An overview of approximation algorithms for the Distance Constraint Vehicle Routing

Konstantinos Mastakas

Department of Mathematics, University of Athens, Athens, Greece

18-6-13

Topics covered in the presentation

- Definition and properties of Distance Constraint Vehicle Routing Problem **DVRP**
- ▶ A 3-approximation algorithm for the unrooted DVRP by [1]
- Bicriteria approximation algorithm by [2]

Definition of DVRP

Input

- A complete graph G = (V, E)
- A metric distance $d: E \to \mathbb{R}^+$
- ▶ A starting position (depot, root) r
- \blacktriangleright A bound on the allowed length of a tour D

Output

A set of tours starting from r, with length at most D with the minimum cardinality (C), for which all vertices belong to at least one tour.

Definition:Unrooted DVRP (or minimum path cover) is a DVRP where the goal is to find the minimum cardinality set of paths (i.e. start and end location of every route is not the same) covering all vertices.

Definition of DVRP

Input

- A complete graph G = (V, E)
- A metric distance $d: E \to \mathbb{R}^+$
- ▶ A starting position (depot, root) r
- \blacktriangleright A bound on the allowed length of a tour D

Output

A set of tours starting from r, with length at most D with the minimum cardinality (C), for which all vertices belong to at least one tour.

Definition:Unrooted DVRP (or minimum path cover) is a DVRP where the goal is to find the minimum cardinality set of paths (i.e. start and end location of every route is not the same) covering all vertices.

Properties of DVRP

DVRP is NP-hard

Decision TSP (DTSP) can be reduced to the decision version of DVRP, where there exists a tour covering V with length at most D if and only if there exists a set of tours from r with length at most D with cardinality at most 1.

It is hard to approximate DVRP within a factor of $2\,$

If there is a polynomial a-approximation algorithm A for the DVRP, a < 2, then the DTSP can be answered in polynomial time, since there exists a tour covering V with length at most D if and only if the output of A is at most a

Properties of DVRP

DVRP is NP-hard

Decision TSP (DTSP) can be reduced to the decision version of DVRP, where there exists a tour covering V with length at most D if and only if there exists a set of tours from r with length at most D with cardinality at most 1.

It is hard to approximate DVRP within a factor of 2

If there is a polynomial a-approximation algorithm A for the DVRP, a < 2, then the DTSP can be answered in polynomial time, since there exists a tour covering V with length at most D if and only if the output of A is at most a

- ► The minimum cardinality (k) is guessed. This can be done, since possible results are 1, 2, ..., n = |V|(polynomially bounded by the input), so exhaustive search can be applied.
- ▶ If $t_1, t_2, ..., t_k$ constitute a solution to DVRP, then these constitute k connected components of G. So, the minimum k connected components $C_i, i = 1, 2, ..., k$ have $\sum l(C_i) \leq \sum l(t_i) \leq k \cdot D$
- ▶ By doubling each edge in the connected components kEulerian paths p_1, p_2, \ldots, p_k can be created. They have total length $\sum l(p_i) \leq 2 \cdot \sum l(C_i) \leq 2 \cdot k \cdot D$.
- Each p_i can be cut into subpaths $p_{i1}, p_{i2}, \ldots, p_{il_i}$, where $p_i = p_{i1} * p_{i2} * * * p_{il_i}$ with length at most D and $l_1 + l_2 + \cdots + l_k \leq 3 \cdot k$, since $l_i \leq \frac{l(p_i)}{D} + 1$

- ► The minimum cardinality (k) is guessed. This can be done, since possible results are 1, 2, ..., n = |V|(polynomially bounded by the input), so exhaustive search can be applied.
- ▶ If $t_1, t_2, ..., t_k$ constitute a solution to DVRP, then these constitute k connected components of G. So, the minimum k connected components $C_i, i = 1, 2, ..., k$ have $\sum l(C_i) \leq \sum l(t_i) \leq k \cdot D$
- ▶ By doubling each edge in the connected components kEulerian paths p_1, p_2, \ldots, p_k can be created. They have total length $\sum l(p_i) \leq 2 \cdot \sum l(C_i) \leq 2 \cdot k \cdot D$.
- ▶ Each p_i can be cut into subpaths $p_{i1}, p_{i2}, \ldots, p_{il_i}$, where $p_i = p_{i1} * p_{i2} * * * p_{il_i}$ with length at most D and $l_1 + l_2 + \cdots + l_k \leq 3 \cdot k$, since $l_i \leq \frac{l(p_i)}{D} + 1$

