Constrained Matching Problem in Bipartite Graphs

Monaldo Mastrolilli Georgios Stamoulis

ISCO '12

Georgios Zirdelis

Network Algorithms and Complexity

 $\mu \prod \lambda \forall$

Georgios Zirdelis

æ

イロン イヨン イヨン イヨン

Definition 1

Given a graph G = (V, E), a matching M in G is a set of pairwise non-adjacent edges; that is, no two edges share a common vertex.

Definition 2 (Bounded Color Matching)

Input is:

- Bipartite graph G(V, E) with bipartition $V = V_1 \cup V_2$.
- The edge set *E* is partitioned into *k* sets, $E_1 \cup E_2 \cup \cdots \cup E_k$.
- Each edge set is characterized by a color $j \in [k]$.
- Each edge $e \in E$ has a profit $p_e \in \mathbb{Q}^+$.

Objective is:

• Find a maximum weight matching *M*.

• In *M* there are no more that w_j edges of color *j* where $w_j \in \mathbb{Z}^+$, i.e. $M \cap E_j \leq w_j$, $\forall j \in [k]$.

The relaxation of the IP for the Bounded Color Matching problem:

 $\begin{array}{ll} \text{maximize} & \max p^T x\\ \text{subject to} & \displaystyle\sum_{e \in \delta(v)} x_e \leq 1, \quad \forall v \in V\\ & \displaystyle\sum_{e \in E_j} x_e \leq w_j, \quad \forall j \in [k]\\ & 0 \leq x_e \leq 1 \end{array}$

where $\delta(v)$ is the set of edges with one endpoints in v. Integrality Gap is $\frac{1}{2}$ so we cannot hope to achieve a better that $\frac{1}{2}$ approximation algorithm.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Another way to describe the problem, say \mathcal{M}' , is the following:

$$\mathcal{M}' = \left\{ \mathbf{y} \in \{0,1\}^{|\mathcal{E}|} : \mathbf{y} \in \mathcal{M} \land \sum_{\mathbf{e} \in \mathcal{E}_j} \mathbf{y}_{\mathbf{e}} \le \mathbf{w}_j, \forall j \in [k] \right\}$$

where \mathcal{M} is the usual bipartite polytope. Again, we can relax this by setting $y_e \in [0, 1]$.

æ

イロン イ団 とく ヨン イヨン

- $\bullet\,$ The Bounded Color Matching problem is known to be $NP-{\it Complete}$
- Even if $|E_j| \leq 2$ and $w_j = 1$, $\forall j$.
- The special case of a 2-regular bipartite graphs where,
 - Each color appears twice.
 - Pind a maximum matching with at most one edge per color
 - is APX Hard so a PTAS is out of reach.

э

Definition 3

Let $E'\subseteq E.$ Then we define the characteristic vector of E' to be the binary vector $\chi_{E'}\in\{0,1\}^{|E|},$ s.t.

$$\chi_{\mathbf{E}'}(\mathbf{e}) = 1 \Leftrightarrow \mathbf{e} \in \mathbf{E}'$$

Definition 4

Let $y \in \mathbb{R}^n$. Then,

$$support(y) = \{i \in [n] : y_i \neq 0\}$$

i.e. the indices of the non-zero components of y.

<ロ> <四> <四> <四> <三</p>

Lemma 5

Let x^* be an optimal basic feasible solution for the LP described by \mathcal{M}' s.t. $x_e^* > 0$, $\forall e \in E$. Then, there exist $F \subseteq V$ and $Q \subseteq [k]$ s.t.,

3 $\{\chi_{\delta(v)}\}_{v\in F}$ and $\{\chi_{E_j}\}_{j\in Q}$ are all linearly independent.

(4) |E| = |F| + |Q| where |E| is the number of the edges with $x_e^* > 0$.

• If
$$\sum_{e \in \delta(v)} x_e = 1$$
 then v is a tight vertex.

• If
$$\sum_{e \in E_i} x_e = w_j$$
 then j is a tight color class.

Define the **residual graph** to be the graph with the same vertex set but we include an edge e if $x_e > 0$ in the LP solution for the original graph.

Lemma 6

Take any basic feasible solution x s.t. $x_e > 0$, $\forall e$, i.e. we remove any edge with $x_e = 0$. Then one of the following must be true:

- (1) either there is a an edge s.t. $x_e = 1$.
- **2** or there is a color class $j \in Q \subseteq [k]$ s.t. $|E_j| \leq w_j + 1$ in the residual graph
- **(a)** or there is a tight vertex $v \in F$ s.t. the degree of v is 2 in the residual graph.

