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o The Steiner tree problem is one of the most fundamental
NP-hard problems
(weighted undirected graph, subset of terminal nodes ⇒
minimum-cost tree spanning the terminals).

o Applications in:

* VLSI
* Optical and Wireless Communication Systems
* Transportation and Distribution Networks

o A long-standing open problem is whether there is an LP
relaxation of Steiner tree with integrality gap smaller than 2.
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o An LP-based approximation algorithm for Steiner tree with an
improved approximation factor.

* Iterative randomized rounding technique.
* An LP relaxation of the problem, which is based on the notion of

directed components.

o A solution of cost at most ln(4) + ε <1.39 times the cost of an
optimal Steiner tree.

o The algorithm can be derandomized using the method of limited
independence.

o The integrality gap of LP is showed at most 1.55.
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o Based on the directed-component cut relaxation for the Steiner
tree problem.

DCR

min
∑

C∈Cn
c(C )xC

s.t.
∑

C∈δCn+(U) xC ≥ 1, ∀U ⊆ R\{r},U �= ∅
xc ≥ 0 ∀C ∈ Cn

o The algorithm combines features randomized rounding and
iterative rounding.

o Used the Bridge Lemma for the reduction of the cost of the
optimal Steiner tree in each iteration
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Related work

o A minimum-cost terminal spanning tree is

* a 2-approximation for the Steiner tree problem [Gilbert and Pollak
1968; Vazirani 2001].

* the famous 1 + ln(3)/2+ ε < 1.55 approximation algorithm [Robins
and Zelikovsky 2005].

o All these improvements are based on the notion of k-restricted
Steiner tree.

* A collection of components, with at most k terminals each
(k-components), whose union induces a Steiner tree.

Theorem 1 [Borchers and Du 1997]

Let r and s be the nonnegative integers satisfying k=2r+s and
s < 2r . Then ρk = (r+1)2r+s

r2r+s ≤ 1 + 1
�log2k�
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o LP relaxation (2 intgrality gap) of undirected cut formulation
[Goemans and Williamson 1995 and Vazirani 2001]

* 2-approximation using primal-dual schemes or
* 2-approximation using iterative rounding

o Another is the bidirected cut relaxation [Chakrabarty et al.
2008; Edmonds 1967; Rajagopalan and Vazirani 1999].

Bidirected Cut Relaxation (BCR)

min
∑

e∈E c(e)ze
s.t.

∑
e∈δCk+(U) ze ≥ 1, ∀U ⊆ V \{r},U ∩ R �= ∅

ze ≥ 0 ∀e ∈ E
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Theorem 2 [Edmonds 1967]

For R = V, the polyhedron of BCR is integral.

o The best-known lower bound on the integrality gap of BCR is
8/7 [Knemann et al.2011; Vazirani 2001].

o The best-known upper bound is 2, though BCR is believed to
have a smaller integrality gap than the undirected cut relaxation
[Rajagopalan and Vazirani 1999].
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Approximation DCR

Computed a (1 + ε)-approximate solution to DCR, for any given
constant ε > 0, in polynomial time.
Introduced a relaxation k-DCR of the k-restricted Steiner tree
problem and can be solved exactly in polynomial time for any
constant value of the parameter k.
The optimal solutions to k-DCR and DCR are close for
large-enough k.
The relaxation of the k-restricted Steiner tree problem:

min
∑

C∈Ck c(C )xC (k-DCR)

s.t.
∑

C∈δCk(U) xC ≥ 1, ∀U ⊆ R\{r},U �= ∅
xC ≥ 0 ∀C ∈ Ck
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Approximation DCR

Lemma 1

optf ,k ≤ ρk · optf
Proof

Let (x,C) be an optimal fractional solution for DCR. We show how
to construct a solution (x ′,C′) to k-DCR with the claimed property.
For any component C ∈ C, we can apply Theorem 1 to obtain a
list of undirected components C1, ...,Cl such that: (a)

⋃
i=1→l Ci

connects the terminals in C, (b) any Ci contains at most k
terminals and (c)

∑l
i=1 ≤ ρk · c(C ). Directed the edges of all Ci s

consistently towards sink(C) and increase the value of x ′ Ci by xC
for each Ci. The resulting solution (x ′,C ′) satisfies the claim.
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Approximation DCR

Lemma 2

The optimal solution to k-DCR can be computed in polynomial
time for any constant k.

Lemma 3

For any fixed ε ≥ 0, a (1 + ε)-approximate solution (x,C) to DCR
can be computed in polynomial time.
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The Bridge Lemma

o The Bridge Lemma relates the cost of any terminal spanning
tree to the cost of any fractional solution to DCR via the notion
of bridges.

o Constructed of a proper weighted terminal spanning tree Y.
Consider Steiner tree S on terminals R.

o Defined a bridge weight function w : RR → Q+ as follows: For
any terminal pair u, v ∈ R, the quantity w(u, v) is the maximum
cost of any edge in the unique u-v path in S.

o BrS(R
′) is the set of bridges of S with respect to terminals R ′,

and brS (R
′) denotes its cost.
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Lemma 4

Let S be any Steiner tree on terminals R, and w : RR → Q+ be
the associated bridge weight function. For any subset R ′ ⊆ R of
terminals, there is a tree Y ⊆ R ′R ′ such that
(a) Y spans R ′

(b) w(Y ) = brS (R
′)

