
Secure two-party Computation
Oblivious Transfer and Secure Function

Evaluation

Panagiotis Grontas

Network Algorithms and Complexity

22.07.2014

 𝑚 parties want to jointly compute the function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑚)

 Each 𝑃𝑖 contributes 𝑥𝑖

 Can it be done?

 Without releasing no other information (𝑥𝑖) except the result

 What is the computational complexity

 What is the communication complexity

 Generalization

 Each party has its own function

 But requires input from all other

 Using a trusted third party is not acceptable

Secure Multi Party Computation

 Yao 1982

 Two millionaires want to find out who is richer

 Without revealing their fortunes

 A case of SMP:

 m=2 (Alice and Bob)

 𝑓 𝑎, 𝑏, = 𝑖𝑓 𝑎 < 𝑏 𝑡ℎ𝑒𝑛 1 𝑒𝑙𝑠𝑒 0

 𝑎, 𝑏 are bounded in range 1 to 𝑛

The millionaire problem

 Bob

 ‘creates’ 𝑛 identical boxes

 selects a number and puts it in box number 𝑏

 Fills the rest of the boxes randomly

 Alice

 Receives the boxes and opens all of them

 Leaves the first 𝑎 boxes unchanged

 Increments the rest 𝑛 − 𝑎

 Sends them to Bob

 Bob reviews the boxes

 If his number is unchanged, Alice is richer

 If his number is incremented, Bob is richer

Yao’s First Solution

Exponential Number Of
Boxes
Somebody deviates from
the protocol

Problems

 Alice and Bob want to exchange secrets 𝑠𝑎 , 𝑠𝑏 (without a TTP)

 Problems

 Cheating:

 Receive but not send or send invalid

 Timing:

 The exchange must be simultaneous

 Any EOS protocol is problematic

 𝑠𝑎 = 𝑓(𝑎1, 𝑎2, … , 𝑎𝑛)

 𝑠𝑏 = 𝑔(𝑏1, 𝑏2, … , 𝑏𝑛)

 There is a k such that 𝑠𝐴 can be computed from 𝑎1, 𝑎2, … , 𝑎𝑘 but

𝑠𝐵 cannot be computed from 𝑏1, 𝑏2, … , 𝑏𝑘−1

Exchange of secrets

 Solution:

 Construct an EOS protocol such that if Bob knows 𝑠𝑎, Alice can
construct 𝑠𝑏 .

 (Real world) assumptions:

 Alice will find out if Bob learns her secret

 Use of an invalid secret will make it useless

 Primitive: Oblivious Transfer

 The sender of a message does not know if the recipient received
the information or not

 First implementation:

 Quadratic residues (Rabin)

Oblivious transfer

Rabin’s Protocol for OT

Alice Bob

𝑛𝐴 = 𝑝𝐴𝑞𝐴

𝑥 ≤ 𝑛𝐴

𝑐 = 𝑥2 𝑚𝑜𝑑 𝑛𝐴

commit to 𝑥: 𝐸𝐾𝑏(𝑥)

𝐾𝑎
𝐾𝑏

𝐸𝐾𝑏(𝑥), c

Calculate
random root of 𝑐,
𝑥1: 𝑥1

2 = 𝑐 𝑚𝑜𝑑 𝑛𝐴

using 𝑝𝐴, 𝑞𝐴 , 𝐶𝑅𝑇
efficiently

𝑥1
Calculate
d=gcd(𝑥 − 𝑥1, 𝑛𝐴)
No good if 𝑥1 = ±𝑥

𝑃𝑟𝑜𝑏 𝐷 = 𝑝 𝑜𝑟 𝐷 = 𝑞 =
1

2

Alice transfers the factorization

of 𝒏𝑨, with probability
𝟏

𝟐

Rabin’s Protocol for EOS

Alice Bob

Oblivious transfer of 𝒏𝑨

Oblivious transfer of 𝒏𝑩

𝑣𝑏 = 0 𝑖𝑓𝑓 𝑓𝑎𝑐𝑡𝑜𝑟𝑠
𝑤ℎ𝑒𝑟𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑

𝜀𝑏 = 𝑣𝑏 ⊕ 𝑠𝑏

𝑣𝑎 = 0 𝑖𝑓𝑓 𝑓𝑎𝑐𝑡𝑜𝑟𝑠
𝑤ℎ𝑒𝑟𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑

𝜀𝑎 = 𝑣𝑎 ⊕ 𝑠𝑎

𝜀𝑎, 𝜀𝑏

𝑒𝑚𝑏𝑒𝑑 𝑠𝑎 in 𝑚𝑎

𝑐𝑎 = 𝐸𝑛𝐴
(𝑚𝑎)