- ► The minimum cardinality (k) is guessed. This can be done, since possible results are 1, 2, ..., n = |V|(polynomially bounded by the input), so exhaustive search can be applied.
- If t₁, t₂,..., t_k constitute a solution to DVRP, then these constitute k connected components of G. So, the minimum k connected components C_i, i = 1, 2, ..., k have ∑ l(C_i) ≤ ∑ l(t_i) ≤ k ⋅ D
- ▶ By doubling each edge in the connected components kEulerian paths p_1, p_2, \ldots, p_k can be created. They have total length $\sum l(p_i) \leq 2 \cdot \sum l(C_i) \leq 2 \cdot k \cdot D$.
- Each p_i can be cut into subpaths $p_{i1}, p_{i2}, \ldots, p_{il_i}$, where $p_i = p_{i1} * p_{i2} * * * p_{il_i}$ with length at most D and $l_1 + l_2 + \cdots + l_k \leq 3 \cdot k$, since $l_i \leq \frac{l(p_i)}{D} + 1$

- ► The minimum cardinality (k) is guessed. This can be done, since possible results are 1, 2, ..., n = |V|(polynomially bounded by the input), so exhaustive search can be applied.
- If t₁, t₂,..., t_k constitute a solution to DVRP, then these constitute k connected components of G. So, the minimum k connected components C_i, i = 1, 2, ..., k have ∑ l(C_i) ≤ ∑ l(t_i) ≤ k ⋅ D
- ▶ By doubling each edge in the connected components kEulerian paths p_1, p_2, \ldots, p_k can be created. They have total length $\sum l(p_i) \leq 2 \cdot \sum l(C_i) \leq 2 \cdot k \cdot D$.
- ▶ Each p_i can be cut into subpaths $p_{i1}, p_{i2}, \ldots, p_{il_i}$, where $p_i = p_{i1} * p_{i2} * * * p_{il_i}$ with length at most D and $l_1 + l_2 + \cdots + l_k \leq 3 \cdot k$, since $l_i \leq \frac{l(p_i)}{D} + 1$

- ► The minimum cardinality (k) is guessed. This can be done, since possible results are 1, 2, ..., n = |V|(polynomially bounded by the input), so exhaustive search can be applied.
- If t₁, t₂,..., t_k constitute a solution to DVRP, then these constitute k connected components of G. So, the minimum k connected components C_i, i = 1, 2, ..., k have ∑ l(C_i) ≤ ∑ l(t_i) ≤ k ⋅ D
- ▶ By doubling each edge in the connected components kEulerian paths p_1, p_2, \ldots, p_k can be created. They have total length $\sum l(p_i) \leq 2 \cdot \sum l(C_i) \leq 2 \cdot k \cdot D$.
- Each p_i can be cut into subpaths $p_{i1}, p_{i2}, \ldots, p_{il_i}$, where $p_i = p_{i1} * p_{i2} * * * p_{il_i}$ with length at most D and $l_1 + l_2 + \cdots + l_k \leq 3 \cdot k$, since $l_i \leq \frac{l(p_i)}{D} + 1$

- ► The minimum cardinality (k) is guessed. This can be done, since possible results are 1, 2, ..., n = |V|(polynomially bounded by the input), so exhaustive search can be applied.
- If t₁, t₂,..., t_k constitute a solution to DVRP, then these constitute k connected components of G. So, the minimum k connected components C_i, i = 1, 2, ..., k have ∑ l(C_i) ≤ ∑ l(t_i) ≤ k ⋅ D
- ▶ By doubling each edge in the connected components kEulerian paths p_1, p_2, \ldots, p_k can be created. They have total length $\sum l(p_i) \le 2 \cdot \sum l(C_i) \le 2 \cdot k \cdot D$.
- Each p_i can be cut into subpaths $p_{i1}, p_{i2}, \ldots, p_{il_i}$, where $p_i = p_{i1} * p_{i2} * * * p_{il_i}$ with length at most D and $l_1 + l_2 + \cdots + l_k \leq 3 \cdot k$, since $l_i \leq \frac{l(p_i)}{D} + 1$

