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B C

What is a stable matching (or marriage)?

An instance of size n of the stable matching problem consists of n
men’s and n women’s lists of all the members of the opposite sex
ranked in order of preference.
A complete matching is a set of n pairs (or couples) (m,w), in which
each man m and each woman w appears in only one pair.
A stable matching is a complete matching between men and women
such that no man and woman who are not a couple, prefer each other
more than their partners in the matching. More formally:
@ couples (m1,w1), (m2,w2) such that m1 prefers w2 to w1 and w2

prefers m1 to m2.

Notice that the preference lists must be complete!
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T G-S A

In 1962 Gale and Shapley proved that for each instance of the problem
there exists at least one stable matching. In fact they gave a greedy
algorithm to compute one!

The algorithm is very simple: Each man “proposes”, in order, to all the
women, pausing when a woman agrees to consider his proposal, but
continuing if a proposal gets rejected. When a woman receives a proposal,
she rejects it if she already has a better one, otherwise she agrees to
consider it rejectin the one she had (if any).

This results in a male optimal solution! A female optimal solution can also
be obtained by reversing the roles of men and women in the above
algorithm. Obviously the two solutions match if and only if that is the only
stable matching.
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O

But what about the “socially optimal” stable
matching?

We could of course compute all the stable matchings and then compare
them to find the best.

...but the maximum number of stable matchings in an instance of size n
grows exponentially with n!

We will present an O(n4)-time algorithm by Irving, Leather and Gusfield to
find the socially optimal stable matching.
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N

The preference lists can be specified by two nxn ranking matrices:

mr(i, k) = j if woman k is the j-th choice of man i

wr(i, k) = j if man k is the j-th choice of woman i
Suppose that, for a given stable matching instance,

S = {(m1,w1), . . . , (mn,wn)}

is a stable matching.
We define the value c(S) of matching S as:

c(S) =
n∑
1

mr(mi,wi) +
n∑
1

wr(mi,wi)

A stable matching S is optimal if it has minimum possible value c(S).
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S

The sequence of proposals in the Gale-Shapley Algorithm has two very
important implications:

If m proposes to w, then there is no stable matching in which m can
“do better” than w.
If w receives a proposal from m, then there is no stable matching in
which w can “do worse” than m.

These observations suggest that we should remove m and w from each
other’s list, if w receives a proposal from someone she likes better than m.

By doing so consecutively we result in the (male oriented) shortlists.
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E

An example of an instance of size 8:

And the resulting shortlists:
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R
A rotation ρ of size r is a sequence

ρ = (m0,w0), . . . , (mr−1,wr−1)

of man/woman pairs such that, for each i ∈ [0, r− 1],
...1 wi is first in mi’s shortlist
...2 wi+1 is second in mi’s shortlist (i+ 1 is taken modulo r)

Such a rotation is said to be exposed in the shortlists.

Observation: Unless we have reached the female-optimal solution, at
least one rotation is exposed.

Significance: Starting from a stable solution, if each mi in an exposed
rotation exchanges his partner wi for wi+1, the resulting solution is
also stable!

If, given a rotation ρ = (m0,w0), . . . , (mr−1,wr−1), we remove each
succesor x of mi−1 in wi’s shortlist and also wi from x’s list for each i,
then the rotation ρ is said to have been eliminated.
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R ’

In fact, every stable matching M for a given stable marriage
instance can be obtained by eliminating a fixed number of
rotations. Note that even though this set of rotations RM is fixed,
the order of their elimination is not!

Also, since each pair (m,w) can appear in at most one rotation and
any rotation contains at least two pairs, the total number of
rotations is O(n2).
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the order of their elimination is not!

Also, since each pair (m,w) can appear in at most one rotation and
any rotation contains at least two pairs, the total number of
rotations is O(n2).

D C (NTUA) O S M J 28, 2013 13 / 33



R P

A rotation π is said to be an explicit predecessor of
ρ = (m0,w0), . . . , (mr−1,wr−1) if, for some i ∈ [0, r− 1] and some
woman y (6= wi), π eliminates (mi, y) and mi prefers y to wi.

Obviously a rotation cannot become exposed until all of its explicit
predecessors are eliminated.

The reflexive transitive closure ≤ of the explicit predecessor relation is
a partial order on the set of rotations, called the rotation poset, and
π < ρ if and only if π must be eliminated before ρ becomes exposed.

A closed set in a poset (P,≤) is a subset C of P such that

ρ ∈ C & π < ρ ⇒ π ∈ C.
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R P ’
From the previous example:

It should now be obvious that:
.T..

......
The stable matchings of a given stable marriage instance are in one-to-one
correspondence with the closed subsets of the rotation poset.
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W
Given a rotation ρ = (m0,w0), . . . , (mr−1,wr−1), we define its weight
w(ρ) by

w(ρ) =
r−1∑
0

[mr(mi,wi)−mr(mi,wi+1)] +
r−1∑
0

[wr(wi,mi)− wr(wi,mi−1)]

(i− 1, i+ 1 are taken mod r)

.L..