Using the lemma above will can do iterative rounding to obtain a solution.

イロン イ団 とく ヨン イヨン

C, E will be resp. the set of the available colors and edges, at each round.

Initialize $M = \emptyset$. While $C \neq \emptyset$ or $E \neq \emptyset$ do:

- Ompute an optimal (fractional) basic solution x to the current LP.
- **2** Remove all edges from the graph s.t. $x_e = 0$.
- **3** Remove all vertices of the graph s.t. deg(v) = 0.
- ④ if $\exists e = (u, v) \in E$: $x_e = 1$ and $e \in C_j$ then $M := M \cup \{e\}, V = V \setminus \{u, v\},$ $w_j := w_j - 1$. if $w_j = 0$ then $C := C \setminus C_j, E := E \setminus \{e : e \in E_j\}.$

(Relaxation:) while $V \cup C \neq \emptyset$

- if \exists color class $C_j \in Q$ with $|E_j| \le w_j + 1$ then remove the constraint for this color class, i.e. define $C := C \setminus C_j$.
- if \exists vertex $v \in F$ s.t. deg(v) = 2 then remove the constraint for that vertex.

Return M

At each step of the algorithm, either we add an edge to our matching M, or we remove a tight constraint. Thus the algorithm will terminate in at most |Q| + |F|.

- Since we remove the degree constraints for a vertex v when deg(v) = 2 we select edges from a graph G' that is a collection of disjoint paths or cycles.
- But a disjoint path or cycle can be partitioned into two matchings, i.e. M_1, M_2 an we select the one with the highest profit, i.e.

$$\max(p(M_1), p(M_2)) \geq \frac{1}{2}p(M_1 \cup M_2)$$

• Therefore we do this for every connected component (disjoints paths and cycles), we get at least $\frac{1}{2}$ of the profit of the matchings but we violate by an additive 1 every color constraint.

As a result of the above there is a polynomial time (1/2, additive 1) bi-criteria approximation algorithm for the weighted Bounded Color Matching problem.

・ロト ・四ト ・ヨト ・ヨト

We now consider the unweighted version of the Bounded Color Matching problem: Compute a maximum cardinality matching M s.t. in M we have at most w_j edges for color class j.

Recall that from Lemma 7 we have that for any solution to the LP, if $0 < x_e < 1$ then,

- either there exists a tight color class $j \in Q$ s.t. $|support(x) \cap E_j| \le w_j + 1$
- or there exists a tight vertex $v \in F$ s.t. deg(v) = 2.

3

The main idea of the algorithm for the cardinality version consists of the two following steps:

- **Relaxation step**: We identify a tight color class *j* and we remove its constraint, thus relaxing the problem.
- Rounding step
 - We round appropriately some variables to 1 and some others to 0, preserving feasibility.
 - Rounding step comes with a parameter $\lambda \in [0, 1]$. Idea is that if we round x_e to 1, we need to update the color bound of this color class.
 - Using λ we update the color bound by any value in $[x_e, 1]$ (if we use $x_e + \lambda(1 x_e)$).
 - Values of λ closer to x_e violate mode the color constraint whereas values closer to 1 give less violation but worst performance guarantee.

イロン イ団 とく ヨン イヨン

Lemma 7

Let x be the optimal solution in G (as stated in Lemma 4) before the rounding step and \hat{x} be the optimal solution after the rounding step in \hat{G} . Then we have that,

$$\sum_{e \in E(G)} x_e - \sum_{e \in E(\hat{G})} \hat{x}_e \le 1 + (\gamma + \lambda \gamma)$$

where $\gamma = 1 - x_e$.

The loss due to a single rounding step is at most $\gamma + \lambda \gamma$ which can be at most $\frac{1}{2}(\lambda + 1)$.

C, E will be resp. the set of the available colors and edges, at each round.