- ► The minimum cardinality (k) is guessed. This can be done, since possible results are 1, 2, ..., n = |V|(polynomially bounded by the input), so exhaustive search can be applied.
- If t₁, t₂,..., t_k constitute a solution to DVRP, then these constitute k connected components of G. So, the minimum k connected components C_i, i = 1, 2, ..., k have ∑ l(C_i) ≤ ∑ l(t_i) ≤ k ⋅ D
- ▶ By doubling each edge in the connected components kEulerian paths p_1, p_2, \ldots, p_k can be created. They have total length $\sum l(p_i) \le 2 \cdot \sum l(C_i) \le 2 \cdot k \cdot D$.
- ▶ Each p_i can be cut into subpaths $p_{i1}, p_{i2}, \ldots, p_{il_i}$, where $p_i = p_{i1} * p_{i2} * * * p_{il_i}$ with length at most D and $l_1 + l_2 + \cdots + l_k \leq 3 \cdot k$, since $l_i \leq \frac{l(p_i)}{D} + 1$

A 3-approximation algorithm for the unrooted DVRP [1], Sketch of the algorithm

For every possible minimum cardinality (k = 1, 2, ..., n)

- 1. Compute the k minimum connected components C_1, C_2, \ldots, C_k (using the Kruskal's algorithm for minimum spanning tree)
- 2. For each component C_i double its edges and compute an eulerian path $p_i\,$
- 3. Cut each $p_i, i = 1, 2, ..., k$ into segments $p_{i1}, p_{i2}, ..., p_{il_i}$ that have length at most D with $p_i = p_{i1} * p_{i2} * \cdots p_{il_i}$. Call $S_i^k = \{p_{i1}, p_{i2}, ..., p_{il_i}\}$
- 4. $S_k = \cup S_i^k$

Return the S_k with the minimum cardinality

Bicriteria approximation algorithm for DVRP [2]

Theorem: There is a $O(\log \frac{1}{\epsilon}, 1 + \epsilon)$ bicriteria approximation algorithm for DVRP. (For $0 < \epsilon < 1$ if each tour is allowed to have length at most $(1 + \epsilon) \cdot D$, then a set of tours containing V with cardinality at most $\log \frac{1}{\epsilon}$ times an optimal solution can be found.)

- ▶ The set of vertices *V*, is partitioned into $1 + \lceil \log \frac{1}{\epsilon} \rceil$ subsets $V_0, V_1, \ldots, V_{\lceil \log \frac{1}{\epsilon} \rceil}$ according to their distance from the depot. Specifically, $V_0 = \{v : (1 - \epsilon) \frac{D}{2} < d(r, v) \le \frac{D}{2}\}$ and $V_j = \{v : (1 - 2^j \epsilon) \frac{D}{2} < d(r, v) \le (1 - 2^{j-1} \epsilon) \frac{D}{2}\}, j = 1, 2, \ldots, \lceil \log \frac{1}{\epsilon} \rceil$
- ▶ If there is a path $P(v_1, v_2, ..., v_k) \subseteq V_j$ with $l(P) \leq 2^{j-1} \epsilon D$ then the tour $r * P * r = (r, v_1, v_2, ..., v_k, r)$ has length at most $d(r, v_1) + l(P) + d(v_k, r) \leq (1 + \epsilon) \cdot D$.
- ▶ Let a tour $t = (r, u_1, u_2, \ldots, u_k, r)$ belonging to a solution of DVRP, then the restriction of t in V_j , $t_{V_j} = (u_{m_1}, u_{m_2}, \ldots, u_{m_l}) \subseteq V_j$, $m_1 < m_2 < \cdots < m_l$ has length less than $2^j \cdot \epsilon \cdot D$. Furthermore, t_{V_j} can be cut into two paths with length less than $2^{j-1} \cdot \epsilon \cdot D$.So, there are at most $2 \cdot OPT$ paths covering V_j bounded by $2^{j-1} \cdot \epsilon \cdot D$.
- ▶ For each $j = 0, 1, ..., \lceil \log \frac{1}{\epsilon} \rceil$, at most $6 \cdot OPT$ paths covering V_j can be found, with length at most $2^{j-1} \cdot \epsilon \cdot D$, applying the 3-approximation algorithm described. So, at most $6 \cdot OPT \cdot (1 + \lceil \log \frac{1}{\epsilon} \rceil)$ tours bounded by $(1 + \epsilon) \cdot D$ covering V are created.

