An overview of approximation algorithms for the Distance Constraint Vehicle Routing

Konstantinos Mastakas

Department of Mathematics, University of Athens, Athens, Greece
18-6-13

Topics covered in the presentation

- Definition and properties of Distance Constraint Vehicle Routing Problem DVRP
- A 3-approximation algorithm for the unrooted DVRP by [1]
- Bicriteria approximation algorithm by [2]

Definition of DVRP

Input

- A complete graph $G=(V, E)$
- A metric distance $d: E \rightarrow \mathbb{R}^{+}$
- A starting position (depot, root) r
- A bound on the allowed length of a tour D

Output

A set of tours starting from r, with length at most D with the minimum cardinality (C), for which all vertices belong to at least one tour.

Definition:Unrooted DVRP (or minimum path cover) is a DVRP
where the goal is to find the minimum cardinality set of paths (i.e.
start and end location of every route is not the same) covering all

vertices.

Definition of DVRP

Input

- A complete graph $G=(V, E)$
- A metric distance $d: E \rightarrow \mathbb{R}^{+}$
- A starting position (depot, root) r
- A bound on the allowed length of a tour D

Output

A set of tours starting from r, with length at most D with the minimum cardinality (C), for which all vertices belong to at least one tour.

Definition:Unrooted DVRP (or minimum path cover) is a DVRP where the goal is to find the minimum cardinality set of paths (i.e. start and end location of every route is not the same) covering all vertices.

Properties of DVRP

DVRP is NP-hard
Decision TSP (DTSP) can be reduced to the decision version of DVRP, where there exists a tour covering V with length at most D if and only if there exists a set of tours from r with length at most D with cardinality at most 1 .

It is hard to approximate DVRP within a factor of 2
If there is a polynomial a-approximation algorithm A for the
DVRP, $a<2$, then the DTSP can be answered in polynomial time,
since there exists a tour covering V with length at most D if and
only if the output of A is at most a

Properties of DVRP

DVRP is NP-hard
Decision TSP (DTSP) can be reduced to the decision version of DVRP, where there exists a tour covering V with length at most D if and only if there exists a set of tours from r with length at most D with cardinality at most 1 .

It is hard to approximate DVRP within a factor of 2
If there is a polynomial a-approximation algorithm A for the DVRP, $a<2$, then the DTSP can be answered in polynomial time, since there exists a tour covering V with length at most D if and only if the output of A is at most a

A 3-approximation algorithm for the unrooted DVRP [1], Intuitions

- The minimum cardinality (k) is guessed.
since possible results are $1,2, \ldots, n=|V|$ (polynomially bounded by the input), so exhaustive search can be applied.
- If $t_{1}, t_{2}, \ldots, t_{k}$ constitute a solution to DVRP, then these constitute k connected components of G. So, the minimum k connected components $C_{i}, i=1,2, \ldots, k$ have $\sum l\left(C_{i}\right) \leq \sum l\left(t_{i}\right) \leq k \cdot D$
- By doubling each edge in the connected components k Eulerian paths $p_{1}, p_{2}, \ldots, p_{k}$ can be created. They have total length $\sum l\left(p_{i}\right) \leq 2 \cdot \sum l\left(C_{i}\right) \leq 2 \cdot k \cdot D$.
- Each p_{i} can be cut into subpaths $p_{i 1}, p_{i 2}, \ldots, p_{i l_{i}}$, where $p_{i}=p_{i 1} * p_{i 2} * * * p_{i l_{i}}$ with length at most D and $l_{1}+l_{2}+\cdots+l_{k} \leq 3 \cdot k$, since $l_{i} \leq \frac{l\left(p_{i}\right)}{D}+1$

