Shortest Vector Problem

Marios Georgiou

National Technical University of Athens

May 24, 2011

Contents

Title

Definitions

Useful Definitions
The Problem
Algorithms
Main Idea-Algorithms for 1,2-dimensions
Preparation for the LLL Algorithm
The Algorithm
The dual Lattice
Some definitions
Gram-Schmidt lower bound property
Attacking cryptosystems
A Lattice attack on RSA
End

Lattice

Lattice

Definition

A Lattice \mathcal{L} in \Re^{n} is a discrete subgroup of \Re^{n} which spans the real vector space \Re^{n}.

$$
\mathcal{L}=\left\{\sum_{i=1}^{n} \lambda_{i} \mathbf{a}_{\mathbf{i}} \mid \lambda_{i} \in \mathbb{Z}\right\}
$$

Lattice

Definition

A Lattice \mathcal{L} in \Re^{n} is a discrete subgroup of \Re^{n} which spans the real vector space \Re^{n}.

$$
\mathcal{L}=\left\{\sum_{i=1}^{n} \lambda_{i} \mathbf{a}_{\mathbf{i}} \mid \lambda_{i} \in \mathbb{Z}\right\}
$$

$\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{\mathbf{n}}$ is a basis of the lattice

Lattice

Definition

A Lattice \mathcal{L} in \Re^{n} is a discrete subgroup of \Re^{n} which spans the real vector space \Re^{n}.

$$
\mathcal{L}=\left\{\sum_{i=1}^{n} \lambda_{i} \mathbf{a}_{\mathbf{i}} \mid \lambda_{i} \in \mathbb{Z}\right\}
$$

$a_{1}, a_{2}, \cdots, a_{n}$ is a basis of the lattice

Figure: A Lattice in \Re^{2}

More useful things

More useful things

Theorem

Let \mathcal{L} be a n-dimensional lattice and

- A be the $n \times n$ matrix whose rows are the basis $\mathbf{a}_{\mathbf{1}}, \cdots, \mathbf{a}_{\mathbf{n}}$.
- \mathbf{B} be the $n \times n$ matrix whose rows $\mathbf{b}_{\mathbf{1}}, \cdots, \mathbf{b}_{\mathbf{n}} \in \mathcal{L}$.

The following conditions are equivalent:

More useful things

Theorem

Let \mathcal{L} be a n-dimensional lattice and

- A be the $n \times n$ matrix whose rows are the basis $\mathbf{a}_{\mathbf{1}}, \cdots, \mathbf{a}_{\mathbf{n}}$.
- \mathbf{B} be the $n \times n$ matrix whose rows $\mathbf{b}_{\mathbf{1}}, \cdots, \mathbf{b}_{\mathbf{n}} \in \mathcal{L}$.

The following conditions are equivalent:

1. $\mathbf{b}_{\mathbf{1}}, \cdots, \mathbf{b}_{\mathbf{n}}$ form a basis for \mathcal{L}.
2. $|\operatorname{det}(\mathbf{A})|=|\operatorname{det}(\mathbf{B})|$.
3. there is an $n \times n$ matrix \mathbf{U} such that $\mathbf{B}=\mathbf{U} \mathbf{A}$ and $|\operatorname{det}(\mathbf{U})|=1$.

More useful things

Theorem

Let \mathcal{L} be a n-dimensional lattice and

- A be the $n \times n$ matrix whose rows are the basis $\mathbf{a}_{1}, \cdots, \mathbf{a}_{\mathbf{n}}$.
- \mathbf{B} be the $n \times n$ matrix whose rows $\mathbf{b}_{\mathbf{1}}, \cdots, \mathbf{b}_{\mathbf{n}} \in \mathcal{L}$.

The following conditions are equivalent:

1. $\mathbf{b}_{1}, \cdots, \mathbf{b}_{\mathbf{n}}$ form a basis for \mathcal{L}.
2. $|\operatorname{det}(\mathbf{A})|=|\operatorname{det}(\mathbf{B})|$.
3. there is an $n \times n$ matrix \mathbf{U} such that $\mathbf{B}=\mathbf{U} \mathbf{A}$ and $|\operatorname{det}(\mathbf{U})|=1$.