- ▶ The set of vertices *V*, is partitioned into $1 + \lceil \log \frac{1}{\epsilon} \rceil$ subsets $V_0, V_1, \ldots, V_{\lceil \log \frac{1}{\epsilon} \rceil}$ according to their distance from the depot. Specifically, $V_0 = \{v : (1 - \epsilon)\frac{D}{2} < d(r, v) \le \frac{D}{2}\}$ and $V_j = \{v : (1 - 2^j \epsilon)\frac{D}{2} < d(r, v) \le (1 - 2^{j-1}\epsilon)\frac{D}{2}\}, j = 1, 2, \ldots, \lceil \log \frac{1}{\epsilon} \rceil$
- If there is a path $P(v_1, v_2, \ldots, v_k) \subseteq V_j$ with $l(P) \leq 2^{j-1} \epsilon D$ then the tour $r * P * r = (r, v_1, v_2, \ldots, v_k, r)$ has length at most $d(r, v_1) + l(P) + d(v_k, r) \leq (1 + \epsilon) \cdot D$.
- ▶ Let a tour $t = (r, u_1, u_2, \ldots, u_k, r)$ belonging to a solution of DVRP, then the restriction of t in V_j , $t_{V_j} = (u_{m_1}, u_{m_2}, \ldots, u_{m_l}) \subseteq V_j$, $m_1 < m_2 < \cdots < m_l$ has length less than $2^j \cdot \epsilon \cdot D$. Furthermore, t_{V_j} can be cut into two paths with length less than $2^{j-1} \cdot \epsilon \cdot D$.So, there are at most $2 \cdot OPT$ paths covering V_j bounded by $2^{j-1} \cdot \epsilon \cdot D$.
- ▶ For each $j = 0, 1, ..., \lceil \log \frac{1}{\epsilon} \rceil$, at most $6 \cdot OPT$ paths covering V_j can be found, with length at most $2^{j-1} \cdot \epsilon \cdot D$, applying the 3-approximation algorithm described. So, at most $6 \cdot OPT \cdot (1 + \lceil \log \frac{1}{\epsilon} \rceil)$ tours bounded by $(1 + \epsilon) \cdot D$ covering V are created.

- ▶ The set of vertices *V*, is partitioned into $1 + \lceil \log \frac{1}{\epsilon} \rceil$ subsets $V_0, V_1, \ldots, V_{\lceil \log \frac{1}{\epsilon} \rceil}$ according to their distance from the depot. Specifically, $V_0 = \{v : (1 - \epsilon)\frac{D}{2} < d(r, v) \le \frac{D}{2}\}$ and $V_j = \{v : (1 - 2^j \epsilon)\frac{D}{2} < d(r, v) \le (1 - 2^{j-1}\epsilon)\frac{D}{2}\}, j = 1, 2, \ldots, \lceil \log \frac{1}{\epsilon} \rceil$
- If there is a path $P(v_1, v_2, \ldots, v_k) \subseteq V_j$ with $l(P) \leq 2^{j-1} \epsilon D$ then the tour $r * P * r = (r, v_1, v_2, \ldots, v_k, r)$ has length at most $d(r, v_1) + l(P) + d(v_k, r) \leq (1 + \epsilon) \cdot D$.
- ▶ Let a tour $t = (r, u_1, u_2, ..., u_k, r)$ belonging to a solution of DVRP, then the restriction of t in V_j , $t_{V_j} = (u_{m_1}, u_{m_2}, ..., u_{m_l}) \subseteq V_j$, $m_1 < m_2 < \cdots < m_l$ has length less than $2^j \cdot \epsilon \cdot D$. Furthermore, t_{V_j} can be cut into two paths with length less than $2^{j-1} \cdot \epsilon \cdot D$.So, there are at most $2 \cdot OPT$ paths covering V_j bounded by $2^{j-1} \cdot \epsilon \cdot D$.
- ▶ For each $j = 0, 1, ..., \left\lceil \log \frac{1}{\epsilon} \right\rceil$, at most $6 \cdot \text{OPT}$ paths covering V_j can be found, with length at most $2^{j-1} \cdot \epsilon \cdot D$, applying the 3-approximation algorithm described. So, at most $6 \cdot \text{OPT} \cdot (1 + \left\lceil \log \frac{1}{\epsilon} \right\rceil)$ tours bounded by $(1 + \epsilon) \cdot D$ covering V are created.