A 3-approximation algorithm for the unrooted DVRP [1], Intuitions

- The minimum cardinality (k) is guessed. This can be done, since possible results are $1,2, \ldots, n=|V|$ (polynomially bounded by the input), so exhaustive search can be applied.
- If $t_{1}, t_{2}, \ldots, t_{k}$ constitute a solution to DVRP, then these constitute k connected components of G. So, the minimum k connected components $C_{i}, i=1,2, \ldots, k$ have $\sum l\left(C_{i}\right) \leq \sum l\left(t_{i}\right) \leq k \cdot D$
- By doubling each edge in the connected components k Eulerian paths $p_{1}, p_{2}, \ldots, p_{k}$ can be created. They have total length $\sum l\left(p_{i}\right) \leq 2 \cdot \sum l\left(C_{i}\right) \leq 2 \cdot k \cdot D$
- Each p_{i} can be cut into subpaths $p_{i 1}, p_{i 2}, \ldots, p_{i l_{i}}$, where $p_{i}=p_{i 1} * p_{i 2} * * * p_{i l_{i}}$ with length at most D and $l_{1}+l_{2}+\cdots+l_{k} \leq 3 \cdot k$, since $l_{i} \leq \frac{l\left(p_{i}\right)}{D}+1$

A 3-approximation algorithm for the unrooted DVRP [1], Intuitions

- The minimum cardinality (k) is guessed. This can be done, since possible results are $1,2, \ldots, n=|V|$ (polynomially bounded by the input), so exhaustive search can be applied.
- If $t_{1}, t_{2}, \ldots, t_{k}$ constitute a solution to DVRP, then these constitute k connected components of G.
connected components $C_{i}, i=1,2, \ldots, k$ have $\sum l\left(C_{i}\right) \leq \sum l\left(t_{i}\right) \leq k \cdot D$
- By doubling each edge in the connected components k Eulerian paths $p_{1}, p_{2}, \ldots, p_{k}$ can be created. They have total length $\sum l\left(p_{i}\right) \leq 2 \cdot \sum l\left(C_{i}\right) \leq 2 \cdot k \cdot D$
- Each p_{i} can be cut into subpaths $p_{i 1}, p_{i 2}, \ldots, p_{i l_{i}}$, where $p_{i}=p_{i 1} * p_{i 2} * * * p_{i l_{i}}$ with length at most D and $l_{1}+l_{2}+\cdots+l_{k} \leq 3 \cdot k$, since $l_{i} \leq \frac{l\left(p_{i}\right)}{D}+1$

A 3-approximation algorithm for the unrooted DVRP [1], Intuitions

- The minimum cardinality (k) is guessed. This can be done, since possible results are $1,2, \ldots, n=|V|$ (polynomially bounded by the input), so exhaustive search can be applied.
- If $t_{1}, t_{2}, \ldots, t_{k}$ constitute a solution to DVRP, then these constitute k connected components of G. So, the minimum k connected components $C_{i}, i=1,2, \ldots, k$ have $\sum l\left(C_{i}\right) \leq \sum l\left(t_{i}\right) \leq k \cdot D$
- By doubling each edge in the connected components k Eulerian paths $p_{1}, p_{2}, \ldots, p_{k}$ can be created. They have total length $\sum l\left(p_{i}\right) \leq 2 \cdot \sum l\left(C_{i}\right) \leq 2 \cdot k \cdot D$.

A 3-approximation algorithm for the unrooted DVRP [1], Intuitions

- The minimum cardinality (k) is guessed. This can be done, since possible results are $1,2, \ldots, n=|V|$ (polynomially bounded by the input), so exhaustive search can be applied.
- If $t_{1}, t_{2}, \ldots, t_{k}$ constitute a solution to DVRP, then these constitute k connected components of G. So, the minimum k connected components $C_{i}, i=1,2, \ldots, k$ have $\sum l\left(C_{i}\right) \leq \sum l\left(t_{i}\right) \leq k \cdot D$
- By doubling each edge in the connected components k Eulerian paths $p_{1}, p_{2}, \ldots, p_{k}$ can be created.

A 3-approximation algorithm for the unrooted DVRP [1],

 Intuitions- The minimum cardinality (k) is guessed. This can be done, since possible results are $1,2, \ldots, n=|V|$ (polynomially bounded by the input), so exhaustive search can be applied.
- If $t_{1}, t_{2}, \ldots, t_{k}$ constitute a solution to DVRP, then these constitute k connected components of G. So, the minimum k connected components $C_{i}, i=1,2, \ldots, k$ have $\sum l\left(C_{i}\right) \leq \sum l\left(t_{i}\right) \leq k \cdot D$
- By doubling each edge in the connected components k Eulerian paths $p_{1}, p_{2}, \ldots, p_{k}$ can be created. They have total length $\sum l\left(p_{i}\right) \leq 2 \cdot \sum l\left(C_{i}\right) \leq 2 \cdot k \cdot D$.

