Coloring Circular Arc Graphs

Revisiting Tucker's algorithm

Alex Angelopoulos

 $\mu \prod \lambda \, \forall$

July 22, 2014

Introduction

Analyzing Tucker's algorithm

The problem

The problem

Input: a family *F* of circular arcs

The problem

Input: a family *F* of circular arcs

Output: is there a proper coloring with $\leq k$ colors? what is the minimum k s.t. F has a proper coloring?

- ◆ Load of *F*: *L*
- circular-cover: l
- max. clique of $F: \omega$ (as usual)

- Load of F: L
- circular-cover: l
- max. clique of F: ω
 (as usual)
- We also discretize and use the -at most- 2|F| points defining the arcs.

Theorem 1 (Tucker (1975)).

Let F be a family of circular arcs with load L = L(F) and circular-cover l = l(F). If $l(F) \ge 4$, then $\lfloor \frac{3}{2}L \rfloor$ colors suffice to properly color F.

This is actually a 2-approximation algorithm.

Tucker, [4] conjecture that $\chi(F) \leq \frac{3}{2}\omega(F)$

Karapetian (1980) proves the above.

Garey et al. (1980) show **NP**-completeness for **CI**RCU COLOR

Many exact algos for subfamilies of graphs

Theorem 1 (Tucker (1975)).

Let F be a family of circular arcs with load L = L(F) and circular-cover l = l(F). If $l(F) \ge 4$, then $\lfloor \frac{3}{2}L \rfloor$ colors suffice to properly color F.

- This is actually a 2-approximation algorithm.
- Tucker, [4] conjecture that $\chi(F) \leq \frac{3}{2}\omega(F)$.
- Karapetian (1980) proves the above.

Garey et al. (1980) show NP-completeness for CIR COLOR

Many exact algos for subfamilies of graphs

Theorem 1 (Tucker (1975)).

Let F be a family of circular arcs with load L = L(F) and circular-cover l = l(F). If $l(F) \ge 4$, then $\lfloor \frac{3}{2}L \rfloor$ colors suffice to properly color F.

- This is actually a 2-approximation algorithm.
- Tucker, [4] conjecture that $\chi(F) \leq \frac{3}{2}\omega(F)$.
- Karapetian (1980) proves the above.
- Garey et al. (1980) show NP-completeness for CIRCULAR ARC COLOR

Many exact algos for subfamilies of graph

Theorem 1 (Tucker (1975)).

Let F be a family of circular arcs with load L = L(F) and circular-cover l = l(F). If $l(F) \ge 4$, then $\lfloor \frac{3}{2}L \rfloor$ colors suffice to properly color F.

- This is actually a 2-approximation algorithm.
- Tucker, [4] conjecture that $\chi(F) \leq \frac{3}{2}\omega(F)$.
- Karapetian (1980) proves the above.
- Garey et al. (1980) show NP-completeness for CIRCULAR ARC COLOR
- Many exact algos for subfamilies of graphs ($\geq O(|F|^{1.5})$).

More recently:

Theorem 2 (Valencia-Pabon (2003)).

Consider F with load L(F) and circular-cover $l(F) \ge 5$. Then $\left\lfloor \frac{l-1}{l-2}L \right\rfloor$ colors suffice to color F, bound being tight.

That's this presentation about!

t is based exactly on the algorithm proposed by Tu

More recently:

Theorem 2 (Valencia-Pabon (2003)).

Consider F with load L(F) and circular-cover $l(F) \ge 5$. Then $\left\lfloor \frac{l-1}{l-2}L \right\rfloor$ colors suffice to color F, bound being tight.

That's this presentation about!

It is based exactly on the algorithm proposed by Tuo

More recently:

Theorem 2 (Valencia-Pabon (2003)).

Consider F with load L(F) and circular-cover $l(F) \ge 5$. Then $\left\lfloor \frac{l-1}{l-2}L \right\rfloor$ colors suffice to color F, bound being tight.

