
Finding a path of length k in O∗(2k) time

Spyridon Maniatis-MPLA

June 28, 2013

1 Introduction

Let G be a simple graph and k a natural number. The k-path problem is to
determine if G has a k-path of length at least k and to produce one (if the
answer is yes). When k is given as part of the input, the problem is known to
be NP-complete. The obvious solution of enumerating all possible k-paths in a
graph with n nodes needs Θ(nk) time therefore is polynomial only for k = O(1)
(a constant). Some work done on the problem:

• The first algorithm to reduce the dependency on k was given by Monien[1985]:
Deterministic O∗(k!) (O∗ supresses poly(n,k) factors) which is polynomial
for k ≤ (logn/loglogn).

• Alon, Yuster, Zwick [1995]: Randomized O∗((2e)k) ≤ O∗(5.44k) and de-
terministic O∗(ck), where c is a large constant. So they answered the
important question of if there is a polynomial algorithm for the O(logn)-
path problem.

• It is known for many years that when k = n the problem is solvable in
O∗(2k) time (Bellman[1962], Held and Karp[1962], Karp[1982]), so the
natural question is if there is an algorithm that can match this runtime
for all values of k.

Some faster algorithms have recently appeared in the literature:

• In 2006 two groups discovered independently O∗(4k) randomized and
O∗(ck) deterministic algorithms (Kneis, Molle, Richter, Rossmanith with
c = 16 and Chen, Lu, Sze, Zhang with c = 12.5)

• Koutis[2008]: Randomized O∗(23k/2) ≤ O∗(2.83k) time (Some of his ideas
will be used to give a randomized O∗(2k) time algorithm for the k-path
problem).

The best known algorithms for finding a Hamilton path in a n-node graph
run in O∗(2k) time, therefore any significant improvement in the runtime depen-
dence on k given by the algorithm we will present would imply a faster Hamilton
path algorithm and would be a breakthrough in algorithms for NP-hard prob-
lems (that’s why it is a rather difficult, if not impossible, task).

1

2 Some preliminaries

Let F be a field and G a multiplicative group. We define the group algebra
F[G]:

• elements :
∑
g∈G

agg where ag ∈ F for every g ∈ G.

• Addition in F[G]: (
∑
g∈G

agg) + (
∑
g∈G

bgg) =
∑
g∈G

(ag + bg)g.

• Multiplication in F[G]: (
∑
g∈G

agg) · (
∑
h∈G

bhh) =
∑

g,h∈G
agbhg.

• F[G] is a ring with zero the element 0 =
∑
g∈G

agg where ag = OF for every

g ∈ G and one the 1 ∈ G.

As we will see later, we will work with the group algebra GF (2l)[Z2
k] where

Z2
k is the group of binary k-vectors with operation the addition modulo 2 and

GF (2l) is the unique field on 2l elements. We use W0 to denote the all-zeros
vector of Z2

k. Note that every v ∈ Z2
k is its own inverse as v2 = W0.

3 The algorithm

Fix a simple graph G with vertex set {1, . . . , n}. Let F be a field, A the adjency
matrix of G, x1, . . . xn variables, B[i, j] = A[i, j]xi, ~1 the row n-vector af all 1’s
and ~x the column vector defined by ~x[i] = xi. Define the k-walk polynomial to
be Pk(x1, . . . , xn) = ~1 ·Bk−1 · ~x.

Proposition 3.1. Pk(x1, · · · , xn) =
∑

i1,··· ,ik is a walk in G

xi1 , · · ·xik

There is a k-path in G iff Pk(x1, · · · , xk) contains a multilinear term. We
give a randomized algorithm R with the following property:

• If Pk has a multilinear term, then Pr[R outputs yes] ≥ 1/5.

• If Pk does not have a multilinear term then R outputs no.

Theorem 3.1. Let P (x1, . . . , xn) be a polynomial of degree at most k, repre-
sented by an arithmetic circuit of size s(n) with + gates (of unbounded fan-in),
× gates (of fan-in two) and no scalar multiplication. There is a randomized
algorithm that on every P runs in O∗(2ks(n)) and answers yes with high prob-
ability if there is a multilinear term in the sum-product expansion of P and no
if there is not one.

Observation 3.1. Pk can be implemented with a crcuit of size O(k(m + n))
where m = |E(G)| and this way we can obtain our k-path algorithm.

2

Here is our basic idea: Substitute random group elements for the variables
such that all non-multilinear terms in P evaluate zero and some multilinear terms
survive. We augment the scalar free multiplication circuit with random scalar
multiplications over a field large enough that the remaining multilinear poly-
nomial evaluates to nonzero with decent probability. We set F = GF (28+logk)
(the unique field with k + 8 elements).

We are now ready to describe the algorithm: Pick n uniform random vec-
tors v1, . . . , vn from Z2

k. For each multiplication gate gi in the circuit for P, pick
a uniform random wi ∈ F − {0}. Insert a new gate that multiplies the output
of gi with wi and provides the output to those gates that read the output og gi.
Let P

′
be the new polynomial represented by the arithmetic circuit. Output

yes iff P
′
(W0 + v1, . . . ,W0 + vn) 6= 0.