A 3-approximation algorithm for the unrooted DVRP [1],

 Intuitions- The minimum cardinality (k) is guessed. This can be done, since possible results are $1,2, \ldots, n=|V|$ (polynomially bounded by the input), so exhaustive search can be applied.
- If $t_{1}, t_{2}, \ldots, t_{k}$ constitute a solution to DVRP, then these constitute k connected components of G. So, the minimum k connected components $C_{i}, i=1,2, \ldots, k$ have $\sum l\left(C_{i}\right) \leq \sum l\left(t_{i}\right) \leq k \cdot D$
- By doubling each edge in the connected components k Eulerian paths $p_{1}, p_{2}, \ldots, p_{k}$ can be created. They have total length $\sum l\left(p_{i}\right) \leq 2 \cdot \sum l\left(C_{i}\right) \leq 2 \cdot k \cdot D$.
- Each p_{i} can be cut into subpaths $p_{i 1}, p_{i 2}, \ldots, p_{i i_{i}}$, where $p_{i}=p_{i 1} * p_{i 2} * * * p_{i l_{i}}$ with length at most D and $l_{1}+l_{2}+\cdots+l_{k} \leq 3 \cdot k$, since $l_{i} \leq \frac{l\left(p_{i}\right)}{D}+1$

A 3-approximation algorithm for the unrooted DVRP [1],

 Sketch of the algorithmFor every possible minimum cardinality $(k=1,2, \ldots, n)$

1. Compute the k minimum connected components $C_{1}, C_{2}, \ldots, C_{k}$ (using the Kruskal's algorithm for minimum spanning tree)
2. For each component C_{i} double its edges and compute an eulerian path p_{i}
3. Cut each $p_{i}, i=1,2, \ldots, k$ into segments $p_{i 1}, p_{i 2}, \ldots p_{i l_{i}}$ that have length at most D with $p_{i}=p_{i 1} * p_{i 2} * \cdots p_{i l_{i}}$. Call $S_{i}^{k}=\left\{p_{i 1}, p_{i 2}, \ldots p_{i l_{i}}\right\}$
4. $S_{k}=\cup S_{i}^{k}$

Return the S_{k} with the minimum cardinality

Bicriteria approximation algorithm for DVRP [2]

Theorem: There is a $O\left(\log \frac{1}{\epsilon}, 1+\epsilon\right)$ bicriteria approximation algorithm for DVRP. (For $0<\epsilon<1$ if each tour is allowed to have length at most $(1+\epsilon) \cdot D$, then a set of tours containing V with cardinality at most $\log \frac{1}{\epsilon}$ times an optimal solution can be found.)

Bicriteria approximation algorithm for DVRP [2], Intuitions

- The set of vertices V, is partitioned into $1+\left\lceil\log \frac{1}{\epsilon}\right\rceil$ subsets $V_{0}, V_{1}, \ldots, V_{\left\lceil\log \frac{1}{\epsilon}\right\rceil}$ according to their distance from the depot. Specifically,
$V_{0}=\left\{v:(1-\epsilon) \frac{D}{2}<d(r, v) \leq \frac{D}{2}\right\}$ and
$V_{j}=\left\{v:\left(1-2^{j} \epsilon\right) \frac{D}{2}<d(r, v) \leq\left(1-2^{j-1} \epsilon\right) \frac{D}{2}\right\}, j=$ $1,2, \ldots,\left\lceil\log \frac{1}{\epsilon}\right\rceil$
- If there is a path $P\left(v_{1}, v_{2}, \ldots, v_{k}\right) \subseteq V_{j}$ with $l(P) \leq 2^{j-1} \in D$ then the tour $r * P * r=\left(r, v_{1}, v_{2}, \ldots, v_{k}, r\right)$ has length at most
- Let a tour $t=\left(r, u_{1}, u_{2}, \ldots, u_{k}, r\right)$ belonging to a solution of DVRP, then the restriction of t in $V_{j}, t_{V_{j}}=\left(u_{m_{1}}, u_{m_{2}}\right.$
$m_{1}<m_{2}<\cdots<m_{l}$ has length less than $2^{j} \cdot \epsilon \cdot D$. Furthermore, $t_{V_{j}}$ can be cut into two paths with length less than $2^{j-1} \cdot \epsilon \cdot D . S o$, there are at most $2 \cdot$ OPT paths covering V_{j} bounded by $2^{j-1} \cdot \epsilon \cdot D$
- For each $j=0.1 \ldots .\left\lceil\log \frac{1}{6}\right\rceil$, at most $6 \cdot$ OPT paths covering V_{j}
can be found, with length at most $2^{j-1} \cdot \epsilon \cdot D$, applying the
3 -approximation algorithm described. So, at most
$6 \cdot$ OPT