That's this presentation about!

It is based exactly on the algorithm proposed by Tucker, [4].

Introduction

Analyzing Tucker's algorithm

 Select p so that L(F) arcs contain it

- Select p so that L(F) arcs contain it
 - Assign color #1 to the arc which extends at least on the counterclockwise side of p

- Select p so that L(F) arcs contain it
- Assign color #1 to the arc which extends at least on the counterclockwise side of p
- Move clockwise, assign current color to the first arc to begin after the previous ends

- Select p so that L(F) arcs contain it
- Assign color #1 to the arc which extends at least on the counterclockwise side of p
- Move clockwise, assign current color to the first arc to begin after the previous ends
- Unless it is not possible, so use next color

- Select p so that L(F) arcs contain it
- Assign color #1 to the arc which extends at least on the counterclockwise side of p
- Move clockwise, assign current color to the first arc to begin after the previous ends
- Unless it is not possible, so use next color

- ♦ starting point: t
- first arc colored with *i*:
 A_i

- ♦ starting point: t
- first arc colored with *i*:
 A_i
- arcs colored until kth round: F_k

- ♦ starting point: t
- first arc colored with *i*:
 A_i
- arcs colored until kth round: F_k

1. A_i intersects A_{i-1}

or else no new color is needed

- 1. A_i intersects A_{i-1} or else no new color is needed
- 2. $L(F \setminus F_i) \leq L(F) i$

OK, verify again later*

- 1. A_i intersects A_{i-1} or else no new color is needed
- 2. $L(F \setminus F_i) \leq L(F) i$ OK, verify again later*
- 3. For $1 \le i \le l 2$, F_i is colored with at most i + 1 colors by the Algorithm...

- 1. A_i intersects A_{i-1} or else no new color is needed
- 2. $L(F \setminus F_i) \leq L(F) i$ OK, verify again later*
- 3. For $1 \le i \le l 2$, F_i is colored with at most i + 1 colors by the Algorithm...

Proof?

Proving Property 3

Suppose F_{i-1} is properly colored with *i* colors. Let:

Proving Property 3

Suppose F_{i-1} is properly colored with *i* colors. Let:

- *A_i* the first to get color *i* in round *i* − 1
- A_i^f the last of round i-1 to traverse t

Proving Property 3

 $1 \leq i \leq l-2$

Suppose F_{i-1} is properly colored with *i* colors. Let:

- *A_i* the first to get color *i* in round *i* − 1
- A_i^f the last of round i-1 to traverse t

these may be the same arc

Suppose F_{i-1} is properly colored with *i* colors. Let:

- *A_i* the first to get color *i* in round *i* − 1
- **A**^f_i the last of round i − 1 to traverse t these may be the same arc
- Now think about A_{i+1} and A_{i+1}^f

Suppose F_{i-1} is properly colored with *i* colors. Let:

- *A_i* the first to get color *i* in round *i* − 1
- **A**^f_i the last of round i − 1 to traverse t these may be the same arc
- Now think about A_{i+1} and A_{i+1}^f Same color except...

Suppose F_{i-1} is properly colored with *i* colors. Let:

- *A_i* the first to get color *i* in round *i* − 1
- **A**^f_i the last of round i − 1 to traverse t these may be the same arc
- Now think about A_{i+1} and A_{i+1}^f Same color except...

Suppose F_{i-1} is properly colored with *i* colors. Let:

- *A_i* the first to get color *i* in round *i* − 1
- **A**^f_i the last of round i − 1 to traverse t these may be the same arc
- Now think about A_{i+1} and A_{i+1}^f Same color except...

Suppose F_{i-1} is properly colored with *i* colors. Let:

- *A_i* the first to get color *i* in round *i* − 1
- **A**^f_i the last of round i − 1 to traverse t these may be the same arc
- Now think about A_{i+1} and A_{i+1}^f Same color except...

