| Title | Definitions | Algorithms          | The dual Lattice | Attacking cryptosystems | Enc |
|-------|-------------|---------------------|------------------|-------------------------|-----|
|       | 00000<br>00 | 00000<br>0000<br>00 | 000<br>00        | 00                      |     |

# Shortest Vector Problem

Marios Georgiou

National Technical University of Athens

May 24, 2011

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

| Title | Definitions<br>•0000<br>00 | Algorithms<br>00000<br>0000<br>000 | The dual Lattice<br>000<br>00 | Attacking cryptosystems<br>00 | End |
|-------|----------------------------|------------------------------------|-------------------------------|-------------------------------|-----|
|       |                            |                                    |                               |                               |     |

# Contents

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

#### Title

# Definitions Useful Definitions

The Problem

#### Algorithms

Main Idea-Algorithms for 1,2-dimensions Preparation for the LLL Algorithm The Algorithm

#### The dual Lattice

Some definitions

Gram-Schmidt lower bound property

#### Attacking cryptosystems

A Lattice attack on RSA

#### End

| Title   | Definitions<br>○●○○○<br>○○ | Algorithms<br>00000<br>0000<br>00 | The dual Lattice<br>000<br>00 | Attacking cryptosystems<br>00 | End |
|---------|----------------------------|-----------------------------------|-------------------------------|-------------------------------|-----|
| Lattice |                            |                                   |                               |                               |     |

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

| Title | Definitions<br>○●○○○<br>○○ | Algorithms<br>00000<br>0000<br>000 | The dual Lattice<br>000<br>00 | Attacking cryptosystems<br>00 | End |
|-------|----------------------------|------------------------------------|-------------------------------|-------------------------------|-----|
|       |                            |                                    | Lattice                       |                               |     |

A Lattice  $\mathcal{L}$  in  $\Re^n$  is a discrete subgroup of  $\Re^n$  which spans the real vector space  $\Re^n$ .

$$\mathcal{L} = \left\{ \sum_{i=1}^n \lambda_i \mathbf{a_i} \mid \lambda_i \in \mathbb{Z} \right\}$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

| Title | Definitions<br>0000<br>00 | Algorithms<br>00000<br>0000<br>000 | The dual Lattice<br>000<br>00 | Attacking cryptosystems<br>00 | End |
|-------|---------------------------|------------------------------------|-------------------------------|-------------------------------|-----|
|       |                           |                                    | 1.1.1.1                       |                               |     |

#### Lattice

#### Definition

A Lattice  $\mathcal{L}$  in  $\Re^n$  is a discrete subgroup of  $\Re^n$  which spans the real vector space  $\Re^n$ .

$$\mathcal{L} = \left\{ \sum_{i=1}^n \lambda_i \mathbf{a_i} \mid \lambda_i \in \mathbb{Z} \right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $a_1, a_2, \cdots, a_n$  is a basis of the lattice

| Title | Definitions<br>0000<br>00 | Algorithms<br>00000<br>0000<br>000 | The dual Lattice<br>000<br>00 | Attacking cryptosystems<br>00 | End |
|-------|---------------------------|------------------------------------|-------------------------------|-------------------------------|-----|
|       |                           |                                    | 1.1.1.1                       |                               |     |

#### Lattice

#### Definition

A Lattice  $\mathcal{L}$  in  $\Re^n$  is a discrete subgroup of  $\Re^n$  which spans the real vector space  $\Re^n$ .

$$\mathcal{L} = \left\{ \sum_{i=1}^n \lambda_i \mathbf{a_i} \mid \lambda_i \in \mathbb{Z} \right\}$$

 $a_1, a_2, \cdots, a_n$  is a basis of the lattice



Figure: A Lattice in  $\Re^2$  , and the set of the set of

| Title | Definitions<br>○○●○○<br>○○ | Algorithms<br>00000<br>0000<br>00 | The dual Lattice<br>000<br>00 | Attacking cryptosystems<br>00 | End |
|-------|----------------------------|-----------------------------------|-------------------------------|-------------------------------|-----|
|       |                            |                                   |                               |                               |     |

| Title | Definitions | Algorithms | The dual Lattice | Attacking cryptosystems |
|-------|-------------|------------|------------------|-------------------------|
|       | 00000       | 00000      | 000              | 00                      |
|       | 00          | 0000       | 00               |                         |
|       |             | 00         |                  |                         |

#### Theorem

Let  $\mathcal{L}$  be a n-dimensional lattice and

• A be the  $n \times n$  matrix whose rows are the basis  $a_1, \cdots, a_n$ .

