Approximation Algorithms for Conflict-Free Vehicle Routing

Kaspar Schupbach and Rico Zenklusen

Παπαηλίου Νικόλαος

CFVRP Problem

- Undirected graph of stations and roads
- Vehicles(k):
 - Source-Destination stations
- Discretized time
 - At each timestep every vehicle waits to the current position or moves to a neighbor station
- Conflicts:
 - No vehicles traverse the same edge at the same timestep
 - $^\circ~$ No vehicles are on the same station at a certain timestep
- Goal:
 - Conflict-free routing with minimum makespan(total routing time)

Sequential Routing Approaches

- Simple approach:
 - Sequentially send one vehicle after another on the shortest path to its destination
 - Makespan: O(k*L)
 - L: maximum s-t distance for vehicles
 - L<=OPT
 - O(k)-approximation
 - No efficient algorithm substantially beats this approach

Sequential Routing Approaches

Improved approach:

- Greedy direct sequential routing
- Greedy: Consider the vehicle in a given order
- Direct: Vehicles never stop while advancing to their destination
- For each vehicle find the earliest departure time that has no conflict with previously routed vehicles.
- No theoretical improvements
- O(k)-approximation

Complexity

- CFVRP is NP-hard even on paths
- Choosing a good ordering for greedy direct routing is also NP-hard
- Sub-linear in k approximation algorithms are known for grids
 - Takes advantage of the existence of two disjoint alternative paths for each s-t path
- This paper presents:
 - 4OPT+k approximation for trees
 - $\circ O(\sqrt{k})$ -approximation for general graphs
 - $\circ O(\log^3(k))OPT + k$ randomized approximation algorithm based on tree embeddings

Tree Approximation

- DFS numbering on the tree nodes
- Increasing- Decreasing vehicles:
 - Increasing if label of destination is larger than the label of origin
 - Bending node: the node of the path that is closer to the root
 - in-label: last node before the bending node
 - out-label: first node after the bending node

Tree Approximation

- Sort vehicles using the following priorities:
 - Increasing vehicles have priority over decreasing ones
 - Among two increasing vehicles the higher out-label has priority
 - Among two decreasing vehicles the lower in-label has priority
 - Ties are broken using an arbitrary fixed vehicle ordering
- Apply greedy sequential routing using the above ordering
 - Makespan: 4L+k

Proof

There exists a direct routing with at most 4L+k makespan

- $^{\circ}$ k⁺: number of increasing vehicles
- $^{\circ}$ k⁻ : number of decreasing vehicles
- Examine vehicles using the ordering
 - $^{\circ}~$ The first vehicle has passage time from bending node: L
 - The second: L+1
 - •
 - $^{\circ}$ The last increasing: L+k⁺-1
 - $^{\circ}$ If this is conflict free all increasing vehicles can be routed with: 2L+k⁺-1
 - $^{\circ}\,$ The same can be done for the decreasing leading to total makespan 4L+k

Proof

- We will show that the previous routing is conflict-free
- Let π , ψ be two vehicles and ψ has higher priority
 - ° Case 1: π , ψ don't share any node: no conflict
 - ° Case2: π , ψ share only one node v
 - $\circ~$ v is the bending node of at least one of $\pi,\,\psi$
 - $\circ~\psi$ passes first from v
 - $^\circ~$ Case 3: π,ψ use common subpath in the same direction
 - v the smallest node in the subpath
 - $\,\circ\,\,$ v is the bending node of at least one of $\pi,\,\psi$
 - \circ ψ passes first from v
 - $^\circ~$ Case 4: π,ψ use common subpath in opposite directions
 - v the smallest node in the subpath
 - \circ π , ψ can't bend in the subpath(increasing-decreasing)
 - $^\circ~\psi$ passes first from v
 - $\circ ~\psi$ leaves common path before π enters it

Hot Spot Routing

General graphs

- Congestion: maximum number of vehicles that pass from a node
- Dilation: length of the longest path
- Congestion, dilation = O(OPT)
- Generate paths with low congestion and dilation
 - Use of Sinivasan and Teo algorithm
- For each v if there are more than \sqrt{k} vehicles not routed that pass from v
 - Find the shortest path tree routed at v
 - Use TreeRouting
- Route remaining vehicles using greedy direct sequential routing

Hot Spot Routing

- Approximation $O(\sqrt{k}OPT)$
- At most \sqrt{k} TreeRouting steps
 - Each TreeRouting takes O(C+D)
 - The first phase is $O(\sqrt{k}OPT)$
- Second phase(greedy routing)
 - $\circ \pi$ any of the remaining vehicles(not routed in the first phase)
 - For every node in the path of π there are at most \sqrt{k} previous routed vehicles.
 - ° This routing can stall π at most O(D \sqrt{k})
 - The second phase is $O(\sqrt{k} OPT)$

Hot Spot Routing

- Approximation $O(\sqrt{k}OPT)$
- At most \sqrt{k} TreeRouting steps
 - Each TreeRouting takes O(C+D)
 - The first phase is $O(\sqrt{k}OPT)$
- Second phase(greedy routing)
 - $\circ \pi$ any of the remaining vehicles(not routed in the first phase)
 - For every node in the path of π there are at most \sqrt{k} previous routed vehicles.
 - ° This routing can stall π at most O(D \sqrt{k})
 - The second phase is $O(\sqrt{k} OPT)$

Low-Strech Routing

- ► Find a collection of *O*(*polylog*(*k*)) trees such that
 - $^\circ~$ each s-t path in T is at most a $\mathit{O}(\mathit{polylog}(k))\text{-}\mathsf{factor}$ larger than the shortest path in G
 - Assign vehicles to trees
 - Use TreeRouting for each tree
- Randomized algorithm to find trees
 - Transform G=(V,E) to H(W,F) with size $O(k^2)$
 - Each vehicle has the same s-t distance on both graphs
 - Delete all nodes, edges of G that don't belong to shortest s-t paths
 - Every path of G is replaced by an edge in H if it doesn't contain another node of H
 - A random spanning tree of H has:

$$\mathbf{E}\left[d_{H[T]}(v,w)/d_H(v,w)\right] = O\left(\log^2|W|\right)$$

Low-Strech Routing

- Select p=2log(k) random spanning trees of H
- Find the respective trees (T) of G
- With probability 1-1/k there exists one tree T such that:

 $d_{G[T]}(s_{\pi}, t_{\pi})/d_G(s_{\pi}, t_{\pi}) = O(\log^2 k)$

Each TreeRouting needs a makespan of:

 $4\max\{d_{G[T_j]}(s_{\pi}, t_{\pi}) \mid \pi \in \Pi, i(\pi) = j\} + k_j = O(\log^2 k)L + k_j$

The total makespan is:

$$O(\log^2 k)pL + \sum_{i=1}^p k_j = O(\log^3 k)L + k$$

Ερωτήσεις?

