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General problem setting

* Ground set: S

* Solutionset: ] © 2°.

* Weight: w:S—>Z,.

* Lengths: [; : S — Z_ with budget L; € Z,
vie |k] = {1,2,...., k}

min/max w(l) subjectto I € S, [;(I) < L;



Typical problems

* k-budgeted perfect matching
* k-budgeted spanning tree
* k-budgeted shortest path

* k-budgeted matroid independent set

k = 0 : polynomial-time



Some relevant previous results

Results for 1-budgeted problems

* FPTAS for 1-budgeted shortest path (Warburton [1987],
Hassin[1992], Lorenz and Raz [2001])

* PTAS for 1-budgeted spanning tree (Ravi and Goemans
[1996])

* PTAS for 1-budgeted matching and 1-budgeted matroid
intersection independent set (Berger [2009])



Theorem 1

For k = 2, it is NP-complete to decide whether
there is a feasible solution for

* k-budgeted shortest path
* k-budgeted perfect matching and
* k-budgeted spanning tree

We consider problems whose solutions form an
independence system (S, F):
SEF,ScS>S€EF



Theorem 2

P : a k-budgeted problem where the set of
solutions is an independence system.

Algorithm A : computes in polynomial time an
(1-86) approximate solution to P violating each
budget by a factor at most (1 + 0).

Then there is a PTAS for P.



Feasibilization

Filtering :

k . .
Guess the h = B heaviest elements E in opt

Scaling:
Scale down all the budgets by a factor (1 - 8) =

&< .
(1 - — ) to obtain £}

Return: Ey U E}




A PTAS for 2-budgeted matching

To obtain a PTAS it suffices to provide an
efficient algorithm returning a solution of
value = opt — ¢ Wy gy

We present a polynomial algorithm for 2-
budgeted matching returning a solution of
weight = opt — 6wy, 44



Patching procedure

Given two matchings x’, x" and a parameter
u € ]0,1], computes a matching z satisfying
[, < Iy, wherex, = ux'+ (1 —px".

The weight w(z) is close to w(x,,).



Framework

Get optimal basic solution x™ to Compute convex combination
max w(x) x* =a;1M; + a, 1M, + az1M;
li(x) < L; Vi € {1,2} of three matchings

A
A




Framework

Merge M; and M, to get M, , “close” to Then merge M, , and M3 to get M “close” to

— —1 * = + 1M, +1M
X1,2 (a11M; + a,1M,) X" =a; +ax(IM, 3)
a; + a,




A property of polygonal curves in R?

Fora € [0,7],let f%: [0,7] = R? be the following
polygonal curve:

apy - (Gt - f@+f(O0) ift+a<z
f ()_{f(r)—f(a)+f(a+t—’[) ift+a=1

Lemma:
Therearea,t € |o, 1] such that

fE(0) = pf(0) + (1 — ) f(T)



f.'f{ M, )

Merging two matchings

Goal : Get almost matching y with [(y) = [(x1,)



Merging two matchings

Flips can be performed with a fractional start and/or endpoint.



Merging two matchings

Flips can be performed with a fractional start and/or endpoint.



¢( M)

Merging two matchings




Merging two matchings

Is there a starting point such that the curve contains [ (X1,z)?
Yes, such a starting point exists.



f( ﬂ--fl )

Merging two matchings




Merging two matchings

Theorem:
Starting with M4, it is possible to flip a subinterval of edges to obtain an almost
matching y with [;(y) = [;(x12)



Claim

The matching M, , obtained from the almost
matching y (merge of M; and M,) satisfies:

W(Ml,Z) = W(xl,Z) _ ZWmax



Summary

. Merging M, and M, by edge flips we get an
almost matching y : [;(y) = [;(x12)
. Removing at most 2 units of y we get a matching
My,
[i(M12) <L) = 1i(xq ) fori = 1,2
W(MI,Z) = W(xl,z) — 2Wmax
. Applying the same merging procedure to M, ,
and M5, we obtain a matching M:
(M) <l;(x*)<L;fori =1,2
w(M) = w(x™) — 6wy, 4y



How to extend to any constant
number of budgets?

* Only steps that needs to be generalized
(merging of matchings)

 Can we flip?

* Conjecture : Generalized Necklace Splitting
Problem



Conclusions

* |s there a fully-polynomial PTAS (FPTAS) for
1-budgeted Spanning Tree?
* For 1-budgeted Matching? (a PTAS is known)

If we find an FPTAS for the second problem, we
will have a deterministic algorithm for exact
matching with polynomial weights, which is a
long-standing open problem.



Thank you!