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

• **B** be the  $n \times n$  matrix whose rows  $\mathbf{b_1}, \cdots, \mathbf{b_n} \in \mathcal{L}$ .

The following conditions are equivalent:

| Definitions | Algorithms | The dual Lattice |  |
|-------------|------------|------------------|--|
| 00000       | 00000      | 000              |  |

# More useful things

#### Theorem

Let  $\mathcal{L}$  be a n-dimensional lattice and

- A be the  $n \times n$  matrix whose rows are the basis  $a_1, \cdots, a_n$ .
- **B** be the  $n \times n$  matrix whose rows  $\mathbf{b_1}, \cdots, \mathbf{b_n} \in \mathcal{L}$ .

The following conditions are equivalent:

1. 
$$\mathbf{b_1}, \cdots, \mathbf{b_n}$$
 form a basis for  $\mathcal{L}$ .

- 2.  $|\det(\mathbf{A})| = |\det(\mathbf{B})|$ .
- 3. there is an  $n \times n$  matrix **U** such that **B** = **UA** and  $|\det(\mathbf{U})| = 1$ .

| Definitions | Algorithms | The dual Lattice |
|-------------|------------|------------------|
| 00000       | 00000      | 000              |
| 00          | 0000       | 00               |

#### Theorem

Let  $\mathcal{L}$  be a n-dimensional lattice and

- A be the  $n \times n$  matrix whose rows are the basis  $a_1, \cdots, a_n$ .
- **B** be the  $n \times n$  matrix whose rows  $\mathbf{b_1}, \cdots, \mathbf{b_n} \in \mathcal{L}$ .

The following conditions are equivalent:

1. 
$$\mathbf{b_1}, \cdots, \mathbf{b_n}$$
 form a basis for  $\mathcal{L}$ .

- 2.  $|\det(\mathbf{A})| = |\det(\mathbf{B})|$ .
- 3. there is an  $n \times n$  matrix **U** such that **B** = **UA** and  $|\det(\mathbf{U})| = 1$ .

So the determinant of all the bases of  ${\cal L}$  is invariable.  ${\sf det}({\bm A})={\sf det}\,{\cal L}$ 

| Title | Definitions | Algorithms | The dual Lattice | Attacking cryptosystems | End |
|-------|-------------|------------|------------------|-------------------------|-----|
|       | 00000<br>00 | 00000      | 000              | 00                      |     |

#### Definition

The Eucledian norm of a vector **x** is  $\|\mathbf{x}\| = \sqrt{x_1^2 + \cdots + x_n^2}$  where  $x_1, x_2, \cdots, x_n$  are the coefficients in an orthonormal system.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

| Title | Definitions | Algorithms | The dual Lattice | Attacking cryptosystems | End |
|-------|-------------|------------|------------------|-------------------------|-----|
|       | 00000<br>00 | 00000      | 000              | 00                      |     |

#### Definition

The *Eucledian norm* of a vector **x** is  $||\mathbf{x}|| = \sqrt{x_1^2 + \cdots + x_n^2}$  where  $x_1, x_2, \cdots, x_n$  are the coefficients in an orthonormal system.

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● ● ● ●

#### Definition

Hadamard's inequality states that  $\mathsf{det}\,\mathcal{L} \leq \|a_1\| \cdots \|a_n\|$ 

| Title | Definitions | Algorithms | The dual Lattice | Attacking cryptosystems | End |
|-------|-------------|------------|------------------|-------------------------|-----|
|       | 00000<br>00 | 00000      | 000<br>00        | 00                      |     |

#### Definition

The *Eucledian norm* of a vector **x** is  $||\mathbf{x}|| = \sqrt{x_1^2 + \cdots + x_n^2}$  where  $x_1, x_2, \cdots, x_n$  are the coefficients in an orthonormal system.