So the determinant of all the bases of \mathcal{L} is invariable. $\operatorname{det}(\mathbf{A})=\operatorname{det} \mathcal{L}$

More useful things

Definition

The Eucledian norm of a vector \mathbf{x} is $\|\mathbf{x}\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$ where $x_{1}, x_{2}, \cdots, x_{n}$ are the coefficients in an orthonormal system.

More useful things

Definition

The Eucledian norm of a vector \mathbf{x} is $\|\mathbf{x}\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$ where $x_{1}, x_{2}, \cdots, x_{n}$ are the coefficients in an orthonormal system.

Definition

Hadamard's inequality states that $\operatorname{det} \mathcal{L} \leq\left\|\mathbf{a}_{\mathbf{1}}\right\| \cdots\left\|\mathbf{a}_{\mathbf{n}}\right\|$

More useful things

Definition

The Eucledian norm of a vector \mathbf{x} is $\|\mathbf{x}\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$ where $x_{1}, x_{2}, \cdots, x_{n}$ are the coefficients in an orthonormal system.

Definition

Hadamard's inequality states that $\operatorname{det} \mathcal{L} \leq\left\|\mathbf{a}_{\mathbf{1}}\right\| \cdots\left\|\mathbf{a}_{\mathbf{n}}\right\|$

Definition

Orthogonality defect of the basis $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \cdots, \mathbf{a}_{\mathbf{n}}$

$$
\frac{\left\|\mathbf{a}_{\mathbf{1}}\right\| \cdots\left\|\mathbf{a}_{\mathbf{n}}\right\|}{\operatorname{det} \mathcal{L}}
$$

Primitivity

Definition

The linearly independent vectors $\mathbf{b}_{\mathbf{1}}, \cdots, \mathbf{b}_{\mathbf{k}} \in \mathcal{L}$ are primitive if they can be extended to a basis of \mathcal{L}.

Primitivity

Definition

The linearly independent vectors $\mathbf{b}_{\mathbf{1}}, \cdots, \mathbf{b}_{\mathbf{k}} \in \mathcal{L}$ are primitive if they can be extended to a basis of \mathcal{L}.

Definition

A vector $\mathbf{a} \in \mathcal{L}$ is shortest in its direction if $x \mathbf{a}$ is not in \mathcal{L} for $0<x<1$.

Primitivity

Definition

The linearly independent vectors $\mathbf{b}_{\mathbf{1}}, \cdots, \mathbf{b}_{\mathbf{k}} \in \mathcal{L}$ are primitive if they can be extended to a basis of \mathcal{L}.

Definition

A vector $\mathbf{a} \in \mathcal{L}$ is shortest in its direction if $x \mathbf{a}$ is not in \mathcal{L} for $0<x<1$.

Theorem

Vector $\mathbf{a} \in \mathcal{L}$ is primitive iff \mathbf{a} is shortest in its direction.

Contents

Title

Definitions

Useful Definitions

The Problem

Algorithms
Main Idea-Algorithms for 1,2-dimensions
Preparation for the LLL Algorithm
The Algorithm
The dual Lattice
Some definitions
Gram-Schmidt lower bound property
Attacking cryptosystems
A Lattice attack on RSA
End

Shortest vector problem

Definition

Given a lattice \mathcal{L}, find the shortest vector, in Eucledian norm, in \mathcal{L}.

Shortest vector problem

Definition

Given a lattice \mathcal{L}, find the shortest vector, in Eucledian norm, in \mathcal{L}.

Shortest vector problem

Definition

Given a lattice \mathcal{L}, find the shortest vector, in Eucledian norm, in \mathcal{L}.

The shortest of the basis is not always the shortest vector.

Contents

```
Title
Definitions
    Useful Definitions
    The Problem
```

Algorithms
Main Idea-Algorithms for 1,2-dimensions
Preparation for the LLL Algorithm
The Algorithm
The dual Lattice
Some definitions
Gram-Schmidt lower bound property
Attacking cryptosystems
A Lattice attack on RSA
End

The main idea

A good strategy:

The main idea

A good strategy:

1. Change the basis of the lattice (in some way) to a good one (short vectors nearly orthogonal).

The main idea

A good strategy:

1. Change the basis of the lattice (in some way) to a good one (short vectors nearly orthogonal).
2. Take the shortest vector of the basis.

The main idea

A good strategy:

1. Change the basis of the lattice (in some way) to a good one (short vectors nearly orthogonal).
2. Take the shortest vector of the basis.

