊

 𝑘-out-of-𝑁 oblivious transfer 𝑶𝑻𝒌
𝒏

 Simultaneously receive k messages

 𝑘-out-of-𝑁 adaptive oblivious transfer 𝑶𝑻𝒌
𝒏

 Successive oblivious transfers

 Selection at each stage depends on messages previously received

 Constructed using 𝑶𝑻𝟏
𝟐

Other flavors

 𝑆, 𝑅 agree on a 𝑃𝐾𝐶𝑆 (𝐾, 𝐸, 𝐷) where 𝑀 = 𝐶 (eg. RSA)

 𝑆, 𝑅 are semi-honest

 Objective: Obliviously transmit 𝒎𝟎,𝒎𝟏

 𝑅 generates 2 random strings 𝒙𝟎, 𝒙𝟏

 To obtain 𝒎𝟎:

 𝑅 sends (𝑬(𝒙𝟎), 𝒙𝟏)

 𝑆 decrypts (𝑫(𝑬(𝒙𝟎)), 𝑫(𝒙𝟏)) = (𝒙𝟎, 𝑫(𝒙𝟏))

 𝑆 applies XOR to tuple (𝒎𝟎 ⊕ 𝒙𝟎,𝒎𝟏 ⊕ 𝑫(𝒙𝟏))

 𝑅 retrieves 𝒎𝟎 by XORing again
(𝒎𝟎 ⊕ 𝒙𝟎⊕ 𝒙𝟎,𝒎𝟏 ⊕ 𝑫(𝒙𝟏) ⊕ 𝒙𝟏)

Generic Implementation of 𝑂𝑇1
2

 Oblivious transfer implies secure function evaluation

 Use oblivious transfer to compute any function 𝑓

 Express 𝑓 as a circuit 𝐶

 Construct a protocol that computes 𝐶

 Parties provide inputs

 They only learn the output

 All intermediate values are never revealed

 Random inputs

 Random outputs

 Garbled truth tables

 Security against semi – honest (passive) players

OT and SFE: Yao’s construction

𝒔 𝒓 s 𝑂𝑅 𝐫

0 0 0

0 1 1

1 0 1

1 1 1

An OR Gate with OT
• 𝑆 contributes s and 𝑅

contributes r
• Step 1: 𝑆 transforms truth table

• selects random
permutations 𝑣: 0,1 →
{0,1}

• Applies permutations to
truth table

• Selects 4 encryption -
decryption
functions (𝐸0

𝑆, 𝐷0
𝑆),

(𝐸1
𝑆, 𝐷1

𝑆), (𝐸0
𝑅 , 𝐷0

𝑅), (𝐸1
𝑅 , 𝐷1

𝑅)
• Applies encryption functions

to the result according to
the position

• Send the table and 𝑣𝑟 to the
𝑅

𝐬 𝐫 𝐬 𝑂𝑅 𝐫

𝑣𝑠(0) 𝑣𝑟(0) 𝐸𝑣𝑠(0)
𝑆 (𝐸𝑣𝑅(0)

𝑅 (0))

𝑣𝑠(0) 𝑣𝑟(1) 𝐸𝑣𝑠(0)
𝑆 (𝐸𝑣𝑅(1)

𝑅 (1))

𝑣𝑠(1) 𝑣𝑟(0) 𝐸𝑣𝑠(1)
𝑆 (𝐸𝑣𝑅(0)

𝑅 (1))

𝑣𝑠(1) 𝑣𝑟(1) 𝐸𝑣𝑠(1)
𝑆 (𝐸𝑣𝑅(1)

𝑅 (1))

An OR Gate with OT (2)

 Step 2: S computes its part

 𝑣𝑠 s

 Sends (𝑣𝑠 s , 𝐷𝑣𝑠 s
𝑆)

 Step 3: R computes its part

 𝑣𝑅 𝑟

 In order to decrypt 𝐷v𝑅 r
𝑅 is

required

 How to get it without

revealing v𝑅 r ?