Bicriteria approximation algorithm for DVRP [2], Intuitions

- The set of vertices V, is partitioned into $1+\left\lceil\log \frac{1}{\epsilon}\right\rceil$ subsets $V_{0}, V_{1}, \ldots, V_{\left\lceil\log \frac{1}{\epsilon}\right\rceil}$ according to their distance from the depot. Specifically,
$V_{0}=\left\{v:(1-\epsilon) \frac{D}{2}<d(r, v) \leq \frac{D}{2}\right\}$ and
$V_{j}=\left\{v:\left(1-2^{j} \epsilon\right) \frac{D}{2}<d(r, v) \leq\left(1-2^{j-1} \epsilon\right) \frac{D}{2}\right\}, j=$ $1,2, \ldots,\left\lceil\log \frac{1}{\epsilon}\right\rceil$
- If there is a path $P\left(v_{1}, v_{2}, \ldots, v_{k}\right) \subseteq V_{j}$ with $l(P) \leq 2^{j-1} \epsilon D$ then the tour $r * P * r=\left(r, v_{1}, v_{2}, \ldots, v_{k}, r\right)$ has length at most $d\left(r, v_{1}\right)+l(P)+d\left(v_{k}, r\right) \leq(1+\epsilon) \cdot D$.
- Let a tour $t=\left(r, u_{1}, u_{2}, \ldots, u_{k}, r\right)$ belonging to a solution of DVRP.
then the restriction of t in $V_{j}, t_{V_{j}}=\left(u_{m_{1}}, u_{m_{2}}, \ldots, u_{m_{l}}\right) \subseteq V_{j}$,
$m_{1}<m_{2}<\cdots<m_{l}$ has length less than $2^{j} \cdot \epsilon \cdot D$. Furthermore,
t_{V}, can be cut into two paths with length less than $2^{j-1} \cdot \epsilon \cdot D$. So, there are at most $2 \cdot$ OPT paths covering V_{j} bounded by $2^{j-1} \cdot \epsilon \cdot D$
can be found, with length at most $2^{j-1} \cdot \epsilon \cdot D$, applying the
3 -approximation algorithm described. So, at most

Bicriteria approximation algorithm for DVRP [2], Intuitions

- The set of vertices V, is partitioned into $1+\left\lceil\log \frac{1}{\epsilon}\right\rceil$ subsets $V_{0}, V_{1}, \ldots, V_{\left\lceil\log \frac{1}{\epsilon}\right\rceil}$ according to their distance from the depot. Specifically,
$V_{0}=\left\{v:(1-\epsilon) \frac{D}{2}<d(r, v) \leq \frac{D}{2}\right\}$ and
$V_{j}=\left\{v:\left(1-2^{j} \epsilon\right) \frac{D}{2}<d(r, v) \leq\left(1-2^{j-1} \epsilon\right) \frac{D}{2}\right\}, j=$ $1,2, \ldots,\left\lceil\log \frac{1}{\epsilon}\right\rceil$
- If there is a path $P\left(v_{1}, v_{2}, \ldots, v_{k}\right) \subseteq V_{j}$ with $l(P) \leq 2^{j-1} \epsilon D$ then the tour $r * P * r=\left(r, v_{1}, v_{2}, \ldots, v_{k}, r\right)$ has length at most $d\left(r, v_{1}\right)+l(P)+d\left(v_{k}, r\right) \leq(1+\epsilon) \cdot D$.
- Let a tour $t=\left(r, u_{1}, u_{2}, \ldots, u_{k}, r\right)$ belonging to a solution of DVRP, then the restriction of t in $V_{j}, t_{V_{j}}=\left(u_{m_{1}}, u_{m_{2}}, \ldots, u_{m_{l}}\right) \subseteq V_{j}$, $m_{1}<m_{2}<\cdots<m_{l}$ has length less than $2^{j} \cdot \epsilon \cdot D$.
there are at most $2 \cdot$ OPT paths covering V_{j} bounded by $2^{j-1} \cdot \epsilon \cdot D$. can be found, with length at most $2^{j-1} \cdot \epsilon \cdot D$, applying the 3 -approximation algorithm described. So, at most