𝑒𝑚𝑏𝑒𝑑 𝑠𝑏 in 𝑚𝑏

𝑐𝑏 = 𝐸𝑛𝐵
(𝑚𝑏)

𝑐𝑎, 𝑐𝑏

𝑣𝑏 = 0
→ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑜𝑓𝑐𝑎

𝑣𝑎 = 0
→ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑜𝑓𝑐𝑏

If Bob decrypts 𝑐𝑎 then Alice
knows that 𝑣𝑏 = 0 and as a
result 𝜀𝑏 = 𝑠𝑏

Formalisation
(Even, Goldreich, Lempel)

An oblivious transfer 𝑂𝑇(𝑆, 𝑅,𝑀) of a message 𝑀 is a
protocol by which a sender 𝑆, transfers to a receiver 𝑅 the
message 𝑀 st:
• 𝑅 gets 𝑀 with probability ½
• The a-posteriori probability that 𝑅 got 𝑀 for 𝑆 is 1/2

• If 𝑅 does not receive the
message he gains no helpful
partial information

• Any attempt from 𝑆 to
deviate from the protocol is
detected by 𝑅

• Formalisation of a noisy wire

𝑆 𝑅𝑶𝑻
𝑴

𝑴

#

𝑶𝑻𝟏
𝟐 (𝑺, 𝑹,𝑴𝟎, 𝑴𝟏): A protocol by which a sender 𝑆

transfers ignorantly to a receiver 𝑅 one message out
of two.

𝑅 selects which message to receive without S
learning it

𝑅 requests each message with probability 1/2

1-out-of-2 Oblivious Transfer

𝐑𝐞𝐬𝐮𝐥𝐭: 𝑂𝑇 𝑎𝑛𝑑 𝑂𝑇1
2 are equivalent

𝑆 𝑅
𝒃

𝑴𝒃

𝑶𝑻𝟏
𝟐

𝑂𝑇 from 𝑂𝑇1
2 (EGL)

𝑆 𝑅

𝑶𝑻 𝑴𝑴

#

𝑴𝟎

𝑴𝟏

𝒃

𝑴𝒃

𝑶𝑻𝟏
𝟐

 𝑆 wants to transmit 𝑴 with probability ½ to 𝑅

 𝑶𝑻 machine flips bits 𝑴𝟎 ,𝑴𝟏 and 𝒃.

 If b = 0 then send (𝑴 ,𝑴𝟏) to 𝑶𝑻𝟏
𝟐 machine

 If b = 1 then send (𝑴𝟏 ,𝑴) to 𝑶𝑻𝟏
𝟐 machine

 Random OT (R-OT): OT with transfer probability 𝑝

 𝑶𝑻𝟏
𝟐 can be implemented using R -OT (OT)

𝑂𝑇1
2 from 𝑂𝑇 (Crepeau)

𝑆 𝑅

𝑶𝑻𝟏
𝟐

𝑴𝟏

𝑴𝟐

𝒃

𝑴𝒃

𝑶𝑻

 The OT protocol is applied on bit vector 𝑠.

 Objective: Transfer ≈ 𝑛

 𝑠 = 3𝑛

 𝑅 inputs selector bit 𝑏

 It is replaced with 2 sets of indices of length 𝑛
 𝐼𝑏: The positions in 𝑠 where the transfer succeeded

 𝐼1−𝑏: Random Positions in 𝑠

 𝑆 sends (𝑀0, 𝑀1)

 𝑀𝑏(⨁𝒊∈𝐼𝑏
 𝑠𝒊) is actually sent for 𝑏 = 0,1

𝑂𝑇1
2 from 𝑂𝑇 (Crepeau)

 Analysis

 𝐼𝑏 can be found wvhp

 𝐼1−𝑏 contains at least one position where OT failed wvhp

 OT Failure => XOR calculation Failure

 Exactly one of them can be calculated

 Exactly one of 𝑴𝟎,𝑴𝟏 can be transferred

 We have 𝑶𝑻𝟏
𝟐

𝑂𝑇1
2 from 𝑂𝑇 (Crepeau, 1998)

