Coloring Circular Arc Graphs

Revisiting Tucker's algorithm

Alex Angelopoulos

$\mu \Pi \lambda \forall$

July 22, 2014

Outline

Introduction

Analyzing Tucker's algorithm

The problem

The problem

Input: a family F of circular arcs

The problem

Input: a family F of circular arcs

Output: is there a proper coloring with $\leq k$ colors? what is the minimum k s.t. F has a proper coloring?

Some quantities

Some quantities

- Load of F : L

Some quantities

- Load of F : L
- circular-cover: l

Some quantities

- Load of F : L
- circular-cover: l
- max. clique of F : $\boldsymbol{\omega}$ (as usual)

Some quantities

- Load of F : L
- circular-cover: l
- max. clique of F : $\boldsymbol{\omega}$ (as usual)
- We also discretize and use the -at most- $2|F|$ points defining the arcs.

Results

Theorem 1 (Tucker (1975)).

Let F be a family of circular arcs with load $L=L(F)$ and circular-cover $l=l(F)$. If $l(F) \geq 4$, then $\left\lfloor\frac{3}{2} L\right\rfloor$ colors suffice to properly color F.

- This is actually a 2-approximation algorithm.

Results

Theorem 1 (Tucker (1975)).

Let F be a family of circular arcs with load $L=L(F)$ and circular-cover $l=l(F)$. If $l(F) \geq 4$, then $\left\lfloor\frac{3}{2} L\right\rfloor$ colors suffice to properly color F.

- This is actually a 2-approximation algorithm.
- Tucker, [4] conjecture that $\chi(F) \leq \frac{3}{2} \omega(F)$.
- Karapetian (1980) proves the above.

Results

Theorem 1 (Tucker (1975)).

Let F be a family of circular arcs with load $L=L(F)$ and circular-cover $l=l(F)$. If $l(F) \geq 4$, then $\left\lfloor\frac{3}{2} L\right\rfloor$ colors suffice to properly color F.

- This is actually a 2-approximation algorithm.
- Tucker, [4] conjecture that $\chi(F) \leq \frac{3}{2} \omega(F)$.
- Karapetian (1980) proves the above.
- Garey et al. (1980) show NP-completeness for Circular Arc Color

Results

Theorem 1 (Tucker (1975)).

Let F be a family of circular arcs with load $L=L(F)$ and circular-cover $l=l(F)$. If $l(F) \geq 4$, then $\left\lfloor\frac{3}{2} L\right\rfloor$ colors suffice to properly color F.

- This is actually a 2-approximation algorithm.
- Tucker, [4] conjecture that $\chi(F) \leq \frac{3}{2} \omega(F)$.
- Karapetian (1980) proves the above.
- Garey et al. (1980) show NP-completeness for Circular Arc Color
- Many exact algos for subfamilies of graphs $\left(\geq \mathcal{O}\left(|F|^{1.5}\right)\right)$.

Results

More recently:

Theorem 2 (Valencia-Pabon (2003)).

Consider F with load $L(F)$ and circular-cover $l(F) \geq 5$. Then $\left\lceil\frac{l-1}{l-2} L\right\rceil$ colors suffice to color F, bound being tight.

Results

More recently:

Theorem 2 (Valencia-Pabon (2003)).

Consider F with load $L(F)$ and circular-cover $l(F) \geq 5$. Then $\left\lceil\frac{l-1}{l-2} L\right\rceil$ colors suffice to color F, bound being tight.

That's this presentation about!

Results

More recently:

Theorem 2 (Valencia-Pabon (2003)).

Consider F with load $L(F)$ and circular-cover $l(F) \geq 5$. Then $\left\lceil\frac{l-1}{l-2} L\right\rceil$ colors suffice to color F, bound being tight.

That's this presentation about!
It is based exactly on the algorithm proposed by Tucker, [4].

Outline

Analyzing Tucker's algorithm

Tucker's algorithm

Tucker's algorithm

- Select p so that $L(F)$ arcs contain it

Tucker's algorithm

- Select p so that $L(F)$ arcs contain it
- Assign color \#1 to the arc which extends at least on the counterclockwise side of p

Tucker's algorithm

- Select p so that $L(F)$ arcs contain it
- Assign color \#1 to the arc which extends at least on the counterclockwise side of p
- Move clockwise, assign current color to the first arc to begin after the previous ends

Tucker's algorithm

- Select p so that $L(F)$ arcs contain it
- Assign color \#1 to the arc which extends at least on the counterclockwise side of p
- Move clockwise, assign current color to the first arc to begin after the previous ends
- Unless it is not possible,
 so use next color

Tucker's algorithm

- Select p so that $L(F)$ arcs contain it
- Assign color \#1 to the arc which extends at least on the counterclockwise side of p
- Move clockwise, assign current color to the first arc to begin after the previous ends
- Unless it is not possible,
 so use next color

Notations needed

Notations needed

- starting point: \boldsymbol{t}

Notations needed

- starting point: \boldsymbol{t}
- first arc colored with i : \boldsymbol{A}_{i}

Notations needed

- starting point: \boldsymbol{t}
- first arc colored with i : \boldsymbol{A}_{i}
- arcs colored until $k^{\text {th }}$ round: $\boldsymbol{F}_{\boldsymbol{k}}$