Suppose F_{i-1} is properly colored with *i* colors. Let:

- *A_i* the first to get color *i* in round *i* − 1
- **A**^f_i the last of round i − 1 to traverse t these may be the same arc
- Now think about A_{i+1} and A_{i+1}^f Same color except...

Property 2. $L(F \setminus F_{l-2}) \le L - (l-2)$

Property 3. F_{l-2} are properly colored with l-1 colors.

But how to use some induction here?

Maintain little arcs (p, p + 1) to create a constant load of L(around the circle. Neither $\chi(F)$ nor the Algorithm's output i changed! *Now check again Property 2!

Now: $F' = F \setminus F_{l-2}$ has $l_{F'} \ge l_F \ge 5$, so use induct

L rounds, every l-2 rounds need at most l $\Rightarrow \left\lceil rac{l-1}{l-2}L
ight
ceil$ is the **output** of the algorithm.

Property 2. $L(F \setminus F_{l-2}) \le L - (l-2)$

Property 3. F_{l-2} are properly colored with l-1 colors.

But how to use some induction here?

Maintain little arcs (p, p + 1) to create a constant load of L(around the circle. Neither $\chi(F)$ nor the Algorithm's output i changed! *Now check again Property 2!

Now: $F' = F \setminus F_{l-2}$ has $l_{F'} \ge l_F \ge 5$, so use indu

 $m{L}$ rounds, every $m{l}-2$ rounds need at most $m{l}$ $\Rightarrow \left[rac{l-1}{l-2} m{L}
ight]$ is the **output** of the algorithm.

Property 2. $L(F \setminus F_{l-2}) \le L - (l-2)$

Property 3. F_{l-2} are properly colored with l-1 colors.

But how to use some induction here?

Maintain little arcs (p, p + 1) to create a constant load of L(F) around the circle. Neither $\chi(F)$ nor the Algorithm's output is changed! *Now check again Property 2!

Now: $F' = F \setminus F_{l-2}$ has $l_{F'} \ge l_F \ge 5$, so use in

L rounds, every l-2 rounds need at most l $\Rightarrow \left\lceil rac{l-1}{l-2}L \right\rceil$ is the **output** of the algorithm.

Property 2. $L(F \setminus F_{l-2}) \le L - (l-2)$

Property 3. F_{l-2} are properly colored with l-1 colors.

But how to use some induction here?

Maintain little arcs (p, p + 1) to create a constant load of L(F) around the circle. Neither $\chi(F)$ nor the Algorithm's output is changed! *Now check again Property 2!

Now: $F' = F \setminus F_{l-2}$ has $l_{F'} \ge l_F \ge$

L rounds, every l-2 rounds need at most l $\Rightarrow \left[rac{l-1}{l-2}L
ight]$ is the **output** of the algorithm.

Property 2. $L(F \setminus F_{l-2}) \le L - (l-2)$

Property 3. F_{l-2} are properly colored with l-1 colors.

But how to use some induction here?

Maintain little arcs (p, p + 1) to create a constant load of L(F) around the circle. Neither $\chi(F)$ nor the Algorithm's output is changed! *Now check again Property 2!

Now: $F' = F \setminus F_{l-2}$ has $l_{F'} \ge l_F \ge 5$, so use induction!...

L rounds, every l - 2 rounds need at most $l - p \Rightarrow \left[\frac{l-1}{l-2}L \right]$ is the **output** of the algorithm.

Property 2. $L(F \setminus F_{l-2}) \le L - (l-2)$

Property 3. F_{l-2} are properly colored with l-1 colors.

But how to use some induction here?

Maintain little arcs (p, p + 1) to create a constant load of L(F) around the circle. Neither $\chi(F)$ nor the Algorithm's output is changed! *Now check again Property 2!

Now: $F' = F \setminus F_{l-2}$ has $l_{F'} \ge l_F \ge 5$, so use induction!...

