Secure two-party Computation Oblivious Transfer and Secure Function Evaluation

Panagiotis Grontas

Network Algorithms and Complexity

$$
22.07 .2014
$$

Secure Multi Party Computation

* m parties want to jointly compute the function $f\left(x_{1}, x_{2}, \ldots, x_{m}\right)$
* Each P_{i} contributes x_{i}
* Can it be done?
* Without releasing no other information $\left(x_{i}\right)$ except the result
* What is the computational complexity
* What is the communication complexity
* Generalization
* Each party has its own function
* But requires input from all other
* Using a trusted third party is not acceptable

The millionaire problem

* Yao 1982
* Two millionaires want to find out who is richer
* Without revealing their fortunes
* A case of SMP:
* $m=2$ (Alice and Bob)
* $f(a, b)=$, if $a<b$ then 1 else 0
* a, b are bounded in range 1 to n

Yao's First Solution

* Bob
* 'creates' n identical boxes
* selects a number and puts it in box number b
* Fills the rest of the boxes randomly
* Alice
* Receives the boxes and opens all of them
* Leaves the first a boxes unchanged
* Increments the rest $n-a$
* Sends them to Bob
* Bob reviews the boxes
* If his number is unchanged, Alice is richer
* If his number is incremented, Bob is richer

Problems

Exponential Number Of
Boxes
Somebody deviates from the protocol

Exchange of secrets

* Alice and Bob want to exchange secrets s_{a}, s_{b} (without a TTP)
* Problems
* Cheating:
* Receive but not send or send invalid
* Timing:
* The exchange must be simultaneous
* Any EOS protocol is problematic
* $s_{a}=f\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
* $s_{b}=g\left(b_{1}, b_{2}, \ldots, b_{n}\right)$
* There is a k such that s_{A} can be computed from $a_{1}, a_{2}, \ldots, a_{k}$ but
s_{B} cannot be computed from $b_{1}, b_{2}, \ldots, b_{k-1}$

Oblivious transfer

* Solution:
* Construct an EOS protocol such that if Bob knows s_{a}, Alice can construct s_{b}.
* (Real world) assumptions:
* Alice will find out if Bob learns her secret
* Use of an invalid secret will make it useless
* Primitive: Oblivious Transfer
* The sender of a message does not know if the recipient received the information or not
* First implementation:
* Quadratic residues (Rabin)

Rabin's Protocol for OT

Calculate random root of c, $x_{1}: x_{1}^{2}=c\left(\bmod n_{A}\right)$ using $p_{A}, q_{A}, C R T$ efficiently
K_{a}

$$
\begin{gathered}
x \leq n_{A} \\
c=x^{2}\left(\bmod n_{A}\right)
\end{gathered}
$$

commit to x : $E_{K b}(x)$
Calculate
$\mathrm{d}=\operatorname{gcd}\left(x-x_{1}, n_{A}\right)$
No good if $x_{1}= \pm x$
$\operatorname{Prob}[D=p$ or $D=q]=\frac{1}{2}$

Rabin's Protocol for EOS

$v_{a}=0$ iff factors where transferred $\varepsilon_{a}=v_{a} \oplus s_{a}$
embed s_{a} in m_{a} $c_{a}=E_{n_{A}}\left(m_{a}\right)$

$$
v_{a}=0
$$

\rightarrow decryption of c_{b}

Alice

Bob

$v_{b}=0$ iff factors where transferred

$$
\varepsilon_{b}=v_{b} \oplus s_{b}
$$

embed s_{b} in m_{b} $c_{b}=E_{n_{B}}\left(m_{b}\right)$

$$
v_{b}=0
$$

\rightarrow decryption of c_{a}
knows that $v_{b}=0$ and as a result $\varepsilon_{b}=s_{b}$

Formalisation

An oblivious transfer $O T(S, R, M)$ of a message M is a protocol by which a sender S, transfers to a receiver R the message M st:

- R gets M with probability $1 / 2$
- The a-posteriori probability that R got M for S is $1 / 2$
- If R does not receive the message he gains no helpful partial information
- Any attempt from S to deviate from the protocol is detected by R
- Formalisation of a noisy wire

1-out-of-2 Oblivious Transfer

$O T_{1}^{2}\left(S, R, M_{0}, M_{1}\right)$: A protocol by which a sender S transfers ignorantly to a receiver R one message out of two.
R selects which message to receive without S learning it
R requests each message with probability $1 / 2$

$O T_{1}^{2}$

Result: $O T$ and $O T_{1}^{2}$ are equivalent

OT from $0 T_{1}^{2}$ (EGL)

* S wants to transmit M with probability $1 / 2$ to R
* $\boldsymbol{O} \boldsymbol{T}$ machine flips bits $\boldsymbol{M}_{\mathbf{0}}, \boldsymbol{M}_{\boldsymbol{1}}$ and \boldsymbol{b}.
* If $\mathrm{b}=0$ then send $\left(\boldsymbol{M}, \boldsymbol{M}_{\mathbf{1}}\right)$ to $\boldsymbol{O} \boldsymbol{T}_{\mathbf{1}}^{2}$ machine
* If $\mathrm{b}=1$ then send $\left(\boldsymbol{M}_{\mathbf{1}}, \boldsymbol{M}\right)$ to $\boldsymbol{O} \boldsymbol{T}_{\mathbf{1}}^{\mathbf{2}}$ machine

OT ${ }_{1}^{2}$ from OT (crepeau)

* Random OT (R-OT): OT with transfer probability p
* $\boldsymbol{O T} \boldsymbol{1}_{\mathbf{1}}^{2}$ can be implemented using R-OT (OT)

OT ${ }_{1}^{2}$ from OT (Crepeau)

* The OT protocol is applied on bit vector \vec{s}.
* Objective: Transfer $\approx n$
* $\overrightarrow{|s|}=3 n$
* R inputs selector bit b
* It is replaced with 2 sets of indices of length n
* I_{b} : The positions in \vec{s} where the transfer succeeded
* I_{1-b} : Random Positions in \vec{s}
* S sends $\left(M_{0}, M_{1}\right)$
* $M_{b}\left(\bigoplus_{\boldsymbol{i} \in I_{b}} \vec{S}_{\boldsymbol{i}}\right)$ is actually sent for $b=0,1$

OT1 from OT (Crepeau, 1998)

* Analysis
* I_{b} can be found wvhp
* I_{1-b} contains at least one position where OT failed wvhp
* OT Failure => XOR calculation Failure
* Exactly one of them can be calculated
* Exactly one of $\boldsymbol{M}_{\mathbf{0}}, \boldsymbol{M}_{\mathbf{1}}$ can be transferred
* We have $\boldsymbol{O T} \boldsymbol{1}_{\mathbf{1}}^{\mathbf{2}}$

Other flavors

* 1-out-of- N oblivious transfer $\boldsymbol{O} \boldsymbol{T}_{\mathbf{1}}^{\boldsymbol{n}}$
* S has $\boldsymbol{M}_{\mathbf{1}}, \boldsymbol{M}_{2}, \ldots, \boldsymbol{M}_{\boldsymbol{N}}$
* R selects i and receives $\boldsymbol{M}_{\boldsymbol{i}}$
* S does not learn i
* R does not learn $\boldsymbol{M}_{\boldsymbol{j} \boldsymbol{j} \neq \boldsymbol{i}}$
* k-out-of- N oblivious transfer $\boldsymbol{O T}_{\boldsymbol{k}}^{\boldsymbol{n}}$
* Simultaneously receive k messages
* k-out-of- N adaptive oblivious transfer $\boldsymbol{O T}_{\boldsymbol{k}}^{\boldsymbol{n}}$
* Successive oblivious transfers
* Selection at each stage depends on messages previously received
* Constructed using $\boldsymbol{O T} \mathbf{T}_{\mathbf{1}}$