#### Definition

Hadamard's inequality states that  $\mathsf{det}\,\mathcal{L} \leq \|a_1\| \cdots \|a_n\|$ 

#### Definition

Orthogonality defect of the basis  $a_1, a_2, \cdots, a_n$ 

$$\frac{\|\mathbf{a_1}\|\cdots\|\mathbf{a_n}\|}{\det \mathcal{L}}$$



The linearly independent vectors  $\mathbf{b_1}, \cdots, \mathbf{b_k} \in \mathcal{L}$  are *primitive* if they can be extended to a basis of  $\mathcal{L}$ .



The linearly independent vectors  $\mathbf{b_1}, \cdots, \mathbf{b_k} \in \mathcal{L}$  are *primitive* if they can be extended to a basis of  $\mathcal{L}$ .

#### Definition

A vector  $\mathbf{a} \in \mathcal{L}$  is *shortest in its direction* if  $x\mathbf{a}$  is not in  $\mathcal{L}$  for 0 < x < 1.



The linearly independent vectors  $\mathbf{b_1}, \cdots, \mathbf{b_k} \in \mathcal{L}$  are *primitive* if they can be extended to a basis of  $\mathcal{L}$ .

#### Definition

A vector  $\mathbf{a} \in \mathcal{L}$  is *shortest in its direction* if  $x\mathbf{a}$  is not in  $\mathcal{L}$  for 0 < x < 1.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

#### Theorem

Vector  $\mathbf{a} \in \mathcal{L}$  is primitive iff  $\mathbf{a}$  is shortest in its direction.

| Title | Definitions<br>○○○○○<br>●○ | Algorithms<br>00000<br>0000<br>000 | The dual Lattice<br>000<br>00 | Attacking cryptosystems<br>00 | End |
|-------|----------------------------|------------------------------------|-------------------------------|-------------------------------|-----|
|       |                            |                                    |                               |                               |     |

# Contents

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

#### Title

### Definitions

Useful Definitions

#### The Problem

#### Algorithms

Main Idea-Algorithms for 1,2-dimensions Preparation for the LLL Algorithm The Algorithm

### The dual Lattice

Some definitions

Gram-Schmidt lower bound property

#### Attacking cryptosystems

A Lattice attack on RSA

#### End

| Title | Definitions | Algorithms | The dual Lattice | Attacking cryptosystems | End |
|-------|-------------|------------|------------------|-------------------------|-----|
|       | 00000       | 00000      | 000              | 00                      |     |

# Shortest vector problem

#### Definition

Given a lattice  $\mathcal{L}$ , find the shortest vector, in Eucledian norm, in  $\mathcal{L}$ .



▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

| Title | Definitions | Algorithms | The dual Lattice | Attacking cryptosystems | End |
|-------|-------------|------------|------------------|-------------------------|-----|
|       | 00000       | 00000      | 000              | 00                      |     |

# Shortest vector problem

#### Definition

Given a lattice  $\mathcal{L}$ , find the shortest vector, in Eucledian norm, in  $\mathcal{L}$ .



▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

| Title | Definitions | Algorithms | The dual Lattice | Attacking cryptosystems | End |
|-------|-------------|------------|------------------|-------------------------|-----|
|       | 00000       | 00000      | 000              | 00                      |     |

# Shortest vector problem

#### Definition

Given a lattice  $\mathcal{L}$ , find the shortest vector, in Eucledian norm, in  $\mathcal{L}$ .



The shortest of the basis is not always the shortest vector.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

| Title | Definitions<br>00000<br>00 | Algorithms<br>• 0000<br>· 000<br>· 000<br>· 000 | The dual Lattice<br>000<br>00 | Attacking cryptosystems<br>00 | End |
|-------|----------------------------|-------------------------------------------------|-------------------------------|-------------------------------|-----|
|       |                            |                                                 |                               |                               |     |

# Contents

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

#### Title

Definitions Useful Definiti The Problem

#### Algorithms

#### Main Idea-Algorithms for 1,2-dimensions

Preparation for the LLL Algorithm The Algorithm

### The dual Lattice

Some definitions

Gram-Schmidt lower bound property

Attacking cryptosystems

A Lattice attack on RSA

#### End

| Title | Definitions<br>00000<br>00 | Algorithms<br>0000<br>000<br>000 | The dual Lattice<br>000<br>00 | Attacking cryptosystems<br>00 | End |
|-------|----------------------------|----------------------------------|-------------------------------|-------------------------------|-----|
|       |                            |                                  |                               |                               |     |

