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Definition 1

Given a graph G = (V, E), a matching M in G is a set of pairwise non-adjacent edges;
that is, no two edges share a common vertex.

Definition 2 (Bounded Color Matching)
Input is:

o Bipartite graph G(V, E) with bipartition V= V4 U Va.
@ The edge set E is partitioned into k sets, E; U Eo U --- U E.
@ Each edge set is characterized by a color j € [K].
o Each edge e € E has a profit p. € Q™.
Objective is:
o Find a maximum weight matching M.

o In M there are no more that w; edges of color j where w; € Z™, i.e.
MAE <w, Vielk.
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LP of Bounded Color Matching

The relaxation of the IP for the Bounded Color Matching problem:

. T
maximize maxp x

subject to Z xe<1l, VYveV
e€s(v)

> xe<w, Vjie[K
ecE;
0<x<1

where §(v) is the set of edges with one endpoints in v. Integrality Gap is % so we cannot
hope to achieve a better that % approximation algorithm.
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LP of Bounded Color Matching

Another way to describe the problem, say M’, is the following:

M =ye{0, 1} :ye MAY ye<w,Vj€e[K

eck;

where M is the usual bipartite polytope. Again, we can relax this by setting ye € [0, 1].

George Zirdelis, NTUA Constrained Matching Problem in Bipartite Graphs June 28, 2013



@ The Bounded Color Matching problem is known to be NP — Complete
@ Evenif |[E| <2and wj =1, V]
@ The special case of a 2-regular bipartite graphs where,

© Each color appears twice.
@ Find a maximum matching with at most one edge per color

is APX — Hard so a PTAS is out of reach.
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Definition 3
Let £ C E. Then we define the characteristic vector of E' to be the binary vector
xe € {0,1}'E, s.t.

xE/(e):1<:>e€ E

Definition 4
Let y € R". Then,

| A

support(y) = {i € [n] : yi # 0}

i.e. the indices of the non-zero components of y.
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Lemma 5

Let x* be an optimal basic feasible solution for the LP described by M’ s.t. x; > 0,
Ve € E. Then, there exist FC V and Q C [K] s.t.,

(1) Zeeé(v) x:=1, VveF

Q Eeeijz =w, VYjeEQ.

© {xs(v) }ver and {xk }jcq are all linearly independent.

Q |E| = |F| + |Q| where |E| is the number of the edges with x5 > 0.

o If 3" c5(,) Xe =1 then vis a tight vertex.

o If Zeeije = w; then j is a tight color class.
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Define the residual graph to be the graph with the same vertex set but we include an
edge e if xc > 0 in the LP solution for the original graph.

Lemma 6

Take any basic feasible solution x s.t. x. > 0,Ve, i.e. we remove any edge with xe = 0.
Then one of the following must be true:

O either there is a an edge s.t. x. = 1.
@ or there is a color class j € Q C [k] s.t. |Ej| < wj+ 1 in the residual graph
@ or there is a tight vertex v € F s.t. the degree of v is 2 in the residual graph.

Using the lemma above will can do iterative rounding to obtain a solution.
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C, E will be resp. the set of the available colors and edges, at each round.

Initialize M = 0.
While C# 0 or E # () do:
@ Compute an optimal (fractional) basic solution x to the current LP.
@ Remove all edges from the graph s.t. x. = 0.
@ Remove all vertices of the graph s.t. deg(v) = 0.
Q ifde= (u,v) € E: xe=1and e€ Cjthen M:= MU {e}, V= V\ {u, v},
wj:=w; — 1. if wy=0then C:= C\ G, E:= E\{e: ec Ej}.
@ (Relaxation:) while VU C# 0

o if 3 color class C; € Q with |E| < w;j + 1 then remove the constraint for this color
class, i.e. define C =C
o if 3 vertex v € Fs.t. deg( ) = 2 then remove the constraint for that vertex.

Return M

At each step of the algorithm, either we add an edge to our matching M, or we remove a
tight constraint. Thus the algorithm will terminate in at most |Q| + |F].
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@ Since we remove the degree constraints for a vertex v when deg(v) = 2 we select
edges from a graph G that is a collection of disjoint paths or cycles.

@ But a disjoint path or cycle can be partitioned into two matchings, i.e. My, Mz an
we select the one with the highest profit, i.e.

max(p(M1), p(Mz)) = 5 p(My U M2)

1

2

@ Therefore we do this for every connected component (disjoints paths and cycles), we
get at least % of the profit of the matchings but we violate by an additive 1 every
color constraint.

As a result of the above there is a polynomial time (1/2, additive 1) bi-criteria
approximation algorithm for the weighted Bounded Color Matching problem.
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We now consider the unweighted version of the Bounded Color Matching problem:

Compute a maximum cardinality matching M s.t. in M we have at most w; edges for
color class j.