Notations needed

- starting point: \boldsymbol{t}
- first arc colored with i : \boldsymbol{A}_{i}
- arcs colored until $k^{\text {th }}$ round: $\boldsymbol{F}_{\boldsymbol{k}}$

Properties

1. A_{i} intersects A_{i-1} or else no new color is needed

Properties

1. A_{i} intersects A_{i-1} or else no new color is needed
2. $L\left(F \backslash F_{i}\right) \leq L(F)-i$ OK, verify again later*

Properties

1. A_{i} intersects A_{i-1} or else no new color is needed
2. $L\left(F \backslash F_{i}\right) \leq L(F)-i$ OK, verify again later*
3. For $1 \leq i \leq l-\mathbf{2}, \boldsymbol{F}_{\boldsymbol{i}}$ is colored with at most $i+1$ colors by the Algorithm...

Properties

1. A_{i} intersects A_{i-1} or else no new color is needed
2. $L\left(F \backslash F_{i}\right) \leq L(F)-i$ OK, verify again later*
3. For $1 \leq i \leq l-\mathbf{2}, \boldsymbol{F}_{\boldsymbol{i}}$ is colored with at most $i+1$ colors by the Algorithm...
Proof?

Proving Property 3

$$
1 \leq i \leq l-2
$$

Suppose F_{i-1} is properly colored with i colors. Let:

Proving Property 3

$$
1 \leq i \leq l-2
$$

Suppose F_{i-1} is properly colored with i colors. Let:

- A_{i} the first to get color i in round $i-1$
- A_{i}^{f} the last of round $i-1$ to traverse t

Proving Property 3

$$
1 \leq i \leq l-2
$$

Suppose F_{i-1} is properly colored with i colors. Let:

- \boldsymbol{A}_{i} the first to get color i in round $i-1$
- A_{i}^{f} the last of round $i-1$ to traverse t
these may be the same arc

Proving Property 3

$$
1 \leq i \leq l-2
$$

Suppose F_{i-1} is properly colored with i colors. Let:

- A_{i} the first to get color i in round $i-1$
- A_{i}^{f} the last of round $i-1$ to traverse t these may be the same arc
- Now think about A_{i+1} and A_{i+1}^{f}

Proving Property 3

Suppose F_{i-1} is properly colored with i colors. Let:

- A_{i} the first to get color i in round $i-1$
- A_{i}^{f} the last of round $i-1$ to traverse t
these may be the same arc
- Now think about A_{i+1} and A_{i+1}^{f} Same color except...

Proving Property 3

$$
1 \leq i \leq l-2
$$

Suppose F_{i-1} is properly colored with i colors. Let:

- A_{i} the first to get color i in round $i-1$
- A_{i}^{f} the last of round $i-1$ to traverse t
these may be the same arc
- Now think about A_{i+1} and A_{i+1}^{f} Same color except...

In this case:
$A_{2}, A_{3}, \ldots, A_{i}, A_{i}^{f}$
cover the circle!

Proving Property 3

$$
1 \leq i \leq l-2
$$

Suppose F_{i-1} is properly

- A_{i} the first to get color i in round $i-1$
- A_{i}^{f} the last of round $i-1$ to traverse t
these may be the same arc
- Now think about A_{i+1} and A_{i+1}^{f} Same color except...

In this case:
$A_{2}, A_{3}, \ldots, A_{i}, A_{i}^{f}$
cover the circle!

Proving Property 3

$$
1 \leq i \leq l-2
$$

Suppose F_{i-1} is properly colored with i colors. Let:

- A_{i} the first to get color i in round $i-1$
- A_{i}^{f} the last of round $i-1$ to traverse t
these may be the same arc
- Now think about A_{i+1} and A_{i+1}^{f} Same color except...

In this case:
$A_{2}, A_{3}, \ldots, A_{i}, A_{i}^{f}$
cover the circle!

Proving Property 3

$$
1 \leq i \leq l-2
$$

Suppose F_{i-1} is properly colored with i colors. Let:

- A_{i} the first to get color i in round $i-1$
- A_{i}^{f} the last of round $i-1$ to traverse t
these may be the same arc
- Now think about A_{i+1} and A_{i+1}^{f} Same color except...

In this case:
$A_{2}, A_{3}, \ldots, A_{i}, A_{i}^{f}$
cover the circle!

Recap

Property 2. $L\left(F \backslash F_{l-2}\right) \leq L-(l-2)$
Property 3. F_{l-2} are properly colored with $l-1$ colors.

Recap

Property 2. $L\left(F \backslash F_{l-2}\right) \leq L-(l-2)$
Property 3. F_{l-2} are properly colored with $l-1$ colors.
But how to use some induction here?

Recap

Property 2. $L\left(F \backslash F_{l-2}\right) \leq L-(l-2)$

Property 3. F_{l-2} are properly colored with $l-1$ colors.
But how to use some induction here?
Maintain little arcs $(p, p+1)$ to create a constant load of $L(F)$ around the circle. Neither $\chi(F)$ nor the Algorithm's output is changed! *Now check again Property 2 !