(c) For any {u,v}∈ Y, the u-v path in S contains exactly one edge
from brS (R

′)
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The Bridge Lemma

Let T be a terminal spanning tree and (x,C) be a feasible solution
to DCR. Then

c(T ) ≤ ∑
C∈C xCbrT (C )
Proof

Constructed a spanning tree YC with weight w(YC ) = brT (C ).
We direct the edges of YC towards sink(C). We obtain a directed
capacity reservation y: RR→ Q+ with y(u,v)=

∑
(u,v)∈YC

xC .

c(T ) ≤ w(F ) ≤ ∑
e∈R×R w(e)y(e) =

∑
C∈C xCw(YC ) =

=
∑

C∈C xCbrT (C )

Nikolidaki Aikaterini Steiner Tree Approximation via IRR



Introduction
A Directed-Component Cut Relaxation

Iterative Randomized Rounding
Integrality Gap

A First Bound

The Bridge Lemma shows that given a terminal spanning tree and
contracting a random component from any feasible fractional
solution, one can remove a 1/M fraction of the edges and still
obtain a terminal spanning tree. Showed that the cost of the
minimum terminal spanning tree decreases by a factor (1-1/M) per
iteration in expectation

Lemma 5

E [optf
t ] ≤ (1− 1

M )t−1 · 2optf

Theorem

For any fixed ε >0, there is a randomized polynomial-time
algorithm that computes a solution to the Steiner tree problem of
expected cost at most (1+ln(2)+ ε)·optf
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Showed that in each iteration, the cost optt of the optimal
(integral) Steiner tree of the current instance decreases by a factor
(1-1/2M) in expectation.

Lemma 6

Let S be any Steiner tree and (x,C) be a feasible solution to DCR.
Sample a component C ∈ DCR such that C = C ′ with probability
xC ′/M. Then, there is a subgraph S ′ ⊆ S such that S ′ ∪ C spans R
and
E [c(S ′)] ≤ (1− 1

2M )t−1 · c(S)

Corollary

For every t ≥ 1
E [optt ] ≤ (1− 1

2M )t−1 · opt
Nikolidaki Aikaterini Steiner Tree Approximation via IRR
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Theorem

For any ε > 0, there is a polynomial-time randomized
approximation algorithm for Steiner tree with expected
approximation ratio 3/2 + ε.

E [

∑

t≥1
c(C t)

opt
] ≤ 3/2 + ε
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Upper Bound

An LP relaxation of the problem does not imply a ln(4) (nor even a
1.5) upper bound on the integrality gap of the studied LP. The LP
changes during the iterations of the algorithm, and its solution is
only bounded with respect to the initial optimal integral solution.
Then the LP has integrality gap at most 1 + ln(3)/2 < 1.55.

Algorithm RZ (Robins and Zelikovsky)

o Constructed a sequence T 0,T 1, ...,Tμ of terminal spanning
trees. T 0 is a minimum cost terminal spanning tree in graph.

o At iteration t we are given a tree T t and a cost function ct on
the edges of the tree.

o Any component C with at least 2 and at most k terminals.
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Upper Bound

o T t [C ] denote the minimum spanning tree of the graph T t ∪ C,
where the edges e ∈ C have weight 0 and the edges f ∈ T t

weight ct(f ).

o The subset of edges in T t but not in T t [C] are denoted by
BrTt (C).

o Loss(C) the minimum-cost subforest of C with the property that
there is a path between each Steiner node in C and some
terminal in R(C). So, Loss(C) is the complement of the set of
bridges of the subtree C after contracting R(C)

o loss(C) = c(Loss(C)).

o Selected the component C t+1 that maximizes gaint(C )/loss(C )

o It halts if the quantity is nonpositive
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Upper Bound

o Otherwise, it considers the graph T t ∪ C t+1, and contracts
Loss(C t+1).The tree T t+1 is a minimum-cost terminal spanning
tree in the resulting graph.

o In case that parallel edges are created this way, the algorithm
only keeps the cheapest of such edges. This way we obtain the
cost function ct+1 on the edges of Tt+1.

gaint(C ) = brTt (C )− c(C ) and sgaint(C ) = gaint(C ) + loss(C )

Lemma [Robins and Zelikovsky 2005]

For t=1,2,...,μ, ct(T l ) = c t−1(T l−1)− sgaint−1(C t)

Lemma [Robins and Zelikovsky 2005]

For any l ≤ μ, apxk ≤ ∑l
t=1 loss(C

t) + c l(T l)
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Lower Bound

Theorem

The integrality gap of DCR is at least 8/7 > 1.142.
Proof

Using Skutella’s graph. Consider a Set Cover instance with
elements U=1,...7 and sets S1,...,S7 and a vector b(i), where
Sj = i ∈ U|b(i) · b(j) ≡ 1. It needs 3 sets to cover all elements,
but choosing each set to an extent of 1/4 gives a fractional Set
Cover solution of cost 7/4. In graph, each element forms a
terminal and each set is a nonterminal node connected to the root
and to the contained elements by unit cost edges.
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Lower Bound

continue...

The graph has 7 edge disjoint components, each one containing
one non-terminal node and the 5 edges incident into it. On one
hand, installing 1/4 on each of these components gives a fractional
solution of cost 35/4, while on the other hand, at least 3 Steiner
nodes must be included for an integer solution. Consequently opt
= 10 and we obtain the promised gap of 10

35/4 = 87.
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Comparison with BCR

DCR is a relaxation strictly stronger than BCR.

Lemma

Let optDCR and optBCR be the optimal fractional solutions to
DCR and BCR, respectively, for a given input instance. Then,
optDCR ≥ optBCR .

Theorem

The integrality gap of BCR is at least 36/31 > 1.161.
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Questions?
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