 1-out-of-𝑁 oblivious transfer 𝑶𝑻𝟏
𝒏

 𝑆 has 𝑴𝟏,𝑴𝟐, … ,𝑴𝑵

 𝑅 selects 𝑖 and receives 𝑴𝒊

 𝑆 does not learn 𝑖

 𝑅 does not learn 𝑴𝒋,𝒋≠𝒊

 𝑘-out-of-𝑁 oblivious transfer 𝑶𝑻𝒌
𝒏

 Simultaneously receive k messages

 𝑘-out-of-𝑁 adaptive oblivious transfer 𝑶𝑻𝒌
𝒏

 Successive oblivious transfers

 Selection at each stage depends on messages previously received

 Constructed using 𝑶𝑻𝟏
𝟐

Other flavors

 𝑆, 𝑅 agree on a 𝑃𝐾𝐶𝑆 (𝐾, 𝐸, 𝐷) where 𝑀 = 𝐶 (eg. RSA)

 𝑆, 𝑅 are semi-honest

 Objective: Obliviously transmit 𝒎𝟎,𝒎𝟏

 𝑅 generates 2 random strings 𝒙𝟎, 𝒙𝟏

 To obtain 𝒎𝟎:

 𝑅 sends (𝑬(𝒙𝟎), 𝒙𝟏)

 𝑆 decrypts (𝑫(𝑬(𝒙𝟎)), 𝑫(𝒙𝟏)) = (𝒙𝟎, 𝑫(𝒙𝟏))

 𝑆 applies XOR to tuple (𝒎𝟎 ⊕ 𝒙𝟎,𝒎𝟏 ⊕ 𝑫(𝒙𝟏))

 𝑅 retrieves 𝒎𝟎 by XORing again
(𝒎𝟎 ⊕ 𝒙𝟎⊕ 𝒙𝟎,𝒎𝟏 ⊕ 𝑫(𝒙𝟏) ⊕ 𝒙𝟏)

Generic Implementation of 𝑂𝑇1
2

 Oblivious transfer implies secure function evaluation

 Use oblivious transfer to compute any function 𝑓

 Express 𝑓 as a circuit 𝐶

 Construct a protocol that computes 𝐶

 Parties provide inputs

 They only learn the output

 All intermediate values are never revealed

 Random inputs

 Random outputs

 Garbled truth tables

 Security against semi – honest (passive) players

OT and SFE: Yao’s construction

𝒔 𝒓 s 𝑂𝑅 𝐫

0 0 0

0 1 1

1 0 1

1 1 1

An OR Gate with OT
• 𝑆 contributes s and 𝑅

contributes r
• Step 1: 𝑆 transforms truth table

• selects random
permutations 𝑣: 0,1 →
{0,1}

• Applies permutations to
truth table

• Selects 4 encryption -
decryption
functions (𝐸0

𝑆, 𝐷0
𝑆),

(𝐸1
𝑆, 𝐷1

𝑆), (𝐸0
𝑅 , 𝐷0

𝑅), (𝐸1
𝑅 , 𝐷1

𝑅)
• Applies encryption functions

to the result according to
the position

• Send the table and 𝑣𝑟 to the
𝑅

𝐬 𝐫 𝐬 𝑂𝑅 𝐫

𝑣𝑠(0) 𝑣𝑟(0) 𝐸𝑣𝑠(0)
𝑆 (𝐸𝑣𝑅(0)

𝑅 (0))

𝑣𝑠(0) 𝑣𝑟(1) 𝐸𝑣𝑠(0)
𝑆 (𝐸𝑣𝑅(1)

𝑅 (1))

𝑣𝑠(1) 𝑣𝑟(0) 𝐸𝑣𝑠(1)
𝑆 (𝐸𝑣𝑅(0)

𝑅 (1))

𝑣𝑠(1) 𝑣𝑟(1) 𝐸𝑣𝑠(1)
𝑆 (𝐸𝑣𝑅(1)

𝑅 (1))

An OR Gate with OT (2)

 Step 2: S computes its part

 𝑣𝑠 s

 Sends (𝑣𝑠 s , 𝐷𝑣𝑠 s
𝑆)

 Step 3: R computes its part

 𝑣𝑅 𝑟

 In order to decrypt 𝐷v𝑅 r
𝑅 is

required

 How to get it without

revealing v𝑅 r ?