A good strategy:





A good strategy:

1. Change the basis of the lattice (in some way) to a good one (short vectors nearly orthogonal).

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで



A good strategy:

1. Change the basis of the lattice (in some way) to a good one (short vectors nearly orthogonal).

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

2. Take the shortest vector of the basis.



A good strategy:

1. Change the basis of the lattice (in some way) to a good one (short vectors nearly orthogonal).

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

2. Take the shortest vector of the basis.

We must prove that this vector is the shortest, or the shortest within some factor.



A good strategy:

1. Change the basis of the lattice (in some way) to a good one (short vectors nearly orthogonal).

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

2. Take the shortest vector of the basis.

We must prove that this vector is the shortest, or the shortest within some factor.

Step 1 is called Lattice (Basis) Reduction



A good strategy:

- 1. Change the basis of the lattice (in some way) to a good one (short vectors nearly orthogonal).
- 2. Take the shortest vector of the basis.

We must prove that this vector is the shortest, or the shortest within some factor.

Step 1 is called Lattice (Basis) Reduction



A D > A D > A D > A D >

э

SQA



# Euclid's Algorithm

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

• Consider an 1-d lattice with basis  $a \in \Re$ .

| Title              | Definitions<br>00000<br>00 | Algorithms<br>00€00<br>0000 | The dual Lattice<br>000<br>00 | Attacking cryptosystems | End |  |  |
|--------------------|----------------------------|-----------------------------|-------------------------------|-------------------------|-----|--|--|
|                    | Algor                      | ithm for th                 | ne 1-dimensio                 | nal Lattices            |     |  |  |
| Euclid's Algorithm |                            |                             |                               |                         |     |  |  |

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

 Consider an 1-d lattice with basis a ∈ ℜ. Then the shortest vector is simply a.



- Consider an 1-d lattice with basis a ∈ ℜ. Then the shortest vector is simply a.
- Consider an 1-d lattice with basis  $a, b \in \Re$ .



- Consider an 1-d lattice with basis a ∈ ℜ. Then the shortest vector is simply a.
- Consider an 1-d lattice with basis a, b ∈ ℜ.
  Then the shortest vector is the smallest number expressed as an integer l.c. of a, b:



- Consider an 1-d lattice with basis a ∈ ℜ. Then the shortest vector is simply a.
- Consider an 1-d lattice with basis a, b ∈ ℜ.
  Then the shortest vector is the smallest number expressed as an integer l.c. of a, b: gcd(a, b).



- Consider an 1-d lattice with basis a ∈ ℜ. Then the shortest vector is simply a.
- Consider an 1-d lattice with basis a, b ∈ ℜ. Then the shortest vector is the smallest number expressed as an integer l.c. of a, b: gcd(a, b). Euclid's algorithm: gcd(a, b) = gcd(b, a - mb) where m is the integer closest to a/b.

itle

Algorithms

The dual Lattic

Attacking cryptosystems

# Algorithm for the 2-dimensional Lattices Gauss reduced basis







The dual Lattice

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

#### End

# Algorithm for the 2-dimensional Lattices Gauss reduced basis

How orthogonal our basis vectors have to be?





The dual Lattice

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

# Algorithm for the 2-dimensional Lattices

# Gauss reduced basis

How orthogonal our basis vectors have to be?

#### Theorem

Suppose  $\mathbf{b_1}, \mathbf{b_2}$  is a basis for a 2-d  $\mathcal{L}$  and  $\|\mathbf{b_1}\| \le \|\mathbf{b_2}\|$ . Suppose  $\theta \in (0^\circ, 180^\circ)$  the angle between the two vectors. If  $60^\circ \le \theta \le 120^\circ$  then  $\mathbf{b_1}$  is the shortest vector in  $\mathcal{L}$ .


Algorithms

The dual Lattic

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

#### S

# Algorithm for the 2-dimensional Lattices Gauss reduced basis

How orthogonal our basis vectors have to be?