We must prove that this vector is the shortest, or the shortest within some factor.

The main idea

A good strategy:

1. Change the basis of the lattice (in some way) to a good one (short vectors nearly orthogonal).
2. Take the shortest vector of the basis.

We must prove that this vector is the shortest, or the shortest within some factor.
Step 1 is called Lattice (Basis) Reduction

The main idea

A good strategy:

1. Change the basis of the lattice (in some way) to a good one (short vectors nearly orthogonal).
2. Take the shortest vector of the basis.

We must prove that this vector is the shortest, or the shortest within some factor.
Step 1 is called Lattice (Basis) Reduction

Algorithm for the 1-dimensional Lattices Euclid's Algorithm

- Consider an 1-d lattice with basis $a \in \Re$.

Algorithm for the 1-dimensional Lattices Euclid's Algorithm

- Consider an 1-d lattice with basis $a \in \Re$. Then the shortest vector is simply a.

Algorithm for the 1-dimensional Lattices Euclid's Algorithm

- Consider an 1-d lattice with basis $a \in \Re$. Then the shortest vector is simply a.
- Consider an 1-d lattice with basis $a, b \in \Re$.

Algorithm for the 1-dimensional Lattices Euclid's Algorithm

- Consider an 1-d lattice with basis $a \in \Re$. Then the shortest vector is simply a.
- Consider an 1-d lattice with basis $a, b \in \Re$. Then the shortest vector is the smallest number expressed as an integer l.c. of a, b :

Algorithm for the 1-dimensional Lattices Euclid's Algorithm

- Consider an 1-d lattice with basis $a \in \Re$. Then the shortest vector is simply a.
- Consider an 1-d lattice with basis $a, b \in \Re$. Then the shortest vector is the smallest number expressed as an integer l.c. of $a, b: \operatorname{gcd}(a, b)$.

Algorithm for the 1-dimensional Lattices Euclid's Algorithm

- Consider an 1-d lattice with basis $a \in \Re$. Then the shortest vector is simply a.
- Consider an 1-d lattice with basis $a, b \in \Re$.

Then the shortest vector is the smallest number expressed as an integer I.c. of $a, b: \operatorname{gcd}(a, b)$.
Euclid's algorithm: $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a-m b)$ where m is the integer closest to a / b.

Algorithm for the 2-dimensional Lattices Gauss reduced basis

Algorithm for the 2-dimensional Lattices Gauss reduced basis

How orthogonal our basis vectors have to be?

Algorithm for the 2-dimensional Lattices

 Gauss reduced basisHow orthogonal our basis vectors have to be?

Theorem

Suppose $\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}$ is a basis for a $2-d \mathcal{L}$ and $\left\|\mathbf{b}_{\mathbf{1}}\right\| \leq\left\|\mathbf{b}_{\mathbf{2}}\right\|$. Suppose $\theta \in\left(0^{\circ}, 180^{\circ}\right)$ the angle between the two vectors. If $60^{\circ} \leq \theta \leq 120^{\circ}$ then $\mathbf{b}_{\mathbf{1}}$ is the shortest vector in \mathcal{L}.

Algorithm for the 2-dimensional Lattices Gauss reduced basis

How orthogonal our basis vectors have to be?

Theorem

Suppose $\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}$ is a basis for a $2-d \mathcal{L}$ and $\left\|\mathbf{b}_{\mathbf{1}}\right\| \leq\left\|\mathbf{b}_{\mathbf{2}}\right\|$. Suppose $\theta \in\left(0^{\circ}, 180^{\circ}\right)$ the angle between the two vectors. If $60^{\circ} \leq \theta \leq 120^{\circ}$ then \mathbf{b}_{1} is the shortest vector in \mathcal{L}.

Let $\mu_{21} \mathbf{b}_{\mathbf{1}}$ denote the projection of the vector $\mathbf{b}_{\mathbf{2}}$ in the direction of the vector \mathbf{b}_{1} :

Algorithm for the 2-dimensional Lattices Gauss reduced basis

How orthogonal our basis vectors have to be?