Recap

Property 2. $L\left(F \backslash F_{l-2}\right) \leq L-(l-2)$

Property 3. F_{l-2} are properly colored with $l-1$ colors.
But how to use some induction here?
Maintain little arcs $(p, p+1)$ to create a constant load of $L(F)$ around the circle. Neither $\chi(F)$ nor the Algorithm's output is changed! *Now check again Property 2 !

Now: $F^{\prime}=F \backslash F_{l-2}$ has $l_{F^{\prime}} \geq l_{F}$

Recap

Property 2. $L\left(F \backslash F_{l-2}\right) \leq L-(l-2)$

Property 3. F_{l-2} are properly colored with $l-1$ colors.
But how to use some induction here?
Maintain little arcs $(p, p+1)$ to create a constant load of $L(F)$ around the circle. Neither $\chi(F)$ nor the Algorithm's output is changed! *Now check again Property 2 !

Now: $F^{\prime}=F \backslash F_{l-2}$ has $l_{F^{\prime}} \geq l_{F} \geq 5$, so use induction!...

Recap

Property 2. $L\left(F \backslash F_{l-2}\right) \leq L-(l-2)$
Property 3. F_{l-2} are properly colored with $l-1$ colors.
But how to use some induction here?
Maintain little arcs $(p, p+1)$ to create a constant load of $L(F)$ around the circle. Neither $\chi(F)$ nor the Algorithm's output is changed! *Now check again Property 2 !

Now: $F^{\prime}=F \backslash F_{l-2}$ has $l_{F^{\prime}} \geq l_{F} \geq 5$, so use induction!...

- L rounds, every $l-\mathbf{2}$ rounds need at most $l-\mathbf{1}$ colors

Recap

Property 2. $L\left(F \backslash F_{l-2}\right) \leq L-(l-2)$
Property 3. F_{l-2} are properly colored with $l-1$ colors.
But how to use some induction here?
Maintain little arcs $(p, p+1)$ to create a constant load of $L(F)$ around the circle. Neither $\chi(F)$ nor the Algorithm's output is changed! *Now check again Property 2 !

Now: $F^{\prime}=F \backslash F_{l-2}$ has $l_{F^{\prime}} \geq l_{F} \geq 5$, so use induction!...

- L rounds, every $\boldsymbol{l}-\mathbf{2}$ rounds need at most $l-\mathbf{1}$ colors
$\Rightarrow\left\lceil\left\lceil\frac{l-1}{l-2} L\right\rceil\right.$ is the output of the algorithm.

Some final interaction

- What if every arc in F spans at most n / k "points" of the circle?

Some final interaction

- What if every arc in F spans at most n / k "points" of the circle?

$$
l \geq k+1 \Rightarrow S O L=\left\lceil\frac{k}{k-1} L\right\rceil
$$

Some final interaction

- What if every arc in F spans at most n / k "points" of the circle?

$$
l \geq k+1 \Rightarrow S O L=\left\lceil\frac{k}{k-1} L\right\rceil
$$

- What if every arc spans more than a semi-circle?

Some final interaction

- What if every arc in F spans at most n / k "points" of the circle?

$$
l \geq k+1 \Rightarrow S O L=\left\lceil\frac{k}{k-1} L\right\rceil
$$

-What if every arc spans more than a semi-circle?
The circular arc graph is complete!

Some final interaction

- What if every arc in F spans at most n / k "points" of the circle?

$$
l \geq k+1 \Rightarrow S O L=\left\lceil\frac{k}{k-1} L\right\rceil
$$

-What if every arc spans more than a semi-circle?
The circular arc graph is complete!

- To show tightness, Valencia-Pabon uses a result of Stahl, [3] regarding r-tuple colorings...

Some final interaction

- What if every arc in F spans at most n / k "points" of the circle?

$$
l \geq k+1 \Rightarrow S O L=\left\lceil\frac{k}{k-1} L\right\rceil
$$

- What if every arc spans more than a semi-circle?

The circular arc graph is complete!

- To show tightness, Valencia-Pabon uses a result of Stahl, [3] regarding r-tuple colorings...

Major open problem: better than $\frac{3}{2}$-approximation?

That's all folks!

Bibliography

[1] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H.
Papadimitriou. The complexity of coloring circular arcs and chords. SIAM J. Alg. Disc. Meth., 1(2):216-227, June 1980.
[2] I. Karapetian. Coloring of arc graphs. Akad. Nauk Armyan. SSR Dokl., 70:306-311, 1980.
[3] S. Stahl. n-tuple colorings and associated graphs. Journal of Comb. Theory, Series B, 20(2):185-203, 1976.
[4] A. Tucker. Coloring a family of circular arcs. SIAM J. Appl. Math., 29:493-502, 1975.
[5] M. Valencia-Pabon. Revisiting tucker's algorithm to color circular arc graphs. SIAM J. Comput., 32(4):1067-1072, 2003.