 𝑶𝑻𝟏
𝟐 𝑺, 𝑹,𝐷0

𝑅 , 𝐷1
𝑅

𝐬 𝐫 𝐬 𝑂𝑅 𝐫

𝑣𝑠(0) 𝑣𝑟(0) 𝐸𝑣𝑠(0)
𝑆 (𝐸𝑣𝑅(0)

𝑅 (0))

𝑣𝑠(0) 𝑣𝑟(1) 𝐸𝑣𝑠(0)
𝑆 (𝐸𝑣𝑅(1)

𝑅 (1))

𝑣𝑠(1) 𝑣𝑟(0) 𝐸𝑣𝑠(1)
𝑆 (𝐸𝑣𝑅(0)

𝑅 (1))

𝑣𝑠(1) 𝑣𝑟(1) 𝐸𝑣𝑠(1)
𝑆 (𝐸𝑣𝑅(1)

𝑅 (1))

Finally: Peel off the desired row

𝐷𝑣𝑅 𝑟
𝑅 (𝐷𝑣𝑠 0

𝑆 (𝐸𝑣𝑠 0
𝑆 (𝐸𝑣𝑅 1

𝑅 (1))))

and informs R

Question: Why not send both 𝐷0
𝑅, 𝐷1

𝑅?

 The rows of the table are randomly permuted

 The result is a random permutation as well

 View everything as keys (6 keys / gate)

In reality …

𝐬 𝐫 𝐬 𝑂𝑅 𝐫 Computation

𝑘0
𝑆 𝑘0

𝑅 𝑘0
𝑂𝑅

𝐸
𝑘0

𝑆(𝐸𝑘0
𝑅(𝑘0

𝑂𝑅))

𝑘0
𝑆 𝑘1

𝑅 𝑘1
𝑂𝑅 𝐸

𝑘0
𝑆(𝐸𝑘1

𝑅(𝑘1
𝑂𝑅))

𝑘1
𝑆 𝑘0

𝑅 𝑘1
𝑂𝑅 𝐸

𝑘1
𝑆(𝐸𝑘0

𝑅(𝑘1
𝑂𝑅))

𝑘1
𝑆 𝑘1

𝑅 𝑘1
𝑂𝑅 𝐸

𝑘1
𝑆(𝐸𝑘1

𝑅(𝑘1
𝑂𝑅))

 After computing each gate 𝑔, both 𝑆, 𝑅 have access to 𝑘𝑥
𝑔

 This is used as input to another gate

 The output gates will contain the circuit’s output 𝑤𝑖

 Each digit is decrypted using output tables

 𝑆 constructs the circuit
 In case of multiple inputs, copy the key

 In case of multiple inputs, same output key

 𝑅 uses oblivious transfer for each bit of its input

 And computes the result

 Complexity:
 Computation: 𝑂(|𝐶|) - 6 keys per gate / 8 encryptions per gate / 2 decryptions per gate

 Communication: 𝑂(|𝐶|) Round complexity: constant

 Proof of security and correctness (Lindell, Pinkas 2006)

Building up the circuit

 Yao, A. C. "Protocols for secure computations“ (FOCS 1982): 160–164

 Rabin M. O. "How to exchange secrets by oblivious transfer." ,TR-81,
Harvard University, 1981

 S. Even, O. Goldreich, and A. Lempel. 1985. A randomized protocol for
signing contracts. Commun. ACM 28, 6 (June 1985), 637-647

 Claude Crépeau. 1987. Equivalence Between Two Flavours of Oblivious
Transfers. In A Conference on the Theory and Applications of Cryptographic
Techniques on Advances in Cryptology (CRYPTO '87, UK, 350-354.

 Yehuda Lindell and Benny Pinkas. 2009. A Proof of Security of Yao’s
Protocol for Two-Party Computation. J. Cryptol. 22, 2 (April 2009), 161-188

 Ostrofski R., CS 282A/MATH 209A: Foundations of Cryptography, Lecture 10,
Oblivious Transfer

 Gabriel Bender, Cryptography and Secure Two-Party Computation, August
21, 2006, http://www.math.uchicago.edu/~may/VIGRE/VIGRE2006/PAPERS/Bender.pdf

Bibliography