Theorem

Suppose $\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}$ is a basis for a $2-d \mathcal{L}$ and $\left\|\mathbf{b}_{\mathbf{1}}\right\| \leq\left\|\mathbf{b}_{\mathbf{2}}\right\|$. Suppose $\theta \in\left(0^{\circ}, 180^{\circ}\right)$ the angle between the two vectors. If $60^{\circ} \leq \theta \leq 120^{\circ}$ then \mathbf{b}_{1} is the shortest vector in \mathcal{L}.

Let $\mu_{21} \mathbf{b}_{1}$ denote the projection of the vector \mathbf{b}_{2} in the direction of the vector \mathbf{b}_{1} :

$$
\mu_{21}=\frac{\left\|\mathbf{b}_{\mathbf{2}}\right\| \cdot\left\|\mathbf{b}_{\mathbf{1}}\right\|}{\left\|\mathbf{b}_{\mathbf{1}}\right\|^{2}}
$$

Algorithm for the 2-dimensional Lattices

Gauss reduced basis

How orthogonal our basis vectors have to be?

Theorem

Suppose $\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}$ is a basis for a 2-d \mathcal{L} and $\left\|\mathbf{b}_{\mathbf{1}}\right\| \leq\left\|\mathbf{b}_{\mathbf{2}}\right\|$. Suppose $\theta \in\left(0^{\circ}, 180^{\circ}\right)$ the angle between the two vectors. If $60^{\circ} \leq \theta \leq 120^{\circ}$ then $\mathbf{b}_{\mathbf{1}}$ is the shortest vector in \mathcal{L}.

Let $\mu_{21} \mathbf{b}_{1}$ denote the projection of the vector \mathbf{b}_{2} in the direction of the vector $\mathbf{b}_{\mathbf{1}}$:

$$
\mu_{21}=\frac{\left\|\mathbf{b}_{\mathbf{2}}\right\| \cdot\left\|\mathbf{b}_{\mathbf{1}}\right\|}{\left\|\mathbf{b}_{\mathbf{1}}\right\|^{2}}
$$

If $\left\|\mathbf{b}_{\mathbf{1}}\right\| \leq\left\|\mathbf{b}_{\mathbf{2}}\right\|$ and $\left|\mu_{21}\right| \leq 1 / 2$ then the basis $\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}$ is Gauss reduced basis.

Gauss's Algorithm

Algorithm for S.V. in 2-d

```
repeat
    if ||\mp@subsup{b}{1}{}|>|\mp@subsup{b}{2}{}|}\mathrm{ then
        swap b}\mp@subsup{\mathbf{b}}{\mathbf{1}}{,},\mp@subsup{\mathbf{b}}{2}{
    end if
    m}\leftarrow\lfloor\mp@subsup{\mu}{21}{}
    \mp@subsup{b}{2}{}}\leftarrow\mp@subsup{\mathbf{b}}{2}{}-m\mp@subsup{\mathbf{b}}{\mathbf{1}}{
until ||\mp@subsup{b}{1}{}|<|\mp@subsup{\mathbf{b}}{\mathbf{2}}{}|
return b
```


Gauss's Algorithm

Algorithm for S.V. in 2-d

```
repeat
    if ||\mp@subsup{b}{1}{}|>|\mp@subsup{b}{2}{}|}\mathrm{ then
        swap b}\mp@subsup{\mathbf{b}}{\mathbf{1}}{,},\mp@subsup{\mathbf{b}}{2}{
    end if
    m\leftarrow\lfloor\mp@subsup{\mu}{21}{}\rceil
    \mp@subsup{b}{2}{}}\leftarrow\mp@subsup{\mathbf{b}}{\mathbf{2}}{-m
until ||\mp@subsup{b}{1}{}|<|\mp@subsup{\mathbf{b}}{\mathbf{2}}{}|
return b
```

- Similarity with the Euclidean Algorithm

Gauss's Algorithm

Algorithm for S.V. in 2-d

```
repeat
    if ||\mp@subsup{b}{1}{}|>|\mp@subsup{b}{2}{}|}\mathrm{ then
        swap b}\mp@subsup{\mathbf{b}}{\mathbf{1}}{\prime},\mp@subsup{\mathbf{b}}{2}{
    end if
    m\leftarrow\lfloor\mp@subsup{\mu}{21}{}\rceil
    \mp@subsup{b}{2}{}}\leftarrow\mp@subsup{\mathbf{b}}{\mathbf{2}}{-m
until ||\mp@subsup{b}{1}{}|<|\mp@subsup{\mathbf{b}}{\mathbf{2}}{|}|
return b
```