#### Theorem

Suppose  $\mathbf{b_1}, \mathbf{b_2}$  is a basis for a 2-d  $\mathcal{L}$  and  $\|\mathbf{b_1}\| \le \|\mathbf{b_2}\|$ . Suppose  $\theta \in (0^\circ, 180^\circ)$  the angle between the two vectors. If  $60^\circ \le \theta \le 120^\circ$  then  $\mathbf{b_1}$  is the shortest vector in  $\mathcal{L}$ .

Let  $\mu_{21}\mathbf{b_1}$  denote the projection of the vector  $\mathbf{b_2}$  in the direction of the vector  $\mathbf{b_1}$ :



Algorithms

The dual Lattic

Attacking cryptosystem:

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Algorithm for the 2-dimensional Lattices Gauss reduced basis

How orthogonal our basis vectors have to be?

#### Theorem

Suppose  $\mathbf{b_1}, \mathbf{b_2}$  is a basis for a 2-d  $\mathcal{L}$  and  $\|\mathbf{b_1}\| \le \|\mathbf{b_2}\|$ . Suppose  $\theta \in (0^\circ, 180^\circ)$  the angle between the two vectors. If  $60^\circ \le \theta \le 120^\circ$  then  $\mathbf{b_1}$  is the shortest vector in  $\mathcal{L}$ .

Let  $\mu_{21}\mathbf{b_1}$  denote the projection of the vector  $\mathbf{b_2}$  in the direction of the vector  $\mathbf{b_1}$ :

$$\mu_{21} = \frac{\|\mathbf{b_2}\| \cdot \|\mathbf{b_1}\|}{\|\mathbf{b_1}\|^2}$$





# Algorithm for the 2-dimensional Lattices Gauss reduced basis

How orthogonal our basis vectors have to be?

#### Theorem

Suppose  $\mathbf{b_1}, \mathbf{b_2}$  is a basis for a 2-d  $\mathcal{L}$  and  $\|\mathbf{b_1}\| \leq \|\mathbf{b_2}\|$ . Suppose  $\theta \in (0^{\circ}, 180^{\circ})$  the angle between the two vectors. If  $60^{\circ} < \theta < 120^{\circ}$  then **b**<sub>1</sub> is the shortest vector in  $\mathcal{L}$ .

Let  $\mu_{21}\mathbf{b_1}$  denote the projection of the vector  $\mathbf{b_2}$  in the direction of the vector **b**<sub>1</sub>:

$$\mu_{21} = \frac{\|\mathbf{b_2}\| \cdot \|\mathbf{b_1}\|}{\|\mathbf{b_1}\|^2}$$

If  $\|\mathbf{b_1}\| \leq \|\mathbf{b_2}\|$  and  $|\mu_{21}| \leq 1/2$  then the basis  $\mathbf{b_1}, \mathbf{b_2}$  is Gauss reduced basis.



▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Algorithm for S.V. in 2-d

 $\label{eq:constraint} \begin{array}{l} \mbox{repeat} \\ \mbox{if } \| {\bf b_1} \| > \| {\bf b_2} \| \mbox{ then} \\ \mbox{swap } {\bf b_1}, {\bf b_2} \\ \mbox{end if} \\ \mbox{$m \leftarrow \lfloor \mu_{21} \rceil$} \\ \mbox{$\bf b_2 \leftarrow {\bf b_2} - m {\bf b_1}$} \\ \mbox{until } \| {\bf b_1} \| < \| {\bf b_2} \| \\ \mbox{return } {\bf b_1} \end{array}$ 



Algorithm for S.V. in 2-d

 $\label{eq:constraint} \begin{array}{l} \mbox{repeat} \\ \mbox{if } \| {\bf b}_1 \| > \| {\bf b}_2 \| \mbox{ then} \\ \mbox{swap } {\bf b}_1, {\bf b}_2 \\ \mbox{end if} \\ \mbox{$m \leftarrow \lfloor \mu_{21} \rceil$} \\ \mbox{$\bf b_2 \leftarrow {\bf b}_2 - m {\bf b}_1$} \\ \mbox{until } \| {\bf b}_1 \| < \| {\bf b}_2 \| \\ \mbox{return } {\bf b}_1 \end{array}$ 

