Approximation Schemes for Multi-Budgeted Independence Systems

Dimitris Bakas $\mu\pi\lambda\forall$

Network Algorithms and Complexity

General problem setting

- Ground set: *S*
- Solution set: $I \subseteq 2^s$.
- Weight: $w : S \rightarrow \mathbb{Z}_+$.
- Lengths: $l_i : S \to \mathbb{Z}_+$ with budget $L_i \in \mathbb{Z}_+$ $\forall i \in [k] = \{1, 2, ..., k\}$

min/max w(I) subject to $I \in S$, $l_i(I) \leq L_i$

Typical problems

- k-budgeted perfect matching
- k-budgeted spanning tree
- k-budgeted shortest path
- k-budgeted matroid independent set

k = 0 : polynomial-time

Some relevant previous results

Results for 1-budgeted problems

- FPTAS for 1-budgeted shortest path (Warburton [1987], Hassin[1992], Lorenz and Raz [2001])
- PTAS for 1-budgeted spanning tree (Ravi and Goemans [1996])
- PTAS for 1-budgeted matching and 1-budgeted matroid intersection independent set (Berger [2009])

Theorem 1

For $k \ge 2$, it is NP-complete to decide whether there is a feasible solution for

- k-budgeted shortest path
- k-budgeted perfect matching and
- k-budgeted spanning tree

We consider problems whose solutions form an independence system (S, F): $S \in F, S' \subseteq S \Rightarrow S' \in F$

Theorem 2

P : a k-budgeted problem where the set of solutions is an independence system.

Algorithm A : computes in polynomial time an (1- δ) approximate solution to P violating each budget by a factor at most (1 + δ).

Then there is a PTAS for P.

Feasibilization

Filtering :

Guess the $h = \frac{k}{\varepsilon}$ heaviest elements E_H in opt

Scaling:

Scale down all the budgets by a factor $(1 - \delta) =$

$$(1 - \frac{\varepsilon}{\kappa+1})$$
 to obtain E_L

<u>Return</u> : $E_H \cup E_L$

A PTAS for 2-budgeted matching

To obtain a PTAS it suffices to provide an efficient algorithm returning a solution of $value \ge opt - c w_{max}$

We present a polynomial algorithm for 2budgeted matching returning a solution of $weight \ge opt - 6w_{max}$

Patching procedure

Given two matchings x', x'' and a parameter $\mu \in [0,1]$, computes a matching z satisfying $l_z \leq l_{x_{\mu}}$ where $x_{\mu} = \mu x' + (1 - \mu) x''$.

The weight w(z) is close to $w(x_{\mu})$.

Framework

Framework

Then merge $M_{1,2}$ and M_3 to get M "close" to $x^* = a_1 + a_2(1M_{1,2} + 1M_3)$

A property of polygonal curves in \mathbb{R}^2

For $a \in [0, \tau]$, let $f^a : [0, \tau] \to \mathbb{R}^2$ be the following polygonal curve:

$$f^{a}(t) = \begin{cases} f(t+a) - f(a) + f(0) & \text{if } t + a < \tau \\ f(\tau) - f(a) + f(a + t - \tau) & \text{if } t + a \ge \tau \end{cases}$$

Lemma:

There are $a, t \in [o, \tau]$ such that $f^{a}(t) = \mu f(0) + (1 - \mu) f(\tau)$

Goal : Get almost matching y with $l(y) = l(x_{1,2})$

Flips can be performed with a fractional start and/or endpoint.

Flips can be performed with a fractional start and/or endpoint.

Is there a starting point such that the curve contains $l(x_{1,2})$? Yes, such a starting point exists.

Theorem:

Starting with M_1 , it is possible to flip a subinterval of edges to obtain an almost matching y with $l_i(y) = l_i(x_{1,2})$

Claim

The matching $M_{1,2}$ obtained from the almost matching y (merge of M_1 and M_2) satisfies: $w(M_{1,2}) \ge w(x_{1,2}) - 2w_{max}$

Summary

- 1. Merging M_1 and M_2 by edge flips we get an almost matching $y : l_i(y) = l_i(x_{1,2})$
- 2. Removing at most 2 units of y we get a matching $M_{1,2}$:

$$l_i(M_{1,2}) \le l_i(y) = l_i(x_{1,2})$$
 for $i = 1,2$
 $w(M_{1,2}) \ge w(x_{1,2}) - 2w_{max}$

3. Applying the same merging procedure to $M_{1,2}$ and M_3 , we obtain a matching M:

$$l_i(M) \le l_i(x^*) \le L_i \text{ for } i = 1,2$$

w(M) \ge w(x^*) - 6w_{max}

How to extend to any constant number of budgets?

- Only steps that needs to be generalized (merging of matchings)
- Can we flip?
- Conjecture : Generalized Necklace Splitting Problem

Conclusions

- Is there a fully-polynomial PTAS (FPTAS) for 1-budgeted Spanning Tree?
- For 1-budgeted Matching? (a PTAS is known)

If we find an FPTAS for the second problem, we will have a deterministic algorithm for exact matching with polynomial weights, which is a long-standing open problem.

Thank you!