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The problem

Input: a family F of circular arcs

χ(F ) = 3

Output: is there a proper coloring with ≤ k colors?
what is the minimum k s.t. F has a proper coloring?
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Some quantities

L(F ) =
3

l(F ) = 4

= ω(F )

u Load of F : L

u circular-cover: l

u max. clique of F : ω
(as usual)

u We also discretize and
use the -at most- 2|F |
points defining the
arcs.
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Results

Theorem 1 (Tucker (1975)).

Let F be a family of circular arcs with load L = L(F ) and
circular-cover l = l(F ). If l(F ) ≥ 4, then

⌊
3
2L
⌋

colors suffice to
properly color F .

u This is actually a 2-approximation algorithm.

u Tucker, [4] conjecture that χ(F ) ≤ 3
2ω(F ).

u Karapetian (1980) proves the above.

u Garey et al. (1980) show NP-completeness for Circular Arc

Color

u Many exact algos for subfamilies of graphs (≥ O(|F |1.5)).

Alex Angelopoulos (MPLA) Coloring Circular Arc Graphs-• Introduction 5/15



Results

Theorem 1 (Tucker (1975)).

Let F be a family of circular arcs with load L = L(F ) and
circular-cover l = l(F ). If l(F ) ≥ 4, then

⌊
3
2L
⌋

colors suffice to
properly color F .

u This is actually a 2-approximation algorithm.

u Tucker, [4] conjecture that χ(F ) ≤ 3
2ω(F ).

u Karapetian (1980) proves the above.

u Garey et al. (1980) show NP-completeness for Circular Arc

Color

u Many exact algos for subfamilies of graphs (≥ O(|F |1.5)).

Alex Angelopoulos (MPLA) Coloring Circular Arc Graphs-• Introduction 5/15



Results

Theorem 1 (Tucker (1975)).

Let F be a family of circular arcs with load L = L(F ) and
circular-cover l = l(F ). If l(F ) ≥ 4, then

⌊
3
2L
⌋

colors suffice to
properly color F .

u This is actually a 2-approximation algorithm.

u Tucker, [4] conjecture that χ(F ) ≤ 3
2ω(F ).

u Karapetian (1980) proves the above.

u Garey et al. (1980) show NP-completeness for Circular Arc

Color

u Many exact algos for subfamilies of graphs (≥ O(|F |1.5)).

Alex Angelopoulos (MPLA) Coloring Circular Arc Graphs-• Introduction 5/15



Results

Theorem 1 (Tucker (1975)).

Let F be a family of circular arcs with load L = L(F ) and
circular-cover l = l(F ). If l(F ) ≥ 4, then

⌊
3
2L
⌋

colors suffice to
properly color F .

u This is actually a 2-approximation algorithm.

u Tucker, [4] conjecture that χ(F ) ≤ 3
2ω(F ).

u Karapetian (1980) proves the above.

u Garey et al. (1980) show NP-completeness for Circular Arc

Color

u Many exact algos for subfamilies of graphs (≥ O(|F |1.5)).

Alex Angelopoulos (MPLA) Coloring Circular Arc Graphs-• Introduction 5/15



Results

More recently:

Theorem 2 (Valencia-Pabon (2003)).

Consider F with load L(F ) and circular-cover l(F ) ≥ 5. Then⌈
l−1
l−2

L
⌉

colors suffice to color F , bound being tight.

That’s this presentation about!

It is based exactly on the algorithm proposed by Tucker, [4].
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Tucker’s algorithm

u Select p so that L(F ) arcs
contain it

u Assign color #1 to the arc
which extends at least on
the counterclockwise side
of p

u Move clockwise, assign
current color to the first
arc to begin after the
previous ends

u Unless it is not possible,
so use next color

p
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Notations needed

t

A1

A2

A3

F1F2

u starting point: t

u first arc colored with i:
Ai

u arcs colored until kth

round: Fk
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Properties

A1

A2

A3

Base of induction

1. Ai intersects Ai−1
or else no new color is needed

2. L(F \ Fi) ≤ L(F )− i
OK, verify again later*

3. For 1 ≤ i ≤ l− 2, Fi

is colored with at most
i+ 1 colors by the
Algorithm...
Proof?
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Proving Property 3

1 ≤ i ≤ l− 2

t

Af
3

A3

A1

A2

A 3
=
A
f
3

A4

Af
4

|{A2, A3, ..., Ai, A
f
i }| = i+ 1

There is a circular cover of size ≤ l− 1

Contradiction!

Suppose Fi−1 is properly
colored with i colors. Let:

u Ai the first to get
color i in round i− 1

u Af
i the last of round

i− 1 to traverse t
these may be the same arc

u Now think about
Ai+1 and Af

i+1
Same color except...

In this case:
A2, A3, ..., Ai, A

f
i

cover the circle!
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Recap

Property 2. L(F \ Fl−2) ≤ L− (l − 2)

Property 3. Fl−2 are properly colored with l − 1 colors.

But how to use some induction here?

Maintain little arcs (p, p+ 1) to create a constant load of L(F )
around the circle. Neither χ(F ) nor the Algorithm’s output is
changed! *Now check again Property 2!

Now: F ′ = F \ Fl−2 has lF ′ ≥ lF≥ 5, so use induction!...

u L rounds, every l− 2 rounds need at most l− 1 colors

u ⇒
⌈
l−1
l−2

L
⌉

is the output of the algorithm.
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Some final interaction

u What if every arc in F spans at most n/k “points” of the circle?

l ≥ k+ 1⇒ SOL =
⌈

k
k−1

L
⌉

u What if every arc spans more than a semi-circle?

The circular arc graph is complete!

u To show tightness, Valencia-Pabon uses a result of Stahl, [3] regarding
r-tuple colorings...

Major open problem: better than 3
2 -approximation?
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u What if every arc spans more than a semi-circle?

The circular arc graph is complete!

u To show tightness, Valencia-Pabon uses a result of Stahl, [3] regarding
r-tuple colorings...

Major open problem: better than 3
2 -approximation?
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That’s all folks!

Thank you!
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