Finding a path of length k in O*(2¥) time

Spyridon Maniatis-MPLA
June 28, 2013

1 Introduction

Let G be a simple graph and k a natural number. The k-path problem is to
determine if G has a k-path of length at least k and to produce one (if the
answer is yes). When k is given as part of the input, the problem is known to
be NP-complete. The obvious solution of enumerating all possible k-paths in a
graph with n nodes needs ©(n*) time therefore is polynomial only for k = O(1)
(a constant). Some work done on the problem:

e The first algorithm to reduce the dependency on k was given by Monien[1985]:
Deterministic O*(k!) (O* supresses poly(n,k) factors) which is polynomial
for k < (logn/loglogn).

e Alon, Yuster, Zwick [1995]: Randomized O*((2¢)*) < O*(5.44%) and de-
terministic O*(c*), where c is a large constant. So they answered the
important question of if there is a polynomial algorithm for the O(logn)-
path problem.

e It is known for many years that when k = n the problem is solvable in
O*(2%) time (Bellman[1962], Held and Karp[1962], Karp[1982]), so the
natural question is if there is an algorithm that can match this runtime
for all values of k.

Some faster algorithms have recently appeared in the literature:

e In 2006 two groups discovered independently O*(4F) randomized and
O*(c¥) deterministic algorithms (Kneis, Molle, Richter, Rossmanith with
¢ = 16 and Chen, Lu, Sze, Zhang with ¢ = 12.5)

e Koutis[2008]: Randomized O*(23%/2) < 0*(2.83%) time (Some of his ideas
will be used to give a randomized O*(2¥) time algorithm for the k-path
problem).

The best known algorithms for finding a Hamilton path in a n-node graph
run in O*(2F) time, therefore any significant improvement in the runtime depen-
dence on k given by the algorithm we will present would imply a faster Hamilton
path algorithm and would be a breakthrough in algorithms for NP-hard prob-
lems (that’s why it is a rather difficult, if not impossible, task).

2 Some preliminaries

Let F be a field and G a multiplicative group. We define the group algebra
F[G]:

elements : Y agyg where a4 € F for every g € G.
geG

Addition in FIGJ: (3 agg) + (X byg) = 3 (ay +b,)g.
geG geG geqG

Multiplication in F[G]: (Y> agg) - (Y. bah) = > agbng.
9€G hea g,hea

e F[G] is a ring with zero the element 0 = > a,g where a, = O for every
geG
g € G and one the 1 € G.

As we will see later, we will work with the group algebra GF(2!)[Z3"] where
Z5" is the group of binary k-vectors with operation the addition modulo 2 and
GF(2') is the unique field on 2! elements. We use Wy to denote the all-zeros
vector of ng. Note that every v € ng is its own inverse as v? = W.

3 The algorithm

Fix a simple graph G with vertex set {1,...,n}. Let F be a field, A the adjency
matrix of G, 1, ..., variables, Bli, j] = Ali, jlx;, T the row n-vector af all 1’s
and & the column vector defined by Z[i] = x;. Define the k-walk polynomial to
be Py(z1,...,2,) = 1.B1.3

Proposition 3.1. Py(zy1, -+ ,2,) = > Tiyy o Tiy
i1, 4tk 1S a walk in G
There is a k-path in G iff Py(xq,---,2) contains a multilinear term. We

give a randomized algorithm R with the following property:

e If P, has a multilinear term, then Pr[R outputs yes] > 1/5.

e If P, does not have a multilinear term then R outputs no.

Theorem 3.1. Let P(xq,...,x,) be a polynomial of degree at most k, repre-
sented by an arithmetic circuit of size s(n) with + gates (of unbounded fan-in),
X gates (of fan-in two) and no scalar multiplication. There is a randomized
algorithm that on every P runs in O*(2¥s(n)) and answers yes with high prob-
ability if there is a multilinear term in the sum-product expansion of P and no
if there is not one.

Observation 3.1. Py can be implemented with a crcuit of size O(k(m + n))
where m = |E(G)| and this way we can obtain our k-path algorithm.

Here is our basic idea: Substitute random group elements for the variables
such that all non-multilinear terms in P evaluate zero and some multilinear terms
survive. We augment the scalar free multiplication circuit with random scalar
multiplications over a field large enough that the remaining multilinear poly-
nomial evaluates to nonzero with decent probability. We set F' = GF(28+!o9k)
(the unique field with k& + 8 elements).

We are now ready to describe the algorithm: Pick n uniform random vec-
tors vy, ..., v, from sz. For each multiplication gate g; in the circuit for P, pick
a uniform random w; € F — {0}. Insert a new gate that multiplies the output
of g; with w; and provides the output to those gates that read the output og g;.
Let P' be the new polynomial represented by the arithmetic circuit. Output
yes iff P/(WO +v1,...,Wo+vy) #0.