 𝑶𝑻𝟏
𝟐 𝑺, 𝑹,𝐷0

𝑅 , 𝐷1
𝑅

𝐬 𝐫 𝐬 𝑂𝑅 𝐫

𝑣𝑠(0) 𝑣𝑟(0) 𝐸𝑣𝑠(0)
𝑆 (𝐸𝑣𝑅(0)

𝑅 (0))

𝑣𝑠(0) 𝑣𝑟(1) 𝐸𝑣𝑠(0)
𝑆 (𝐸𝑣𝑅(1)

𝑅 (1))

𝑣𝑠(1) 𝑣𝑟(0) 𝐸𝑣𝑠(1)
𝑆 (𝐸𝑣𝑅(0)

𝑅 (1))

𝑣𝑠(1) 𝑣𝑟(1) 𝐸𝑣𝑠(1)
𝑆 (𝐸𝑣𝑅(1)

𝑅 (1))

Finally: Peel off the desired row

𝐷𝑣𝑅 𝑟
𝑅 (𝐷𝑣𝑠 0

𝑆 (𝐸𝑣𝑠 0
𝑆 (𝐸𝑣𝑅 1

𝑅 (1))))

and informs R

Question: Why not send both 𝐷0
𝑅, 𝐷1

𝑅?

 The rows of the table are randomly permuted

 The result is a random permutation as well

 View everything as keys (6 keys / gate)

In reality …

𝐬 𝐫 𝐬 𝑂𝑅 𝐫 Computation

𝑘0
𝑆 𝑘0

𝑅 𝑘0
𝑂𝑅

𝐸
𝑘0

𝑆(𝐸𝑘0
𝑅(𝑘0

𝑂𝑅))

𝑘0
𝑆 𝑘1

𝑅 𝑘1
𝑂𝑅 𝐸

𝑘0
𝑆(𝐸𝑘1

𝑅(𝑘1
𝑂𝑅))

𝑘1
𝑆 𝑘0

𝑅 𝑘1
𝑂𝑅 𝐸

𝑘1
𝑆(𝐸𝑘0

𝑅(𝑘1
𝑂𝑅))

𝑘1
𝑆 𝑘1

𝑅 𝑘1
𝑂𝑅 𝐸

𝑘1
𝑆(𝐸𝑘1

𝑅(𝑘1
𝑂𝑅))

 After computing each gate 𝑔, both 𝑆, 𝑅 have access to 𝑘𝑥
𝑔

 This is used as input to another gate

 The output gates will contain the circuit’s output 𝑤𝑖

 Each digit is decrypted using output tables

 𝑆 constructs the circuit
 In case of multiple inputs, copy the key

 In case of multiple inputs, same output key

 𝑅 uses oblivious transfer for each bit of its input

 And computes the result

 Complexity:
 Computation: 𝑂(|𝐶|) - 6 keys per gate / 8 encryptions per gate / 2 decryptions per gate

 Communication: 𝑂(|𝐶|) Round complexity: constant

 Proof of security and correctness (Lindell, Pinkas 2006)

Building up the circuit

 Yao, A. C. "Protocols for secure computations“ (FOCS 1982): 160–164

 Rabin M. O. "How to exchange secrets by oblivious transfer." ,TR-81,
Harvard University, 1981

 S. Even, O. Goldreich, and A. Lempel. 1985. A randomized protocol for
signing contracts. Commun. ACM 28, 6 (June 1985), 637-647

 Claude Crépeau. 1987. Equivalence Between Two Flavours of Oblivious
Transfers. In A Conference on the Theory and Applications of Cryptographic
Techniques on Advances in Cryptology (CRYPTO '87, UK, 350-354.

 Yehuda Lindell and Benny Pinkas. 2009. A Proof of Security of Yao’s
Protocol for Two-Party Computation. J. Cryptol. 22, 2 (April 2009), 161-188

 Ostrofski R., CS 282A/MATH 209A: Foundations of Cryptography, Lecture 10,
Oblivious Transfer

 Gabriel Bender, Cryptography and Secure Two-Party Computation, August
21, 2006, http://www.math.uchicago.edu/~may/VIGRE/VIGRE2006/PAPERS/Bender.pdf

Bibliography