- Similarity with the Euclidean Algorithm
- Terminates in a finite amount of time

Gauss's Algorithm

Algorithm for S.V. in 2-d

```
repeat
    if ||\mp@subsup{b}{1}{}|>|\mp@subsup{b}{2}{}|}\mathrm{ then
        swap b}\mp@subsup{\mathbf{b}}{\mathbf{1}}{,},\mp@subsup{\mathbf{b}}{2}{
    end if
    m\leftarrow\lfloor\mp@subsup{\mu}{21}{}\rceil
    \mp@subsup{b}{2}{}}\leftarrow\mp@subsup{\mathbf{b}}{2}{}-m\mp@subsup{\mathbf{b}}{\mathbf{1}}{
until ||\mp@subsup{b}{1}{}|<|\mp@subsup{\mathbf{b}}{\mathbf{2}}{|}|
return b
```

- Similarity with the Euclidean Algorithm
- Terminates in a finite amount of time
- Polynomial complexity

Contents

Title

Definitions

Useful Definitions
The Problem

Algorithms

Main Idea-Algorithms for 1,2-dimensions

Preparation for the LLL Algorithm

The Algorithm
The dual Lattice
Some definitions
Gram-Schmidt lower bound property
Attacking cryptosystems
A Lattice attack on RSA
End

Gram-Schmidt orthogonalization

Let $\mathbf{b}_{\mathbf{1}} \cdots \mathbf{b}_{\mathbf{n}}$ the basis of \mathcal{L}.

Gram-Schmidt orthogonalization

Let $\mathbf{b}_{\mathbf{1}} \cdots \mathbf{b}_{\mathbf{n}}$ the basis of \mathcal{L}. The Gram-Schmidt orthogonalization of this basis is: $\mathbf{b}_{\mathbf{1}}^{*} \cdots \mathbf{b}_{\mathbf{n}}^{*}$ and is given by the following iterative formula:

$$
\begin{gathered}
\mathbf{b}_{1}^{*}=\mathbf{b}_{1} \\
\mathbf{b}_{\mathbf{i}}^{*}=\mathbf{b}_{\mathbf{i}}-\sum_{j=1}^{i-1} \frac{\mathbf{b}_{\mathbf{i}} \mathbf{b}_{\mathbf{j}}^{*}}{\left\|\mathbf{b}_{\mathbf{j}}^{*}\right\|^{2}} \mathbf{b}_{\mathbf{j}}^{*}
\end{gathered}
$$

Gram-Schmidt orthogonalization

Let $\mathbf{b}_{\mathbf{1}} \cdots \mathbf{b}_{\mathbf{n}}$ the basis of \mathcal{L}. The Gram-Schmidt orthogonalization of this basis is: $\mathbf{b}_{\mathbf{1}}^{*} \cdots \mathbf{b}_{\mathbf{n}}^{*}$ and is given by the following iterative formula:

$$
\begin{gathered}
\mathbf{b}_{1}^{*}=\mathbf{b}_{1} \\
\mathbf{b}_{\mathbf{i}}^{*}=\mathbf{b}_{\mathbf{i}}-\sum_{j=1}^{i-1} \frac{\mathbf{b}_{\mathbf{i}} \mathbf{b}_{\mathbf{j}}^{*}}{\left\|\mathbf{b}_{\mathbf{j}}^{*}\right\|^{2}} \mathbf{b}_{\mathbf{j}}^{*}
\end{gathered}
$$

Define

$$
\mu_{i j}=\frac{\mathbf{b}_{\mathbf{i}} \mathbf{b}_{\mathbf{j}}^{*}}{\left\|\mathbf{b}_{\mathbf{j}}^{*}\right\|^{2}}
$$

and $\mu_{i i}=1$. Then

$$
\mathbf{b}_{\mathbf{i}}=\sum_{j=1}^{i-1} \mu_{i j} \mathbf{b}_{\mathbf{j}}^{*}
$$

Lower bounding OPT

Lower bounding OPT

If $O P T$ is the length of the shortest vector in the lattice then:

$$
O P T \geq \min \left\{\left\|\mathbf{b}_{\mathbf{1}}^{*}\right\|, \cdots,\left\|\mathbf{b}_{\mathbf{n}}^{*}\right\|\right\}
$$