L rounds, every l-2 rounds need at most l-1 colors

Property 2. $L(F \setminus F_{l-2}) \le L - (l-2)$

Property 3. F_{l-2} are properly colored with l-1 colors.

But how to use some induction here?

Maintain little arcs (p, p + 1) to create a constant load of L(F) around the circle. Neither $\chi(F)$ nor the Algorithm's output is changed! *Now check again Property 2!

Now: $F' = F \setminus F_{l-2}$ has $l_{F'} \ge l_F \ge 5$, so use induction!...

• L rounds, every l - 2 rounds need at most l - 1 colors • $\Rightarrow \left\lfloor \frac{l-1}{l-2}L \right\rfloor$ is the **output** of the algorithm.

• What if every arc in F spans at most n/k "points" of the circle? $l \ge k + r \Rightarrow SOL = \lceil \frac{k}{k-1}L \rceil$

What if every arc spans more than a semi-circle The circular arc graph is **complete**!

To show tightness, Valencia-Pabon uses a result of Stahl, [3] regardin r-tuple colorings...

Major open problem: better than 2-approx

What if every arc in F spans at most n/k "points" of the circle? $l \ge k + 1 \Rightarrow SOL = \lceil \frac{k}{k-1}L \rceil$

What if every arc spans more than a semi-circle? The circular arc graph is **complete!**

To show tightness, Valencia-Pabon uses a result of Stahl, [3] regardin r-tuple colorings...

Major open problem: better than ⁸-approx

- What if every arc in F spans at most n/k "points" of the circle? $l \ge k + 1 \Rightarrow SOL = \left\lceil \frac{k}{k-1}L \right\rceil$
 - What if every arc spans more than a semi-circle?

The circular arc graph is complete!

To show tightness, Valencia-Pabon uses a result of Stahl, [3] regardin r-tuple colorings...

Major open problem: better than $\frac{3}{2}$ -approx

- What if every arc in F spans at most n/k "points" of the circle? $l \ge k + 1 \Rightarrow SOL = \left\lceil \frac{k}{k-1}L \right\rceil$
- What if every arc spans more than a semi-circle? The circular arc graph is complete!

To show tightness, Valencia-Pabon uses a result of Stahl, [3] regardir r-tuple colorings...

Major open problem: better than $\frac{3}{2}$ -approximation

- What if every arc in F spans at most n/k "points" of the circle? $l \ge k + 1 \Rightarrow SOL = \lceil \frac{k}{k-1}L \rceil$
- What if every arc spans more than a semi-circle? The circular arc graph is complete!

 To show tightness, Valencia-Pabon uses a result of Stahl, [3] regarding r-tuple colorings...

Major open problem: better than $\frac{8}{2}$ -

- What if every arc in F spans at most n/k "points" of the circle? $l \ge k + 1 \Rightarrow SOL = \lceil \frac{k}{k-1}L \rceil$
- What if every arc spans more than a semi-circle? The circular arc graph is complete!

 To show tightness, Valencia-Pabon uses a result of Stahl, [3] regarding r-tuple colorings...

Major open problem: **better** than $\frac{3}{2}$ -approximation?

That's all folks!

Thank you!

Alex Angelopoulos (MPLA)

Coloring Circular Arc Graphs • The end

Bibliography I

- M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity of coloring circular arcs and chords. *SIAM J. Alg. Disc. Meth.*, 1(2):216–227, June 1980.
- [2] I. Karapetian. Coloring of arc graphs. Akad. Nauk Armyan. SSR Dokl., 70:306–311, 1980.
- [3] S. Stahl. n-tuple colorings and associated graphs. Journal of Comb. Theory, Series B, 20(2):185 – 203, 1976.
- [4] A. Tucker. Coloring a family of circular arcs. SIAM J. Appl. Math., 29:493–502, 1975.
- [5] M. Valencia-Pabon. Revisiting tucker's algorithm to color circular arc graphs. SIAM J. Comput., 32(4):1067–1072, 2003.