Runtime: The only non-trivial step is the evaluation of the polynomial that
we get at the end. By definition the evaluation of P'(WO +o1,..., Wy + vp)
takes O(s(n)) arithmetic operations but we have to account the cost of arith-
metic in the group algebra F[Zy"]. The elements of F[Zy"] can be naturally
interpreted as vectors in F2". Addition can be done in O(2Flog|F|) time (with
a component-wise sum) and ultiplication of vectors u and v over the group al-
gebra in O(k2Flog?|F|) tine by a Fast Fourier Transformation style algorithm.

Correctness: We first look at a crucial observation of Koutis.

Observation 3.2. For any v; € Z’2", (Wo + vi)Q = Wo? + 20, + v;2 = Wy + 0+
Wo mod 2. Therefore all squares in P vanish in P/(WO +v1,..., Wo+vy,) since
F has characteristic 2. So if P(x1,...xy,) does not have a multilinear term, then
P/(VVO +v1,...,Wo+v,) =0 over F[ng} regardless of the choices of v;.

We prove that the if sum-product expansion of P(z1,...x,) has a multilinear
term, then P/(WO +v1,..., Wo+wv,) # 0 with probability at least 1/5, over the
random choices of w;’s and v;’s. We may assume that every multilinear term in
the sum-product expansion of P has the form c-z;,, . .. Ti where k/>j and ¢ €
Z. For each one of them thereis a collection of corresponding multilinear terms

in P’ of the form: wj .. LWy ~H§:1(WO + v;), where wy, ... w, _, distinct for
every term, as the sequence of multiplication gates g1,...,g,/—1 are distinct.

Proposition 3.2 (Koutis). Ifvy,...,v; € Zs* are linearly depended over GF(2),
then H?:l(WO + ;) = 0 in F[Zy"].

When vy, ...,v; are linearly independed, H?Zl(Wo + v;) is the sum over all
vectors in the span of vy,...,v; since each vector in the span is of the form
[Ijcsv; for some S C [i] and there is a unique way to generate it. This ob-

servation, the last proposition state and the fact that any k' > k vectors are
linearly depended gives us that P (Wy + v1,..., Wy + v,,) evaluates to either 0
or szezzk v for some ¢ € F. We are ready for our final argument: If P has a

multilinear term, then ¢ # 0 with probability at least 1/5.

The vectors vy, ..., v, chosen for the variables in a multilinear term of P
are linearly independed with probability at least 1/4 , because (Blum, Kan-
nan[1995]) a random k x k matrix over GF(2) has full rank with probability
at leat 0.28 > 1/4. Thus, in P/(Wo +v1,...,Wy + v,) there is at least one
multilinear term in P corresponding to a set of k linearly independed vectors,
with probabolity a least 1/4.

Each coefficient ¢; comes from a sum of products ok k-1 elements with
Wi, 1,,W; k—1 corresponding to some multiplication gates g; 1,,gix—1 in the cir-
cuit. If we see w;’s as variables, Q(wy, ... ,ws(n)) = >, ¢ is a degree-k poly-
nomial over F. Then Q is not identically 0 and by Schwartz-Zippel Lemma we
get that the algorithm’s random assignment to the variables of Q results in an
evaluation 0 € F with probability at most k/|F| = 1/23. And so Pr[>_,¢; =
0] < 1/23. The overakk probability of success is at least 1/4 - (1 —1/23) > 1/5.

Constructing a path: For an arbitrary node v;, we remove v; from the
graph and run the k-apth detection algorithm for O(logn) trials, using new ran-
dom bits for each trial. If the algorithm outputs yes in some trial, we recursivelt
call it on tge graoh with v; removed, returning the k-path that it returns. Oth-
erwise, we add v; back to the graph and move to the next candidate node v;41,
noting that such a move occurs at most k times (with high probability). We
can bound the runtime with the reccurence: T'(n) < O*(2* - klogn) + T'(n — 1)
which is O*(2*). the overall probability error can be bounded by a constant less
than 1, since the probability that all O(logn) trials result in error is inversely
polynomial in n.

4 Conclusion
Two interesting open questions conjectured to have positive answers:

1. Let G be a graph with costs on its edges. The SHORT CHEAP TOUR
problem is to find a path of length at least k where the total sum of costs on
the edges is minimized. This problem is fixed-parameter tractable, in fact:
SHORT CHEAP TOUR can be solved in O*(4%) time by a randomized
algorithm that succeeds with high probability.

Can SHORT CHEAP TOUR be solved in O*(2¥) time?

2. Is there a deterministic algorithm for k-path with the same runtime com-
plexity as our algorithm? A polytime derandomization of this algorithm
(which relies on the fact that polynomial identity testing is in RP) would
imply strong circuit lower bounds (Impagliazzo and Kabanets[2004]) that
is why Koutis algorithm may be easier to derandomize.