Runtime: The only non-trivial step is the evaluation of the polynomial that
we get at the end. By definition the evaluation of P

′
(W0 + v1, . . . ,W0 + vn)

takes O(s(n)) arithmetic operations but we have to account the cost of arith-
metic in the group algebra F [Z2

k]. The elements of F [Z2
k] can be naturally

interpreted as vectors in F 2k . Addition can be done in O(2klog|F |) time (with
a component-wise sum) and ultiplication of vectors u and v over the group al-
gebra in O(k2klog2|F |) tine by a Fast Fourier Transformation style algorithm.

Correctness: We first look at a crucial observation of Koutis.

Observation 3.2. For any vi ∈ Zk
2 , (W0 + vi)

2
= W0

2 + 2vi + vi
2 = W0 + 0 +

W0 mod 2. Therefore all squares in P vanish in P
′
(W0 + v1, . . . ,W0 + vn) since

F has characteristic 2. So if P (x1, . . . xn) does not have a multilinear term, then
P
′
(W0 + v1, . . . ,W0 + vn) = 0 over F [Z2

k] regardless of the choices of vi.

We prove that the if sum-product expansion of P (x1, . . . xn) has a multilinear
term, then P

′
(W0 + v1, . . . ,W0 + vn) 6= 0 with probability at least 1/5, over the

random choices of wi’s and vi’s. We may assume that every multilinear term in
the sum-product expansion of P has the form c ·xi1 , . . . xi

k
′ , where k′≥k and c ∈

Z. For each one of them thereis a collection of corresponding multilinear terms

in P
′

of the form: w1 . . . wk′−1 ·
∏k

′

j=1(W0 + vi), where w1, . . . wk′−1 distinct for
every term, as the sequence of multiplication gates g1, . . . , gk′−1 are distinct.

Proposition 3.2 (Koutis). If v1, . . . , vi ∈ Z2
k are linearly depended over GF(2),

then
∏k

′

j=1(W0 + vi) = 0 in F [Z2
k].

When v1, . . . , vi are linearly independed,
∏k

′

j=1(W0 + vi) is the sum over all
vectors in the span of v1, . . . , vi since each vector in the span is of the form∏

j∈S vj for some S ⊆ [i] and there is a unique way to generate it. This ob-

servation, the last proposition state and the fact that any k
′ ≥ k vectors are

linearly depended gives us that P
′
(W0 + v1, . . . ,W0 + vn) evaluates to either 0

or c
∑

v∈Z2
k v for some c ∈ F . We are ready for our final argument: If P has a

3

multilinear term, then c 6= 0 with probability at least 1/5.

The vectors vl1 , . . . , vlk chosen for the variables in a multilinear term of P
are linearly independed with probability at least 1/4 , because (Blum, Kan-
nan[1995]) a random k × k matrix over GF(2) has full rank with probability
at leat 0.28 ≥ 1/4. Thus, in P

′
(W0 + v1, . . . ,W0 + vn) there is at least one

multilinear term in P corresponding to a set of k linearly independed vectors,
with probabolity a least 1/4.

Each coefficient ci comes from a sum of products ok k-1 elements with
wi,1, , wi,k−1 corresponding to some multiplication gates gi,1, , gi,k−1 in the cir-
cuit. If we see wi’s as variables, Q(w1, . . . , ws(n)) =

∑
i ci is a degree-k poly-

nomial over F. Then Q is not identically 0 and by Schwartz-Zippel Lemma we
get that the algorithm’s random assignment to the variables of Q results in an
evaluation 0 ∈ F with probability at most k/|F | = 1/23. And so Pr[

∑
i ci =

0] ≤ 1/23. The overakk probability of success is at least 1/4 · (1− 1/23) ≥ 1/5.

Constructing a path: For an arbitrary node vi, we remove vi from the
graph and run the k-apth detection algorithm for O(logn) trials, using new ran-
dom bits for each trial. If the algorithm outputs yes in some trial, we recursivelt
call it on tge graoh with vi removed, returning the k-path that it returns. Oth-
erwise, we add vi back to the graph and move to the next candidate node vi+1,
noting that such a move occurs at most k times (with high probability). We
can bound the runtime with the reccurence: T (n) ≤ O∗(2k · klogn) + T (n− 1)
which is O∗(2k). the overall probability error can be bounded by a constant less
than 1, since the probability that all O(logn) trials result in error is inversely
polynomial in n.

4 Conclusion

Two interesting open questions conjectured to have positive answers:

1. Let G be a graph with costs on its edges. The SHORT CHEAP TOUR
problem is to find a path of length at least k where the total sum of costs on
the edges is minimized. This problem is fixed-parameter tractable, in fact:
SHORT CHEAP TOUR can be solved in O∗(4k) time by a randomized
algorithm that succeeds with high probability.
Can SHORT CHEAP TOUR be solved in O∗(2k) time?

2. Is there a deterministic algorithm for k-path with the same runtime com-
plexity as our algorithm? A polytime derandomization of this algorithm
(which relies on the fact that polynomial identity testing is in RP) would
imply strong circuit lower bounds (Impagliazzo and Kabanets[2004]) that
is why Koutis algorithm may be easier to derandomize.

4