......

Let S be a stable matching obtained by starting from the shortlists and
eliminating a particular sequence of rotations. Suppose that ρ is a rotation
exposed in S, and let S′ be the stable matching obtained from S by
eliminating ρ. Then,

c(S′) = c(S)− w(ρ).

Which leads to...
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W P
.L..

......

If S is the stable matching obtained from the shortlists by eliminating the
rotations ρ1, . . . , ρt and S0 the male-optimal solution, then

c(S) = c(S0)−
t∑
1

w(ρi).

Note that ρ1, . . . , ρt must form a closed subset of the rotation poset.

To summarize, after we assign to each rotation ρ its
integer weight w(ρ), all that is left is to find the
maximum-weight closed subset of the weighted poset.
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O

...1 B C

...2 D

...3 R

...4 T A
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A A R G
The construction of the weighted rotation poset P would require O(n6)
time, so instead we will construct a sparse directed graph P′ representing
in some way P, through which we will obtain the minimum-weight closed
subgraph of P.

We denote P′ the subgraph of P consisting of all the nodes of P (one for
each rotation), but only of those edges defined by these two rules:

...1 If (m,w) is a member of some rotation π and w′ is the first woman
below w in m’s list such that (m,w′) is a member of some other
rotation ρ, then P′ contains a (π → ρ) edge.

...2 If (m,w) is not a member of any rotation, but is eliminated by some
rotation π and w is the first woman above w′ in m’s list such that
(m,w) is a member of some rotation ρ, then P′ contains a (π → ρ)
edge.
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A A R G ’
.
L (1)..

......
P′ has at most O(n2) edges and, given the rotations, can be constructed in
O(n2)-time.

.P...

......

In the rules above, each creation of an edge is associated with a pair
(m,w). But no pair is associated more than once, hence P′ has at most
O(n2) edges.
To construct P′, assuming the rotations are known, we first scan each
rotation, noting the pairs that are in it and labeling the pairs it eliminates
by the name of the rotation. This needs O(n2)-time. Then we scan each
man’s preference list, keeping track of the most recently encountered pair
contained in some rotation, and applying the above two rules. Each scan
takes O(n)-time, hence P′ will be constructed in O(n2) time.
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A A R G ’
.
L (2)..
......The transitive closure of P′ is P, hence P′ preserves the closed subsets of P.
.P...

......

Obviously P′ ⊆ P, so we only need to show that a closed subset in P is
also closed in P′. For this it suffices to show that if a rotation π explicitly
precedes ρ, then ther is a directed (π, ρ)-path in P′. Let (mi, x) be a pair
eliminated by π such that (mi,wi) ∈ ρ and mi prefers x to wi+1. Now, if
there is a woman w above x in mi’s list such that (mi,w) is a pair in some
rotation, then let w be the first such woman and let (mi,w) ∈ σ. Then
successive applications of rule 1 give a directed (σ, ρ)-path of ≥ 0 edges in
P′ and rule 2 gives a (π → σ) edge in P′. If there is no such woman w,
then mi must prefer x to his mate in every other stable matching, but π
must be exposed in at least one such stable matching M and x must prefer
mi to her mate in M, so M cannot be stable.
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F A  R

We still have to find efficiently the set of all rotations. The following
method takes O(n3)-time, but it has been later refined to just O(n2).

Let S be a stable matching and assume that the preference lists have been
reduced for S. Then for each man m we denote by s(S,m) the second
woman in m’s list (if any) and by s′(S,m) her mate in S. Furthermore, we
denote by G(S) the directed graph consisting of n nodes (one for each
man), where for every man mi there is an edge (mi → s′(S,mi)).

It is clear that there is a bijection between the rotations exposed in S and
the directed cycles in G(S).
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F A  R ’

.L..

......All cycles in G(S) can be identified in O(n) time.

.P...

......

Each node has outdegree ≤ 1, therefore G(S) has ≤ n edges, which means
that each edge is in at most one cycle. We can find all the cycles by using
DFS in O(n) time.

It follows that all the rotations exposed in S can be also found in O(n)
time.
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F A  R ’
.T..
......All the rotations can be found in O(n3)-time.

.P...

......

We define a node ρ in P′ to be at level 0 iff ρ has no predecessors in P′,
and otherwise to be at level i iff it has at least one predecessor at each of
levels 0, . . . , i− 1 but none at level i. Clearly, the rotations exposed in S0
(the male-optimal matching) are exactly the ones at level 0. If we
eliminate those, the rotations exposed in the resulting stable matching S1
are exactly the ones at level 1, etc. Let Si be the stable matching obtained
by eliminating all the rotations in levels 0, . . . , i− 1.Over the entire
computation, the time needed to eliminate all the rotations, reduce the
resulting lists and update s(Si,m) and s′(Si,m) is O(n2). For each level i,
each graph G(Si) is built and all cycles identified in O(n)-time. Then, since
there can be at most O(n2) levels, the theorem follows.
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F  -    P′

We will use network flow to find a maximum-weight closed subset of P′
(henceforth denoted as W∗).

