Approximation Schemes for Multi-Budgeted Independence Systems

Dimitris Bakas

$\mu \pi \lambda \forall$

Network Algorithms and Complexity

General problem setting

- Ground set: S
- Solution set: $I \subseteq 2^{s}$.
- Weight: w : $S \rightarrow \mathbb{Z}_{+}$.
- Lengths: $l_{i}: S \rightarrow \mathbb{Z}_{+}$with budget $L_{i} \in \mathbb{Z}_{+}$

$$
\forall i \in[k]=\{1,2, \ldots, k\}
$$

min/max $w(I)$ subject to $I \in S, l_{i}(\mathrm{I}) \leq L_{i}$

Typical problems

- k-budgeted perfect matching
- k-budgeted spanning tree
- k-budgeted shortest path
- k-budgeted matroid independent set
$k=0$: polynomial-time

Some relevant previous results

Results for 1-budgeted problems

- FPTAS for 1-budgeted shortest path (Warburton [1987], Hassin[1992], Lorenz and Raz [2001])
- PTAS for 1-budgeted spanning tree (Ravi and Goemans [1996])
- PTAS for 1-budgeted matching and 1-budgeted matroid intersection independent set (Berger [2009])

Theorem 1

For $k \geq 2$, it is NP-complete to decide whether there is a feasible solution for

- k-budgeted shortest path
- k-budgeted perfect matching and
- k-budgeted spanning tree

We consider problems whose solutions form an independence system (S, F) :

$$
S \in F, S^{\prime} \subseteq S \Rightarrow S^{\prime} \in F
$$

Theorem 2

P : a k-budgeted problem where the set of solutions is an independence system.

Algorithm A : computes in polynomial time an (1- δ) approximate solution to P violating each budget by a factor at most $(1+\delta)$.

Then there is a PTAS for P.

Feasibilization

Filtering:
Guess the $h=\frac{k}{\varepsilon}$ heaviest elements E_{H} in opt

Scaling:
Scale down all the budgets by a factor (1- δ) =
(1- $\frac{\varepsilon}{\kappa+1}$) to obtain E_{L}
$\underline{\text { Return }: ~} E_{H} \cup E_{L}$

A PTAS for 2-budgeted matching

To obtain a PTAS it suffices to provide an efficient algorithm returning a solution of value $\geq o p t-c w_{\max }$

We present a polynomial algorithm for 2budgeted matching returning a solution of

$$
\text { weight } \geq o p t-6 w_{\max }
$$

Patching procedure

Given two matchings $x^{\prime}, x^{\prime \prime}$ and a parameter $\mu \in[0,1]$, computes a matching z satisfying $l_{z} \leq l_{x_{\mu}}$ where $x_{\mu}=\mu \mathrm{x}^{\prime}+(1-\mu) \mathrm{x}^{\prime \prime}$.

The weight $w(z)$ is close to $w\left(x_{\mu}\right)$.

Framework

Get optimal basic solution x^{*} to $\max w(x)$
$l_{1}(x) \leq L_{i} \forall i \in\{1,2\}$

Compute convex combination
$x^{*}=a_{1} 1 M_{1}+a_{2} 1 M_{2}+a_{3} 1 M_{3}$ of three matchings

Framework

Merge M_{1} and M_{2} to get $M_{1,2}$ "close" to $x_{1,2}=\frac{1}{a_{1}+a_{2}}\left(a_{1} 1 M_{1}+a_{2} 1 M_{2}\right)$

Then merge $M_{1,2}$ and M_{3} to get M "close" to

$$
x^{*}=a_{1}+a_{2}\left(1 M_{1,2}+1 M_{3}\right)
$$

A property of polygonal curves in \mathbb{R}^{2}

For $a \in[0, \tau]$, let $f^{a}:[0, \tau] \rightarrow \mathbb{R}^{2}$ be the following polygonal curve:

$$
f^{a}(t)= \begin{cases}f(t+a)-f(a)+f(0) & \text { if } t+a<\tau \\ f(\tau)-f(a)+f(a+t-\tau) & \text { if } t+a \geq \tau\end{cases}
$$

Lemma:

There are $a, t \in[0, \tau]$ such that

$$
f^{a}(t)=\mu \mathrm{f}(0)+(1-\mu) \mathrm{f}(\tau)
$$

Merging two matchings

Goal : Get almost matching y with $l(y)=l\left(x_{1,2}\right)$

Merging two matchings

Flips can be performed with a fractional start and/or endpoint.

Merging two matchings

Flips can be performed with a fractional start and/or endpoint.

Merging two matchings

Merging two matchings

Is there a starting point such that the curve contains $l\left(x_{1,2}\right)$?
Yes, such a starting point exists.

Merging two matchings

Merging two matchings

Theorem:
Starting with M_{1}, it is possible to flip a subinterval of edges to obtain an almost matching y with $l_{i}(y)=l_{i}\left(x_{1,2}\right)$

Claim

The matching $M_{1,2}$ obtained from the almost matching y (merge of M_{1} and M_{2}) satisfies:

$$
\mathrm{w}\left(M_{1,2}\right) \geq w\left(x_{1,2}\right)-2 w_{\max }
$$

Summary

1. Merging M_{1} and M_{2} by edge flips we get an almost matching $y: l_{i}(y)=l_{i}\left(x_{1,2}\right)$
2. Removing at most 2 units of y we get a matching $M_{1,2}$:

$$
\begin{aligned}
& l_{i}\left(M_{1,2}\right) \leq l_{i}(y)=l_{i}\left(x_{1,2}\right) \text { for } i=1,2 \\
& \mathrm{w}\left(M_{1,2}\right) \geq \mathrm{w}\left(x_{1,2}\right)-2 w_{\text {max }}
\end{aligned}
$$

3. Applying the same merging procedure to $M_{1,2}$ and M_{3}, we obtain a matching M :

$$
\begin{aligned}
& l_{i}(M) \leq l_{i}\left(x^{*}\right) \leq L_{i} \text { for } i=1,2 \\
& \mathrm{w}(M) \geq \mathrm{w}\left(x^{*}\right)-6 w_{\max }
\end{aligned}
$$

How to extend to any constant number of budgets?

- Only steps that needs to be generalized (merging of matchings)
- Can we flip?
- Conjecture : Generalized Necklace Splitting Problem

Conclusions

- Is there a fully-polynomial PTAS (FPTAS) for 1-budgeted Spanning Tree?
- For 1-budgeted Matching? (a PTAS is known)

If we find an FPTAS for the second problem, we will have a deterministic algorithm for exact matching with polynomial weights, which is a long-standing open problem.

Thank you!

