Approximation Algorithms for Conflict-Free Vehicle Routing

Kaspar Schupbach and Rico Zenklusen
Папап入íou Nıкó入 α оऽ

CFVRP Problem

- Undirected graph of stations and roads
- Vehicles(k):
- Source-Destination stations
- Discretized time
- At each timestep every vehicle waits to the current position or moves to a neighbor station
- Conflicts:
- No vehicles traverse the same edge at the same timestep
- No vehicles are on the same station at a certain timestep
- Goal:
- Conflict-free routing with minimum makespan(total routing time)

Sequential Routing Approaches

- Simple approach:
- Sequentially send one vehicle after another on the shortest path to its destination
- Makespan: O(k*L)
- L: maximum s-t distance for vehicles
- L<=OPT
- O(k)-approximation
- No efficient algorithm substantially beats this approach

Sequential Routing Approaches

- Improved approach:
- Greedy direct sequential routing
- Greedy: Consider the vehicle in a given order
- Direct: Vehicles never stop while advancing to their destination
- For each vehicle find the earliest departure time that has no conflict with previously routed vehicles.
- No theoretical improvements
- O(k)-approximation

Complexity

- CFVRP is NP-hard even on paths
- Choosing a good ordering for greedy direct routing is also NP-hard
- Sub-linear in k approximation algorithms are known for grids

Takes advantage of the existence of two disjoint alternative paths for each s-t path

- This paper presents:
- 4OPT+k approximation for trees
- $O(\sqrt{k})$-approximation for general graphs
- $O\left(\log ^{3}(k)\right) O P T+k$ randomized approximation algorithm based on tree embeddings

Tree Approximation

- DFS numbering on the tree nodes
- Increasing- Decreasing vehicles:
- Increasing if label of destination is larger than the label of origin
- Bending node: the node of the path that is closer to the root
- in-label: last node before the bending node
- out-label: first node after the bending node

Tree Approximation

- Sort vehicles using the following priorities:
- Increasing vehicles have priority over decreasing ones
- Among two increasing vehicles the higher out-label has priority
- Among two decreasing vehicles the lower in-label has priority
- Ties are broken using an arbitrary fixed vehicle ordering
- Apply greedy sequential routing using the above ordering
- Makespan: 4L+k

Proof

- There exists a direct routing with at most 4L+k makespan
- k^{+}: number of increasing vehicles
${ }^{\circ} \mathrm{k}^{-}$: number of decreasing vehicles
- Examine vehicles using the ordering
- The first vehicle has passage time from bending node: L
- The second: L+1
- ...
- The last increasing: L+K ${ }^{+}-1$
- If this is conflict free all increasing vehicles can be routed with: $2 \mathrm{~L}+\mathrm{K}^{+}-1$
- The same can be done for the decreasing leading to total makespan 4L+k

Proof

- We will show that the previous routing is conflict-free
- Let π, ψ be two vehicles and ψ has higher priority
- Case 1: π, ψ don't share any node: no conflict
- Case2: π, ψ share only one node v
- v is the bending node of at least one of π, ψ
- ψ passes first from v
- Case 3: π, ψ use common subpath in the same direction
- v the smallest node in the subpath
- v is the bending node of at least one of π, ψ
- ψ passes first from v
- Case 4: π, ψ use common subpath in opposite directions
- v the smallest node in the subpath
- π, ψ can't bend in the subpath(increasing-decreasing)
- ψ passes first from v
- ψ leaves common path before π enters it

Hot Spot Routing

- General graphs
- Congestion: maximum number of vehicles that pass from a node
- Dilation: length of the longest path
- Congestion, dilation $=$ O(OPT)
- Generate paths with low congestion and dilation
- Use of Sinivasan and Teo algorithm
- For each v if there are more than \sqrt{k} vehicles not routed that pass from v
- Find the shortest path tree routed at v
- Use TreeRouting
- Route remaining vehicles using greedy direct sequential routing

Hot Spot Routing

- Approximation $O(\sqrt{k} O P T)$
- At most \sqrt{k} TreeRouting steps
- Each TreeRouting takes O(C+D)
- The first phase is $O(\sqrt{k} O P T)$
- Second phase(greedy routing)
- π any of the remaining vehicles(not routed in the first phase)
- For every node in the path of π there are at most \sqrt{k} previous routed vehicles.
- This routing can stall π at most $O(D \sqrt{k})$
- The second phase is $O(\sqrt{k} O P T)$

Hot Spot Routing

- Approximation $O(\sqrt{k} O P T)$
- At most \sqrt{k} TreeRouting steps
- Each TreeRouting takes O(C+D)
- The first phase is $O(\sqrt{k} O P T)$
- Second phase(greedy routing)
- π any of the remaining vehicles(not routed in the first phase)
- For every node in the path of π there are at most \sqrt{k} previous routed vehicles.
- This routing can stall π at most $O(D \sqrt{k})$
- The second phase is $O(\sqrt{k} O P T)$

Low-Strech Routing

- Find a collection of $O($ polylog $(k))$ trees such that
- each s-t path in T is at most a $O($ polylog $(k))$-factor larger than the shortest path in G
- Assign vehicles to trees
- Use TreeRouting for each tree
- Randomized algorithm to find trees
- Transform $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ to $\mathrm{H}(\mathrm{W}, \mathrm{F})$ with size $O\left(k^{2}\right)$
- Each vehicle has the same s-t distance on both graphs
- Delete all nodes, edges of G that don't belong to shortest s-t paths
- Every path of G is replaced by an edge in H if it doesn't contain another node of H
- A random spanning tree of H has:

$$
\mathbf{E}\left[d_{H[T]}(v, w) / d_{H}(v, w)\right]=O\left(\log ^{2}|W|\right)
$$

Low-Strech Routing

- Select $p=2 \log (k)$ random spanning trees of H
- Find the respective trees (T) of G
- With probability $1-1 / k$ there exists one tree T such that:

$$
d_{G[T]}\left(s_{\pi}, t_{\pi}\right) / d_{G}\left(s_{\pi}, t_{\pi}\right)=O\left(\log ^{2} k\right)
$$

- Each TreeRouting needs a makespan of:

$$
4 \max \left\{d_{G\left[T_{j}\right]}\left(s_{\pi}, t_{\pi}\right) \mid \pi \in \Pi, i(\pi)=j\right\}+k_{j}=O\left(\log ^{2} k\right) L+k_{j}
$$

- The total makespan is:

$$
O\left(\log ^{2} k\right) p L+\sum_{i=1}^{p} k_{j}=O\left(\log ^{3} k\right) L+k
$$

Eрんtท́бદıऽ?