Bicriteria approximation algorithm for DVRP [2], Intuitions

- The set of vertices V, is partitioned into $1+\left\lceil\log \frac{1}{\epsilon}\right\rceil$ subsets $V_{0}, V_{1}, \ldots, V_{\left\lceil\log \frac{1}{\epsilon}\right\rceil}$ according to their distance from the depot. Specifically,
$V_{0}=\left\{v:(1-\epsilon) \frac{D}{2}<d(r, v) \leq \frac{D}{2}\right\}$ and
$V_{j}=\left\{v:\left(1-2^{j} \epsilon\right) \frac{D}{2}<d(r, v) \leq\left(1-2^{j-1} \epsilon\right) \frac{D}{2}\right\}, j=$ $1,2, \ldots,\left\lceil\log \frac{1}{\epsilon}\right\rceil$
- If there is a path $P\left(v_{1}, v_{2}, \ldots, v_{k}\right) \subseteq V_{j}$ with $l(P) \leq 2^{j-1} \epsilon D$ then the tour $r * P * r=\left(r, v_{1}, v_{2}, \ldots, v_{k}, r\right)$ has length at most $d\left(r, v_{1}\right)+l(P)+d\left(v_{k}, r\right) \leq(1+\epsilon) \cdot D$.
- Let a tour $t=\left(r, u_{1}, u_{2}, \ldots, u_{k}, r\right)$ belonging to a solution of DVRP, then the restriction of t in $V_{j}, t_{V_{j}}=\left(u_{m_{1}}, u_{m_{2}}, \ldots, u_{m_{l}}\right) \subseteq V_{j}$, $m_{1}<m_{2}<\cdots<m_{l}$ has length less than $2^{j} \cdot \epsilon \cdot D$. Furthermore, $t_{V_{j}}$ can be cut into two paths with length less than $2^{j-1} \cdot \epsilon \cdot D$.

Bicriteria approximation algorithm for DVRP [2], Intuitions

- The set of vertices V, is partitioned into $1+\left\lceil\log \frac{1}{\epsilon}\right\rceil$ subsets $V_{0}, V_{1}, \ldots, V_{\left\lceil\log \frac{1}{\epsilon}\right\rceil}$ according to their distance from the depot.
Specifically,
$V_{0}=\left\{v:(1-\epsilon) \frac{D}{2}<d(r, v) \leq \frac{D}{2}\right\}$ and
$V_{j}=\left\{v:\left(1-2^{j} \epsilon\right) \frac{D}{2}<d(r, v) \leq\left(1-2^{j-1} \epsilon\right) \frac{D}{2}\right\}, j=$ $1,2, \ldots,\left\lceil\log \frac{1}{\epsilon}\right\rceil$
- If there is a path $P\left(v_{1}, v_{2}, \ldots, v_{k}\right) \subseteq V_{j}$ with $l(P) \leq 2^{j-1} \epsilon D$ then the tour $r * P * r=\left(r, v_{1}, v_{2}, \ldots, v_{k}, r\right)$ has length at most $d\left(r, v_{1}\right)+l(P)+d\left(v_{k}, r\right) \leq(1+\epsilon) \cdot D$.
- Let a tour $t=\left(r, u_{1}, u_{2}, \ldots, u_{k}, r\right)$ belonging to a solution of DVRP, then the restriction of t in $V_{j}, t_{V_{j}}=\left(u_{m_{1}}, u_{m_{2}}, \ldots, u_{m_{l}}\right) \subseteq V_{j}$, $m_{1}<m_{2}<\cdots<m_{l}$ has length less than $2^{j} \cdot \epsilon \cdot D$. Furthermore, $t_{V_{j}}$ can be cut into two paths with length less than $2^{j-1} \cdot \epsilon \cdot D$. So, there are at most $2 \cdot$ OPT paths covering V_{j} bounded by $2^{j-1} \cdot \epsilon \cdot D$.
can be found, with length at most $2^{j-1} \cdot \epsilon \cdot D$, applying the 3 -approximation algorithm described. So, at most