Generic Implementation of $O T_{1}^{2}$

* S, R agree on a $P K C S(K, E, D)$ where $M=C$ (eg. RSA)
* S, R are semi-honest
* Objective: Obliviously transmit $\boldsymbol{m}_{\mathbf{0}}, \boldsymbol{m}_{\mathbf{1}}$
* R generates 2 random strings $\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{x}_{\mathbf{1}}$
* To obtain $\boldsymbol{m}_{\mathbf{0}}$:
* R sends $\left(\boldsymbol{E}\left(\boldsymbol{x}_{\mathbf{0}}\right), \boldsymbol{x}_{\mathbf{1}}\right)$
* S decrypts $\left(\boldsymbol{D}\left(\boldsymbol{E}\left(\boldsymbol{x}_{0}\right)\right), \boldsymbol{D}\left(\boldsymbol{x}_{\mathbf{1}}\right)\right)=\left(\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{D}\left(\boldsymbol{x}_{\mathbf{1}}\right)\right)$
* S applies XOR to tuple $\left(\boldsymbol{m}_{\mathbf{0}} \oplus \boldsymbol{x}_{\mathbf{0}}, \boldsymbol{m}_{\mathbf{1}} \oplus \boldsymbol{D}\left(\boldsymbol{x}_{\mathbf{1}}\right)\right)$
* R retrieves $\boldsymbol{m}_{\mathbf{0}}$ by XORing again

$$
\left(m_{0} \oplus x_{0} \oplus x_{0}, m_{1} \oplus D\left(x_{1}\right) \oplus x_{1}\right)
$$

OT and SFE: Yao's construction

* Oblivious transfer implies secure function evaluation
* Use oblivious transfer to compute any function f
* Express f as a circuit C
* Construct a protocol that computes C
* Parties provide inputs
* They only learn the output
* All intermediate values are never revealed
* Random inputs
* Random outputs
* Garbled truth tables
* Security against semi - honest (passive) players

An OR Gate with OT

- S contributes s and R contributes r
- Step 1: S transforms truth table
- selects random permutations $v:\{0,1\} \rightarrow$ $\{0,1\}$
- Applies permutations to truth table
- Selects 4 encryption decryption functions (E_{0}^{S}, D_{0}^{S}), $\left(E_{1}^{S}, D_{1}^{S}\right),\left(E_{0}^{R}, D_{0}^{R}\right),\left(E_{1}^{R}, D_{1}^{R}\right)$

s	r	$s 0 R r$
$v_{s}(0)$	$v_{r}(0)$	$E_{v_{s}(0)}^{S}\left(E_{v_{R}(0)}^{R}(0)\right)$
$v_{s}(0)$	$v_{r}(1)$	$E_{v_{s}(0)}^{S}\left(E_{v_{R}(1)}^{R}(1)\right)$
$v_{s}(1)$	$v_{r}(0)$	$E_{v_{s}(1)}^{S}\left(E_{v_{R}(0)}^{R}(1)\right)$
$v_{s}(1)$	$v_{r}(1)$	$E_{v_{s}(1)}^{S}\left(E_{v_{R}(1)}^{R}(1)\right)$

- Send the table and v_{r} to the R

An OR Gate with OT (2)