From P′ we construct a capacitated s− t flow graph P′(s, t) as follows:

A source node s and a sink node t are added to P′.
For every node ρi of negative weight, a (s→ ρi) edge is added, with
capacity |w(ρi)|.
For every node ρj of positive weight, a (ρj → t) edge is added, with
capacity w(ρj).
The capacity of every original edge of P′ is set to ∞.

Note that if w(ρ) = 0 then P′ contains neither edge (s→ ρ) nor (ρ → t).
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T P′(s, t) G

P′(s, t) should look somewhat like this:
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F  -    P′

We will prove the following theorem:
.T..

......

Let X be the set of edges crossing a minimum s− t cut in P′(s, t) and
denote the capacity of X by w(X). The positive nodes of W∗ (denoted as
W∗

+) are exactly the positive nodes whose edges into t are uncut by X.
These nodes and all the nodes that reach them in P′ define a
maximum-weight closed subset in P′.

We denote by V+ and V− the sets of positive and negatives nodes in P′
respectively and by N(W) the set of all negative predecessors of nodes in
W ⊆ V+.
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.P...

......

Any negative node in a maximum-weight closed subset C must precede at
least one positive node in C, hence the set of positive nodes of W∗ is:
W∗

+ = {W ⊆ V+| w(W)− |w(N(W))| is maximized} =
= {W ⊆ V+| w(V+)− (w(W)− |w(N(W))|) is minimized} =
= {W ⊆ V+| w(V+ rW) + |w(N(W))| is minimized}.
• Now let W ⊆ V+. In the graph P′(s, t), if every edge from s to N(W) is
cut along with any edge from (V+ rW) to t, then all (s, t)-paths are cut.
Hence, w(X) ≤ w(V+ rW) + |w(N(W))| for any W ⊆ V+.
• Conversely, if we let W+ ⊆ V+ consist of the positive nodes whose
edges to t were uncut by X, then, by definition, X cuts all edges from
(V+ rW+) to t and also all edges from s to N(W+) (since X is an s− t
cut of finite capacity and all V− → V+ edges have infinite capacity).
Hence, w(X) = w(V+ rW+) + |w(N(W+))| ≤ w(V+ rW) + |w(N(W))|
for any W ⊆ V+, and it follows that W+ =W∗

+.

D C (NTUA) O S M J 28, 2013 28 / 33
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Given the positive nodes W∗
+ in a maximum-weight closed subset W∗ of

P′, we can construct an optimal stable matching in O(n2)-time by the
following procedure:

We find the predecessors of W∗
+ in P′ by scanning backwards from the

nodes in W∗
+, marking unmarked nodes that are reached ang again

scanning backwards from them. This takes O(n2)-time, since P′ has
at that many edges.

Now all the marked nodes constitute W∗, so all we have to do is
simply start with the male-optimal stable matching and traverse P′
top down, by levels, eliminating all marked rotations. Again, due to
the size of P′, this step takes O(n2)-time.

The resulting stable matching is optimal.
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F  -    P′

In order to find the minimum s− t cut in P′(s, t) we will use the
maximum-flow algorithm of Sleator and Trajan, which needs
O(VE logV)-time. Since P′(s, t) has V = O(n2) nodes and E = O(n2)
edges, that takes O(n2 log n). In order to reduce that to O(n4) we will use
the fact that the minimum cut in P′(s, t) has capacity bounded by O(n2).

When all the capacities are integral, the running time of the
Ford-Fulkerson algorithm (and of the Sleator-Trajan as a subsequent
algorithm) is O(EK), where K is the maximum s− t flow value. Since all
the capacities in P′(s, t) are integral and both E and K are O(n2), it follows
that both the max-flow and the min-cut can be found in O(n4)-time.
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A O(n4)-T S

To summarize, we can:

find all the rotations in O(n3)
construct P′(s, t) in O(n2)
find a minimum s− t cut X of P′(s, t) in O(n4)
use X to find a minimum-weighted closed subset W∗ of P′ in O(n4)
eliminate each rotation in W∗ in O(n2) to obtain a stable matching

Note that other than the O(n4) network flow computation, the rest of the
algorithm needs just O(n2), so if a more specialized flow-algorithm than
the Sleator-Tarjan could be found for P′(s, t) or other sparse subgraphs of
P that preserve the closed subset, it would immediately speed up the
whole algorithm.
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G

One last interesting observation is that we could easily generalize the
stable matching problem so that each person i not only has a rank
ordering of the members of the opposite sex, but also a numerical
preference w(i, j) for each such person j.

Again these preferences define a rank ordering, so the notion of a stable
matching is unchanged. We now ask for the stable matching that
maximizes

n∑
1
p(mi,wi) +

n∑
1
p(wi,mi). This problem can be solved in

O(n4 log n)-time using the same method.

...and a fun fact about this problem:
It has been shown that there is no matching mechanism that is both
strategy-proof and produces stable matchings.
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Thank you!

¡Muchas gracias!

Ευαριστώ πού!
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