Recall that from Lemma 7 we have that for any solution to the LP, if 0 < x. < 1 then,

o either there exists a tight color class j € Q s.t. |support(x) N Ej| < w;+ 1
@ or there exists a tight vertex v € Fs.t. deg(v) = 2.
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The main idea of the algorithm for the cardinality version consists of the two following
steps:
o Relaxation step: We identify a tight color class j and we remove its constraint, thus
relaxing the problem.
@ Rounding step
o We round appropriately some variables to 1 and some others to 0, preserving feasibility.
e Rounding step comes with a parameter A € [0, 1]. Idea is that if we round xe to 1, we
need to update the color bound of this color class.
o Using A we update the color bound by any value in [xe, 1] (if we use xe + A(1 — Xe)).
o Values of \ closer to xe violate mode the color constraint whereas values closer to 1
give less violation but worst performance guarantee.
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Lemma 7

Let x be the optimal solution in G (as stated in Lemma 4) before the rounding step and x
be the optimal solution after the rounding step in G. Then we have that,

D= > % <1+(y+M)
e€E(G) ecE(G)
where v = 1 — xe.

The loss due to a single rounding step is at most  + Ay which can be at most (A + 1).

v
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C, E will be resp. the set of the available colors and edges, at each round.

Initialize M = 0.
While C# 0 or E# () do:
@ Compute an optimal (fractional) basic solution x to the current LP.
@ Remove all edges from the graph s.t. x. = 0.
@ Remove all vertices of the graph s.t. deg(v) = 0.
Q ifde=(u,v) € E: xe=1and e€ C; then M:= MU {e}, V= V\ {u, v},
wj:=w;— 1. if wy=0then C:=C\ C, E:= E\ {e: e€ Ej}.
@ (Relaxation:) If 3 color class j € Q with |E| < [w;] + 1 then remove the constraint
for this color class, i.e. set C:= C\ C; and iterate.
@ (Rounding:) if 3v € Fs.t. deg(v) = 2 then let: u1, uz be the neighbors of v and let
e1, e2 be the two edges incident on v. Assume w.l.0.g. that xe, > % and
e = (ul, V).
Round xe, to 1. Add it (e1) to M.
Round X, and all other edges incident to u; to zero.

If e1 € Ej then set wj := wj — xe; — A(1 — xey ).
Remove v, u1 and all the rounded edges from the graph and iterate.

Return M
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@ From Lemma 7 we have that in each rounding step the objective function decreases
by 14+ v+ M.

o Intuitively, the larger the value of « is, the fewer iterations the algorithm will
perform.

@ Because OPT < |V|/2 and at each rounding step we delete 2 vertices from the
current graph, we can perform at most |V|/4 rounding steps. So, we can have at
most |V|/4 values of ~, though they all might be different.

George Zirdelis, NTUA Constrained Matching Problem in Bipartite Graphs June 28, 2013 15



Let X be the final solution of the algorithm that corresponds to M. Then we have that,

o Since we choose x.; > 1/2 assume that in some iteration y1 = £ € (0,1/2] and also
that this v1 appears ki times during the Rounding steps.

@ The total decrease in the objective function is %:H) =1+v+n

@ Maximum number of iterations we can have for this particular v, is OPT - %:H)

before it truncates to 0. E.g. for 1 = & and A = 2 in the next iteration of the LP

3 2
we will have

OPT = OPT — g = OPT— OPT = g

and so we can have at most OPT - % iterations.
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continued.

@ Assume that the algorithm performs a fraction f; of the maximum possible number
of iterations for each 7. Then we have that,

> i1

i

because in each round we reduce the objective function.

@ At the end of the algorithm the final objective function value will be,

OPT

_OPT o+
1479+ Avi nA+1)

OPT-> fi-

George Zirdelis, NTUA Constrained Matching Problem in Bipartite Graphs June 28, 2013 17 /20



continued.

Set g(vi) = % which monotonically increases. We have that

SOL= OPT— OPTY fi-g(v)) > OPT— OPTY fi-g(1/2)

- Al

= OPT OPTZ)\+3
2

> 2 _0oPT

= A+3O

Using similar arguments one can show that the color bound w; of a color j can be
violated by at most a factor of 25w+ 1. O

George Zirdelis, NTUA Constrained Matching Problem in Bipartite Graphs June 28, 2013



Theorem 9

For any X € [0, 1], there is a polynomial time (3+)\, 1i>\ wj + 1) bi-criteria approximation

algorithm for the Bounded Color Matching problem.

@ The closer \ is to 1 the more we deteriorate from the optimal objective function
value but the less we lose in color bounds.

@ The closer X is to 0 the more we violate the color constraints but the better the
approximation guarantee is.

o Depending on the application we choose a parameter A that is more suitable.

o We have a family of algorithms for the unweighted case.
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