* Step 2: S computes its part * $v_{s}(\mathrm{~s})$
* Sends ($\left.v_{s}(\mathrm{~s}), D_{v_{s}(\mathrm{~s})}^{S}\right)$
* Step 3: R computes its part * $v_{R}(r)$
* In order to decrypt $D_{\mathrm{V}_{R}(\mathrm{r})}^{R}$ is required
* How to get it without revealing $\mathrm{v}_{R}(\mathrm{r})$?
* $\boldsymbol{O T}_{\mathbf{1}}^{\mathbf{2}}\left(\boldsymbol{S}, \boldsymbol{R}, D_{0}^{R}, D_{1}^{R}\right)$

s	r	$\mathrm{s} 0 R \mathrm{r}$
$v_{s}(0)$	$v_{r}(0)$	$E_{v_{s}(0)}^{S}\left(E_{v_{R}(0)}^{R}(0)\right)$
$v_{s}(0)$	$v_{r}(1)$	$E_{v_{s}(0)}^{S}\left(E_{v_{R}(1)}^{R}(1)\right)$
$v_{s}(1)$	$v_{r}(0)$	$E_{v_{s}(1)}^{S}\left(E_{v_{R}(0)}^{R}(1)\right)$
$v_{s}(1)$	$v_{r}(1)$	$E_{v_{s}(1)}^{S}\left(E_{v_{R}(1)}^{R}(1)\right)$

Finally: Peel off the desired row

$$
D_{v_{R}(r)}^{R}\left(D_{v_{s}(0)}^{S}\left(E_{v_{s}(0)}^{S}\left(E_{v_{R}(1)}^{R}(1)\right)\right)\right)
$$

and informs R

In reality

* The rows of the table are randomly permuted
* The result is a random permutation as well
* View everything as keys (6 keys / gate)

s	r	s $O R \mathrm{r}$	Computation
k_{0}^{S}	k_{0}^{R}	$k_{0}^{O R}$	$E_{k_{0}^{S}}\left(E_{k_{0}^{R}}\left(k_{0}^{O R}\right)\right)$
k_{0}^{S}	k_{1}^{R}	$k_{1}^{O R}$	$E_{k_{0}^{S}}\left(E_{k_{1}^{R}}\left(k_{1}^{O R}\right)\right)$
k_{1}^{S}	k_{0}^{R}	$k_{1}^{O R}$	$E_{k_{1}^{S}}\left(E_{k_{0}^{R}}\left(k_{1}^{O R}\right)\right)$
k_{1}^{S}	k_{1}^{R}	$k_{1}^{O R}$	$E_{k_{1}^{S}}\left(E_{k_{1}^{R}}\left(k_{1}^{O R}\right)\right)$

Building up the circuit

* After computing each gate g, both S, R have access to k_{x}^{g}
* This is used as input to another gate
* The output gates will contain the circuit's output w_{i}
* Each digit is decrypted using output tables
* S constructs the circuit
* In case of multiple inputs, copy the key
* In case of multiple inputs, same output key
* R uses oblivious transfer for each bit of its input
* And computes the result
* Complexity:
* Computation: $O(|C|)-6$ keys per gate / 8 encryptions per gate / 2 decryptions per gate
* Communication: $O(|C|)$ Round complexity: constant
* Proof of security and correctness (Lindell, Pinkas 2006)

Bibliography

* Yao, A. C. "Protocols for secure computations" (FOCS 1982): 160-164
* Rabin M. O. "How to exchange secrets by oblivious transfer." ,TR-81, Harvard University, 1981
* S. Even, O. Goldreich, and A. Lempel. 1985. A randomized protocol for signing contracts. Commun. ACM 28, 6 (June 1985), 637-647
* Claude Crépeau. 1987. Equivalence Between Two Flavours of Oblivious Transfers. In A Conference on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology (CRYPTO '87, UK, 350-354.
* Yehuda Lindell and Benny Pinkas. 2009. A Proof of Security of Yao's Protocol for Two-Party Computation. J. Cryptol. 22, 2 (April 2009), 161-188
* Ostrofski R., CS 282A/MATH 209A: Foundations of Cryptography, Lecture 10, Oblivious Transfer
* Gabriel Bender, Cryptography and Secure Two-Party Computation, August 21, 2006, http://www.math.uchicago.edu/~may/VIGRE/VIGRE2006/PAPERS/Bender.pdf