LLL Reduced Basis

The basis $\mathbf{b}_{\mathbf{1}}, \cdots, \mathbf{b}_{\mathbf{n}}$ is LLL reduced if for $1 \leq i \leq n-1$:

LLL Reduced Basis

The basis $\mathbf{b}_{\mathbf{1}}, \cdots, \mathbf{b}_{\mathbf{n}}$ is LLL reduced if for $1 \leq i \leq n-1$:

- $\left|\mu_{i j}\right| \leq \frac{1}{2}$ for $1 \leq i<j \leq n$ and
- $\left\|\mathbf{b}_{\mathbf{i}}^{*}\right\|^{2} \leq \frac{4}{3}\left\|\mathbf{b}_{\mathbf{i}+\mathbf{1}}^{*}+\mu_{i+1, i} \mathbf{b}_{\mathbf{i}}^{*}\right\|^{2}$

LLL Reduced Basis

The basis $\mathbf{b}_{\mathbf{1}}, \cdots, \mathbf{b}_{\mathbf{n}}$ is LLL reduced if for $1 \leq i \leq n-1$:

- $\left|\mu_{i j}\right| \leq \frac{1}{2}$ for $1 \leq i<j \leq n$ and
- $\left\|\mathbf{b}_{\mathbf{i}}^{*}\right\|^{2} \leq \frac{4}{3}\left\|\mathbf{b}_{\mathbf{i}+\mathbf{1}}^{*}+\mu_{i+1, i} \mathbf{b}_{\mathbf{i}}^{*}\right\|^{2}$

An LLL Reduced Basis is reasonably orthogonal:

$$
\frac{\left\|\mathbf{b}_{1}\right\| \cdots\left\|\mathbf{b}_{\mathbf{n}}\right\|}{\operatorname{det} \mathcal{L}} \leq 2^{\frac{n(n-1)}{2}}
$$

LLL Reduced Basis

The basis $\mathbf{b}_{\mathbf{1}}, \cdots, \mathbf{b}_{\mathbf{n}}$ is LLL reduced if for $1 \leq i \leq n-1$:

- $\left|\mu_{i j}\right| \leq \frac{1}{2}$ for $1 \leq i<j \leq n$ and
- $\left\|\mathbf{b}_{\mathbf{i}}^{*}\right\|^{2} \leq \frac{4}{3}\left\|\mathbf{b}_{\mathbf{i}+\mathbf{1}}^{*}+\mu_{i+1, i} \mathbf{b}_{\mathbf{i}}^{*}\right\|^{2}$

An LLL Reduced Basis is reasonably orthogonal:

$$
\frac{\left\|\mathbf{b}_{1}\right\| \cdots\left\|\mathbf{b}_{\mathbf{n}}\right\|}{\operatorname{det} \mathcal{L}} \leq 2^{\frac{n(n-1)}{2}}
$$

In an LLL Reduced Basis we have that:

$$
\left\|\mathbf{b}_{1}\right\| \leq 2^{\frac{n-1}{2}} O P T
$$

LLL Reduced Basis

The basis $\mathbf{b}_{\mathbf{1}}, \cdots, \mathbf{b}_{\mathbf{n}}$ is LLL reduced if for $1 \leq i \leq n-1$:

- $\left|\mu_{i j}\right| \leq \frac{1}{2}$ for $1 \leq i<j \leq n$ and
- $\left\|\mathbf{b}_{\mathbf{i}}^{*}\right\|^{2} \leq \frac{4}{3}\left\|\mathbf{b}_{\mathbf{i}+\mathbf{1}}^{*}+\mu_{i+1, i} \mathbf{b}_{\mathbf{i}}^{*}\right\|^{2}$

An LLL Reduced Basis is reasonably orthogonal:

$$
\frac{\left\|\mathbf{b}_{\mathbf{1}}\right\| \cdots\left\|\mathbf{b}_{\mathbf{n}}\right\|}{\operatorname{det} \mathcal{L}} \leq 2^{\frac{n(n-1)}{2}}
$$

In an LLL Reduced Basis we have that:

$$
\left\|\mathbf{b}_{1}\right\| \leq 2^{\frac{n-1}{2}} O P T
$$

So we want an algorithm which turns an arbitrary basis into an LLL reduced in polynomial time in n.