Bicriteria approximation algorithm for DVRP [2], Intuitions

- The set of vertices V, is partitioned into $1+\left\lceil\log \frac{1}{\epsilon}\right\rceil$ subsets $V_{0}, V_{1}, \ldots, V_{\left\lceil\log \frac{1}{\epsilon}\right\rceil}$ according to their distance from the depot.
Specifically,
$V_{0}=\left\{v:(1-\epsilon) \frac{D}{2}<d(r, v) \leq \frac{D}{2}\right\}$ and
$V_{j}=\left\{v:\left(1-2^{j} \epsilon\right) \frac{D}{2}<d(r, v) \leq\left(1-2^{j-1} \epsilon\right) \frac{D}{2}\right\}, j=$ $1,2, \ldots,\left\lceil\log \frac{1}{\epsilon}\right\rceil$
- If there is a path $P\left(v_{1}, v_{2}, \ldots, v_{k}\right) \subseteq V_{j}$ with $l(P) \leq 2^{j-1} \epsilon D$ then the tour $r * P * r=\left(r, v_{1}, v_{2}, \ldots, v_{k}, r\right)$ has length at most $d\left(r, v_{1}\right)+l(P)+d\left(v_{k}, r\right) \leq(1+\epsilon) \cdot D$.
- Let a tour $t=\left(r, u_{1}, u_{2}, \ldots, u_{k}, r\right)$ belonging to a solution of DVRP, then the restriction of t in $V_{j}, t_{V_{j}}=\left(u_{m_{1}}, u_{m_{2}}, \ldots, u_{m_{l}}\right) \subseteq V_{j}$, $m_{1}<m_{2}<\cdots<m_{l}$ has length less than $2^{j} \cdot \epsilon \cdot D$. Furthermore, $t_{V_{j}}$ can be cut into two paths with length less than $2^{j-1} \cdot \epsilon \cdot D$. So, there are at most $2 \cdot$ OPT paths covering V_{j} bounded by $2^{j-1} \cdot \epsilon \cdot D$.
- For each $j=0,1, \ldots,\left\lceil\log \frac{1}{\epsilon}\right\rceil$, at most $6 \cdot$ OPT paths covering V_{j} can be found, with length at most $2^{j-1} \cdot \epsilon \cdot D$, applying the 3 -approximation algorithm described. So, at most $6 \cdot$ OPT $\cdot\left(1+\left\lceil\log \frac{1}{\epsilon}\right\rceil\right)$ tours bounded by $(1+\epsilon) \cdot D$ covering V are created.

Bicriteria approximation algorithm for DVRP [2], Sketch of the algorithm

1. Partition V in $V_{0}, V_{1}, \ldots, V_{\left\lceil\log \frac{1}{\epsilon}\right\rceil}$
2. For each V_{j} calculate a set of paths P_{j} in it, bounded by $2^{j-1} \cdot \epsilon \cdot D$ using the 3 -approximation algorithm described above
3. Take $P=\cup P_{j}$
4. Then the set of tours is $T=r * P * r=\{r * p * r \mid p \in P\}$

冨 E. M. Arkin, R. Hassin, and A. Levin.
Approximations for minimum and min-max vehicle routing problems.
Journal of Algorithms, 59(1):1-18, 2006.
围 V. Nagarajan and R. Ravi.
Approximation algorithms for distance constrained vehicle routing problems.
Networks, 59(2):209-214, 2012.