Initialize $M = \emptyset$. While $C \neq \emptyset$ or $E \neq \emptyset$ do:

- Compute an optimal (fractional) basic solution x to the current LP.
- **2** Remove all edges from the graph s.t. $x_e = 0$.
- **3** Remove all vertices of the graph s.t. deg(v) = 0.
- ④ if $\exists e = (u, v) \in E$: $x_e = 1$ and $e \in C_j$ then $M := M \cup \{e\}, V = V \setminus \{u, v\},$ $w_j := w_j - 1$. if $w_j = 0$ then $C := C \setminus C_j, E := E \setminus \{e : e \in E_j\}.$
- (Relaxation:) If ∃ color class j ∈ Q with |E| ≤ [w_j] + 1 then remove the constraint for this color class, i.e. set C := C \ C_j and iterate.
- **(Rounding:)** if $\exists v \in F$ s.t. deg(v) = 2 then let: u_1, u_2 be the neighbors of v and let e_1, e_2 be the two edges incident on v. Assume w.l.o.g. that $x_{e_1} \ge \frac{1}{2}$ and $e_1 = (u_1, v)$.
 - Round x_{e_1} to 1. Add it (e_1) to M.
 - Round x_{e_2} and all other edges incident to u_1 to zero.
 - If $e_1 \in E_j$ then set $w_j := w_j x_{e_1} \lambda(1 x_{e_1})$.
 - Remove v, u_1 and all the rounded edges from the graph and iterate.

Return M

<ロ> <四> <四> <四> <三</p>

- From Lemma 7 we have that in each rounding step the objective function decreases by $1+\gamma+\lambda\gamma.$
- $\bullet\,$ Intuitively, the larger the value of γ is, the fewer iterations the algorithm will perform.
- Because $OPT \le |V|/2$ and at each rounding step we delete 2 vertices from the current graph, we can perform at most |V|/4 rounding steps. So, we can have at most |V|/4 values of γ , though they all might be different.

3

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・ …

Lemma 8

Let \tilde{x} be the final solution of the algorithm that corresponds to M. Then we have that,

$$\sum_{e \in M} \tilde{x}_e \ge \frac{2}{3+\lambda} \sum_{e \in E(G)} x_e$$

Proof.

- Since we choose $x_{e_1} \ge 1/2$ assume that in some iteration $\gamma_1 = \frac{p}{q} \in (0, 1/2]$ and also that this γ_1 appears k_1 times during the Rounding steps.
- The total decrease in the objective function is $\frac{q+p(\lambda+1)}{q} = 1 + \gamma_1 + \lambda \gamma_1$
- Maximum number of iterations we can have for this particular γ_1 is $OPT \cdot \frac{q+p(\lambda+1)}{q}$ before it truncates to 0. E.g. for $\gamma_1 = \frac{1}{3}$ and $\lambda = \frac{1}{2}$ in the next iteration of the LP we will have

$$\mathsf{OPT}' = \mathsf{OPT} - rac{3}{2} \Rightarrow \mathsf{OPT} - \mathsf{OPT}' = rac{3}{2}$$

and so we can have at most $OPT \cdot \frac{2}{3}$ iterations.

・ロト ・四ト ・ヨト ・ヨト

continued.

• Assume that the algorithm performs a fraction f_i of the maximum possible number of iterations for each γ_i . Then we have that,

$$\sum_{i} f_i \leq 1$$

because in each round we reduce the objective function.

• At the end of the algorithm the final objective function value will be,

$$OPT - \sum_{i} f_{i} \cdot \frac{OPT}{1 + \gamma_{i} + \lambda\gamma_{i}} \cdot \gamma_{i}(\lambda + 1)$$

continued.

Set $g(\gamma_i) = \frac{\gamma_i(\lambda+1)}{1+\gamma_i+\lambda\gamma_i}$ which monotonically increases. We have that $SOL = OPT - OPT \sum_i f_i \cdot g(\gamma_i) \ge OPT - OPT \sum_i f_i \cdot g(1/2)$ $= OPT - OPT \sum_i \frac{\lambda+1}{\lambda+3}$ $\ge \frac{2}{\lambda+3} OPT$

Using similar arguments one can show that the color bound w_j of a color j can be violated by at most a factor of $\frac{2}{1+\lambda}w_j + 1$.

<ロ> <回> <回> < 回> < 回> < 回> < 回> = 三回

Theorem 9

For any $\lambda \in [0, 1]$, there is a polynomial time $(\frac{2}{3+\lambda}, \frac{2}{1+\lambda}w_j + 1)$ bi-criteria approximation algorithm for the Bounded Color Matching problem.

- The closer λ is to 1 the more we deteriorate from the optimal objective function value but the less we lose in color bounds.
- The closer λ is to 0 the more we violate the color constraints but the better the approximation guarantee is.
- $\bullet\,$ Depending on the application we choose a parameter λ that is more suitable.
- We have a family of algorithms for the unweighted case.

・ロト ・回ト ・ヨト ・ヨト

Monaldo Mastrolilli and Georgios Stamoulis.

Constrained matching problems in bipartite graphs.

In ISCO, pages 344-355, 2012.

2

イロン イヨン イヨン イヨン