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Topics covered in the presentation

I Definition and properties of Distance Constraint Vehicle
Routing Problem DVRP

I A 3−approximation algorithm for the unrooted DVRP by [1]

I Bicriteria approximation algorithm by [2]



Definition of DVRP

Input

I A complete graph G = (V,E)

I A metric distance d : E → R+

I A starting position (depot, root) r

I A bound on the allowed length of a tour D

Output

A set of tours starting from r, with length at most D with the
minimum cardinality (C), for which all vertices belong to at least
one tour.

Definition:Unrooted DVRP (or minimum path cover) is a DVRP
where the goal is to find the minimum cardinality set of paths (i.e.
start and end location of every route is not the same) covering all
vertices.
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Properties of DVRP

DVRP is NP-hard
Decision TSP (DTSP) can be reduced to the decision version of
DVRP, where there exists a tour covering V with length at most D
if and only if there exists a set of tours from r with length at most
D with cardinality at most 1.

It is hard to approximate DVRP within a factor of 2

If there is a polynomial a−approximation algorithm A for the
DVRP, a < 2, then the DTSP can be answered in polynomial time,
since there exists a tour covering V with length at most D if and
only if the output of A is at most a
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A 3−approximation algorithm for the unrooted DVRP [1],
Intuitions

I The minimum cardinality (k) is guessed. This can be done,
since possible results are 1, 2, . . . , n = |V |(polynomially
bounded by the input), so exhaustive search can be applied.

I If t1, t2, . . . , tk constitute a solution to DVRP, then these
constitute k connected components of G. So, the minimum k
connected components Ci, i = 1, 2, . . . , k have∑
l(Ci) ≤

∑
l(ti) ≤ k ·D

I By doubling each edge in the connected components k
Eulerian paths p1, p2, . . . , pk can be created. They have total
length

∑
l(pi) ≤ 2 ·

∑
l(Ci) ≤ 2 · k ·D.

I Each pi can be cut into subpaths pi1, pi2, . . . , pili , where
pi = pi1 ∗ pi2 ∗ ∗ ∗ pili with length at most D and

l1 + l2 + · · ·+ lk ≤ 3 · k, since li ≤ l(pi)
D + 1
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A 3−approximation algorithm for the unrooted DVRP [1],
Sketch of the algorithm

For every possible minimum cardinality (k = 1, 2, . . . , n)

1. Compute the k minimum connected components
C1, C2, . . . , Ck (using the Kruskal’s algorithm for minimum
spanning tree)

2. For each component Ci double its edges and compute an
eulerian path pi

3. Cut each pi, i = 1, 2, . . . , k into segments pi1, pi2, . . . pili that
have length at most D with pi = pi1 ∗ pi2 ∗ · · · pili . Call
Ski = {pi1, pi2, . . . pili}

4. Sk = ∪Ski
Return the Sk with the minimum cardinality



Bicriteria approximation algorithm for DVRP [2]

Theorem: There is a O(log 1
ε , 1 + ε) bicriteria approximation

algorithm for DVRP. (For 0 < ε < 1 if each tour is allowed to have
length at most (1 + ε) ·D, then a set of tours containing V with
cardinality at most log 1

ε times an optimal solution can be found.)



Bicriteria approximation algorithm for DVRP [2], Intuitions

I The set of vertices V , is partitioned into 1 +
⌈
log 1

ε

⌉
subsets

V0, V1, . . . , Vdlog 1
ε e according to their distance from the depot.

Specifically,
V0 = {v : (1− ε)D2 < d(r, v) ≤ D

2 } and

Vj = {v : (1− 2jε)D2 < d(r, v) ≤ (1− 2j−1ε)D2 }, j =
1, 2, . . . ,

⌈
log 1

ε

⌉
I If there is a path P (v1, v2, . . . , vk) ⊆ Vj with l(P ) ≤ 2j−1εD then

the tour r ∗ P ∗ r = (r, v1, v2, . . . , vk, r) has length at most
d(r, v1) + l(P ) + d(vk, r) ≤ (1 + ε) ·D.

I Let a tour t = (r, u1, u2, . . . , uk, r) belonging to a solution of DVRP,
then the restriction of t in Vj , tVj = (um1

, um2
, . . . , uml) ⊆ Vj ,

m1 < m2 < · · · < ml has length less than 2j · ε ·D. Furthermore,
tVj can be cut into two paths with length less than 2j−1 · ε ·D.So,
there are at most 2 ·OPT paths covering Vj bounded by 2j−1 · ε ·D.

I For each j = 0, 1, . . . ,
⌈
log 1

ε

⌉
, at most 6 ·OPT paths covering Vj

can be found, with length at most 2j−1 · ε ·D, applying the
3−approximation algorithm described. So, at most
6 ·OPT · (1 +

⌈
log 1

ε

⌉
) tours bounded by (1 + ε) ·D covering V are

created.
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Bicriteria approximation algorithm for DVRP [2], Sketch of
the algorithm

1. Partition V in V0, V1, . . . , Vdlog 1
ε e

2. For each Vj calculate a set of paths Pj in it, bounded by
2j−1 · ε ·D using the 3−approximation algorithm described
above

3. Take P = ∪Pj
4. Then the set of tours is T = r ∗ P ∗ r = {r ∗ p ∗ r|p ∈ P}



E. M. Arkin, R. Hassin, and A. Levin.
Approximations for minimum and min-max vehicle routing
problems.
Journal of Algorithms, 59(1):1 – 18, 2006.

V. Nagarajan and R. Ravi.
Approximation algorithms for distance constrained vehicle
routing problems.
Networks, 59(2):209–214, 2012.