Contents

Title

Definitions

Useful Definitions
The Problem

Algorithms

Main Idea-Algorithms for 1,2-dimensions
Preparation for the LLL Algorithm
The Algorithm
The dual Lattice
Some definitions
Gram-Schmidt lower bound property
Attacking cryptosystems
A Lattice attack on RSA
End

Shortest vector Algorithm

$\operatorname{LLL}\left(\mathbf{B}=\mathbf{b}_{\mathbf{1}}, \cdots, \mathbf{b}_{\mathbf{n}}\right)$
$\mathbf{B} \leftarrow$ SizeReduce (\mathbf{B})
while $\exists i$ violating $\left\|\mathbf{b}_{\mathbf{i}}^{*}\right\|^{2} \leq \frac{4}{3}\left\|\mathbf{b}_{\mathbf{i}+\mathbf{1}}^{*}+\mu_{i+1, i} \mathbf{b}_{\mathbf{i}}^{*}\right\|^{2}$ do
$\operatorname{swap} \mathbf{b}_{\mathbf{i}}, \mathbf{b}_{\mathbf{i}+1}$
update $\mu_{h k}$ and $\mathbf{b}_{\mathbf{k}}^{*}$ for all h, k
$\mathbf{B} \leftarrow$ SizeReduce (\mathbf{B})
end while
return b_{1}

```
SizeReduce ( \(\mathbf{B}=\mathbf{b}_{\mathbf{1}}, \cdots, \mathbf{b}_{\mathbf{n}}\) )
    for \(j=2, \cdots, n\) do
        for \(i=j-1, \cdots, 1\) do
            \(\mathbf{b}_{\mathbf{j}} \leftarrow \mathbf{b}_{\mathbf{j}}-\left\lfloor\mu_{j i} \mathbf{b}_{\mathbf{i}}\right\rceil\)
            \(\mu_{j k} \leftarrow \mu_{j k}-\mu_{j i} \mathbf{b}_{\mathbf{i}} \mu_{i k}\) for \(k=1, \cdots, i\)
        end for
    end for
    return B
```


Contents

Title

Definitions

Useful Definitions
The Problem
Algorithms
Main Idea-Algorithms for 1,2-dimensions
Preparation for the LLL Algorithm
The Algorithm
The dual Lattice
Some definitions
Gram-Schmidt lower bound property
Attacking cryptosystems
A Lattice attack on RSA
End

The dual lattice \mathcal{L}^{*}

The dual lattice \mathcal{L}^{*}

Definition

The dual lattice \mathcal{L}^{*} of the lattice \mathcal{L} is defined by:

$$
\mathcal{L}^{*}=\left\{\boldsymbol{v} \in \Re^{n} \mid \forall \mathbf{b} \in \mathcal{L}, \mathbf{b} \cdot \boldsymbol{v} \in \mathbb{Z}\right\}
$$

The dual lattice \mathcal{L}^{*}

Definition

The dual lattice \mathcal{L}^{*} of the lattice \mathcal{L} is defined by:

$$
\mathcal{L}^{*}=\left\{\boldsymbol{v} \in \Re^{n} \mid \forall \mathbf{b} \in \mathcal{L}, \mathbf{b} \cdot \boldsymbol{v} \in \mathbb{Z}\right\}
$$

Theorem
Let $\mathbf{b}_{\mathbf{1}} \cdots \mathbf{b}_{\mathbf{n}}$ be any basis for \mathcal{L}. Then, the rows of $\mathbf{B}^{-\boldsymbol{T}}$ form a basis for the dual lattice \mathcal{L}^{*}. Furthermore, $\operatorname{det} \mathcal{L}^{*}=\frac{1}{\operatorname{det} \mathcal{L}}$.

The dual lattice \mathcal{L}^{*}

Definition

The dual lattice \mathcal{L}^{*} of the lattice \mathcal{L} is defined by:

$$
\mathcal{L}^{*}=\left\{\boldsymbol{v} \in \Re^{n} \mid \forall \mathbf{b} \in \mathcal{L}, \mathbf{b} \cdot \boldsymbol{v} \in \mathbb{Z}\right\}
$$

Theorem

Let $\mathbf{b}_{\mathbf{1}} \cdots \mathbf{b}_{\mathbf{n}}$ be any basis for \mathcal{L}. Then, the rows of $\mathbf{B}^{-\boldsymbol{T}}$ form a basis for the dual lattice \mathcal{L}^{*}. Furthermore, $\operatorname{det} \mathcal{L}^{*}=\frac{1}{\operatorname{det} \mathcal{L}}$.