- ▶ The set of vertices V, is partitioned into $1 + \lceil \log \frac{1}{\epsilon} \rceil$ subsets $V_0, V_1, \ldots, V_{\lceil \log \frac{1}{\epsilon} \rceil}$ according to their distance from the depot. Specifically, $V_0 = \{v : (1 - \epsilon)\frac{D}{2} < d(r, v) \le \frac{D}{2}\}$ and $V_j = \{v : (1 - 2^j \epsilon)\frac{D}{2} < d(r, v) \le (1 - 2^{j-1}\epsilon)\frac{D}{2}\}, j = 1, 2, \ldots, \lceil \log \frac{1}{\epsilon} \rceil$
- If there is a path $P(v_1, v_2, \ldots, v_k) \subseteq V_j$ with $l(P) \leq 2^{j-1} \epsilon D$ then the tour $r * P * r = (r, v_1, v_2, \ldots, v_k, r)$ has length at most $d(r, v_1) + l(P) + d(v_k, r) \leq (1 + \epsilon) \cdot D$.
- ▶ Let a tour $t = (r, u_1, u_2, \ldots, u_k, r)$ belonging to a solution of DVRP, then the restriction of t in V_j , $t_{V_j} = (u_{m_1}, u_{m_2}, \ldots, u_{m_l}) \subseteq V_j$, $m_1 < m_2 < \cdots < m_l$ has length less than $2^j \cdot \epsilon \cdot D$. Furthermore, t_{V_j} can be cut into two paths with length less than $2^{j-1} \cdot \epsilon \cdot D$.So, there are at most $2 \cdot \text{OPT}$ paths covering V_j bounded by $2^{j-1} \cdot \epsilon \cdot D$.
- ▶ For each $j = 0, 1, ..., \left\lceil \log \frac{1}{\epsilon} \right\rceil$, at most $6 \cdot \text{OPT}$ paths covering V_j can be found, with length at most $2^{j-1} \cdot \epsilon \cdot D$, applying the 3-approximation algorithm described. So, at most $6 \cdot \text{OPT} \cdot (1 + \left\lceil \log \frac{1}{\epsilon} \right\rceil)$ tours bounded by $(1 + \epsilon) \cdot D$ covering V are created.