Definition

Let $\boldsymbol{v} \in \Re^{n}$ be a non-zero vector. Then, \boldsymbol{v}^{\perp} will denote the ($n-1$)-dimensional space $\left\{\mathbf{b} \in \Re^{n} \mid \mathbf{b} \cdot \boldsymbol{v}=0\right\}$

The dual lattice \mathcal{L}^{*}

Definition

A set $\mathcal{L}^{\prime} \subset \mathcal{L}$ that is a lattice in its own right will be called sublattice of \mathcal{L}

The dual lattice \mathcal{L}^{*}

Definition

A set $\mathcal{L}^{\prime} \subset \mathcal{L}$ that is a lattice in its own right will be called sublattice of \mathcal{L}

Lemma

Let $\boldsymbol{v} \in \mathcal{L}^{*}$ be primitive. Then

- $\mathcal{L} \cap\left(\boldsymbol{v}^{\perp}\right)$ is an $(n-1)$-dimensional sublattice of \mathcal{L}.
- There is a vector $\mathbf{b} \in \mathcal{L}$ such that $\boldsymbol{v} \cdot \mathbf{b}=1$

The dual lattice \mathcal{L}^{*}

Definition

A set $\mathcal{L}^{\prime} \subset \mathcal{L}$ that is a lattice in its own right will be called sublattice of \mathcal{L}

Lemma

Let $\boldsymbol{v} \in \mathcal{L}^{*}$ be primitive. Then

- $\mathcal{L} \cap\left(\boldsymbol{v}^{\perp}\right)$ is an $(n-1)$-dimensional sublattice of \mathcal{L}.
- There is a vector $\mathbf{b} \in \mathcal{L}$ such that $\boldsymbol{v} \cdot \mathbf{b}=1$

Lemma

We can create a basis $\mathbf{w}_{n}, \cdots, \mathbf{w}_{1}$ with Gram-Schmidt orthogonalization $\left(\frac{\boldsymbol{v}_{n}}{\left\|\boldsymbol{v}_{n}\right\|^{2}}, \cdots, \frac{\boldsymbol{v}_{1}}{\left\|\boldsymbol{v}_{1}\right\|^{2}}\right)$.

Contents

Title

Definitions

Useful Definitions
The Problem
Algorithms
Main Idea-Algorithms for 1,2-dimensions
Preparation for the LLL Algorithm
The Algorithm
The dual Lattice
Some definitions
Gram-Schmidt lower bound property
Attacking cryptosystems
A Lattice attack on RSA
End

Gram-Schmidt lower bound is not so bad

Gram-Schmidt lower bound is not so bad

Minkowski's theorem
There is a vector $\mathbf{b} \in \mathcal{L}$ such that $\|\mathbf{b}\| \leq \sqrt{n} \sqrt[n]{\operatorname{det} \mathcal{L}}$.

Gram-Schmidt lower bound is not so bad

Minkowski's theorem

There is a vector $\mathbf{b} \in \mathcal{L}$ such that $\|\mathbf{b}\| \leq \sqrt{n} \sqrt[n]{\operatorname{det} \mathcal{L}}$.
Theorem
There is a basis for \mathcal{L} whose Gram-Schmidt lower bound is at least OPT/n.

Contents

Title

Definitions

Useful Definitions
The Problem
Algorithms
Main Idea-Algorithms for 1,2-dimensions
Preparation for the LLL Algorithm
The Algorithm
The dual Lattice
Some definitions
Gram-Schmidt lower bound property
Attacking cryptosystems
A Lattice attack on RSA
End

Solving modular equations

Solving modular equations

Lemma

If f is a polynomial modulo n and h is a polynomial having the same roots as f modulo n and has 'small' norm then all the roots of f (smaller than some value) are also roots of h over the integers.

Solving modular equations

Lemma

If f is a polynomial modulo n and h is a polynomial having the same roots as f modulo n and has 'small' norm then all the roots of f (smaller than some value) are also roots of h over the integers.

The LLL algorithm can find such a polynomial h and then solve the equation $h(x)=0$ over the integers to get small solutions.

QUESTIONS