- ▶ The set of vertices *V*, is partitioned into $1 + \lceil \log \frac{1}{\epsilon} \rceil$ subsets $V_0, V_1, \ldots, V_{\lceil \log \frac{1}{\epsilon} \rceil}$ according to their distance from the depot. Specifically, $V_0 = \{v : (1 - \epsilon)\frac{D}{2} < d(r, v) \le \frac{D}{2}\}$ and $V_j = \{v : (1 - 2^j \epsilon)\frac{D}{2} < d(r, v) \le (1 - 2^{j-1}\epsilon)\frac{D}{2}\}, j = 1, 2, \ldots, \lceil \log \frac{1}{\epsilon} \rceil$
- If there is a path $P(v_1, v_2, \ldots, v_k) \subseteq V_j$ with $l(P) \leq 2^{j-1} \epsilon D$ then the tour $r * P * r = (r, v_1, v_2, \ldots, v_k, r)$ has length at most $d(r, v_1) + l(P) + d(v_k, r) \leq (1 + \epsilon) \cdot D$.
- ▶ Let a tour $t = (r, u_1, u_2, \ldots, u_k, r)$ belonging to a solution of DVRP, then the restriction of t in V_j , $t_{V_j} = (u_{m_1}, u_{m_2}, \ldots, u_{m_l}) \subseteq V_j$, $m_1 < m_2 < \cdots < m_l$ has length less than $2^j \cdot \epsilon \cdot D$. Furthermore, t_{V_j} can be cut into two paths with length less than $2^{j-1} \cdot \epsilon \cdot D$.So, there are at most $2 \cdot OPT$ paths covering V_j bounded by $2^{j-1} \cdot \epsilon \cdot D$.
- ▶ For each $j = 0, 1, ..., \left\lceil \log \frac{1}{\epsilon} \right\rceil$, at most $6 \cdot \text{OPT}$ paths covering V_j can be found, with length at most $2^{j-1} \cdot \epsilon \cdot D$, applying the 3-approximation algorithm described. So, at most $6 \cdot \text{OPT} \cdot (1 + \left\lceil \log \frac{1}{\epsilon} \right\rceil)$ tours bounded by $(1 + \epsilon) \cdot D$ covering V are created.

- ▶ The set of vertices *V*, is partitioned into $1 + \lceil \log \frac{1}{\epsilon} \rceil$ subsets $V_0, V_1, \ldots, V_{\lceil \log \frac{1}{\epsilon} \rceil}$ according to their distance from the depot. Specifically, $V_0 = \{v : (1 - \epsilon) \frac{D}{2} < d(r, v) \le \frac{D}{2}\}$ and $V_j = \{v : (1 - 2^j \epsilon) \frac{D}{2} < d(r, v) \le (1 - 2^{j-1} \epsilon) \frac{D}{2}\}, j = 1, 2, \ldots, \lceil \log \frac{1}{\epsilon} \rceil$
- If there is a path $P(v_1, v_2, \ldots, v_k) \subseteq V_j$ with $l(P) \leq 2^{j-1} \epsilon D$ then the tour $r * P * r = (r, v_1, v_2, \ldots, v_k, r)$ has length at most $d(r, v_1) + l(P) + d(v_k, r) \leq (1 + \epsilon) \cdot D$.
- ▶ Let a tour $t = (r, u_1, u_2, \ldots, u_k, r)$ belonging to a solution of DVRP, then the restriction of t in V_j , $t_{V_j} = (u_{m_1}, u_{m_2}, \ldots, u_{m_l}) \subseteq V_j$, $m_1 < m_2 < \cdots < m_l$ has length less than $2^j \cdot \epsilon \cdot D$. Furthermore, t_{V_j} can be cut into two paths with length less than $2^{j-1} \cdot \epsilon \cdot D$.So, there are at most $2 \cdot OPT$ paths covering V_j bounded by $2^{j-1} \cdot \epsilon \cdot D$.
- ▶ For each $j = 0, 1, ..., \lceil \log \frac{1}{\epsilon} \rceil$, at most $6 \cdot OPT$ paths covering V_j can be found, with length at most $2^{j-1} \cdot \epsilon \cdot D$, applying the 3-approximation algorithm described. So, at most $6 \cdot OPT \cdot (1 + \lceil \log \frac{1}{\epsilon} \rceil)$ tours bounded by $(1 + \epsilon) \cdot D$ covering V are created.

Bicriteria approximation algorithm for DVRP [2], Sketch of the algorithm

- 1. Partition V in $V_0, V_1, \ldots, V_{\left\lceil \log \frac{1}{\epsilon} \right\rceil}$
- 2. For each V_j calculate a set of paths P_j in it, bounded by $2^{j-1}\cdot\epsilon\cdot D$ using the 3-approximation algorithm described above
- 3. Take $P = \cup P_j$
- 4. Then the set of tours is $T = r * P * r = \{r * p * r | p \in P\}$

E. M. Arkin, R. Hassin, and A. Levin.

Approximations for minimum and min-max vehicle routing problems.

Journal of Algorithms, 59(1):1 – 18, 2006.

V. Nagarajan and R. Ravi.

Approximation algorithms for distance constrained vehicle routing problems.

Networks, 59(2):209-214, 2012.