• Similarity with the Euclidean Algorithm

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ



Algorithm for S.V. in 2-d

 $\begin{array}{l} \text{repeat} \\ \text{if } \|\mathbf{b_1}\| > \|\mathbf{b_2}\| \text{ then} \\ \text{swap } \mathbf{b_1}, \mathbf{b_2} \\ \text{end if} \\ m \leftarrow \lfloor \mu_{21} \rceil \\ \mathbf{b_2} \leftarrow \mathbf{b_2} - m \mathbf{b_1} \\ \text{until } \|\mathbf{b_1}\| < \|\mathbf{b_2}\| \\ \text{return } \mathbf{b_1} \end{array}$ 

- Similarity with the Euclidean Algorithm
- Terminates in a finite amount of time

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ



Algorithm for S.V. in 2-d

 $\label{eq:constraint} \begin{array}{l} \mbox{repeat} \\ \mbox{if } \| {\bf b}_1 \| > \| {\bf b}_2 \| \mbox{ then} \\ \mbox{swap } {\bf b}_1, {\bf b}_2 \\ \mbox{end if} \\ \mbox{$m \leftarrow \lfloor \mu_{21} \rceil$} \\ \mbox{$\bf b_2 \leftarrow {\bf b}_2 - m {\bf b}_1$} \\ \mbox{until } \| {\bf b}_1 \| < \| {\bf b}_2 \| \\ \mbox{return } {\bf b}_1 \end{array}$ 

- Similarity with the Euclidean Algorithm
- Terminates in a finite amount of time
- Polynomial complexity

◆□▶ ◆□▶ ◆注▶ ◆注▶ □注 − ���?

| Title | Definitions<br>00000<br>00 | Algorithms<br>0000<br>000<br>000 | The dual Lattice<br>000<br>00 | Attacking cryptosystems | End |
|-------|----------------------------|----------------------------------|-------------------------------|-------------------------|-----|
|       |                            |                                  |                               |                         |     |

### Contents

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

#### Title

Definitions Useful Definiti The Problem

#### Algorithms

Main Idea-Algorithms for 1,2-dimensions Preparation for the LLL Algorithm

The Algorithm

### The dual Lattice

Some definitions

Gram-Schmidt lower bound property

Attacking cryptosystems

A Lattice attack on RSA

#### End

| Title | Definitions | Algorithms | The dual Lattice | Attacking cryptosystems | End |
|-------|-------------|------------|------------------|-------------------------|-----|
|       | 00000       | 00000      | 000              | 00                      |     |
|       | 00          | 0000       | 00               |                         |     |
|       |             | 00         |                  |                         |     |

### Gram-Schmidt orthogonalization

Let  $b_1 \cdots b_n$  the basis of  $\mathcal{L}$ .





Gram-Schmidt orthogonalization

Let  $\mathbf{b_1} \cdots \mathbf{b_n}$  the basis of  $\mathcal{L}$ . The *Gram-Schmidt orthogonalization* of this basis is:  $\mathbf{b_1^*} \cdots \mathbf{b_n^*}$  and is given by the following iterative formula:

$$\begin{aligned} \mathbf{b_1^*} &= \mathbf{b_1} \\ \mathbf{b_i^*} &= \mathbf{b_i} - \sum_{j=1}^{i-1} \frac{\mathbf{b_i b_j^*}}{\|\mathbf{b_j^*}\|^2} \mathbf{b_j^*} \end{aligned}$$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ



Gram-Schmidt orthogonalization

Let  $\mathbf{b_1} \cdots \mathbf{b_n}$  the basis of  $\mathcal{L}$ . The *Gram-Schmidt orthogonalization* of this basis is:  $\mathbf{b_1^*} \cdots \mathbf{b_n^*}$  and is given by the following iterative formula:

$$\mathbf{b_1^*} = \mathbf{b_1}$$
 $\mathbf{b_i^*} = \mathbf{b_i} - \sum_{j=1}^{i-1} rac{\mathbf{b_i b_j^*}}{\|\mathbf{b_j^*}\|^2} \mathbf{b_j^*}$ 

Define

$$\mu_{ij} = \frac{\mathbf{b}_i \mathbf{b}_j^*}{\|\mathbf{b}_j^*\|^2}$$

and  $\mu_{ii} = 1$ . Then

$$\mathbf{b_i} = \sum_{j=1}^{i-1} \mu_{ij} \mathbf{b_j^*}$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

| Title | Definitions | Algorithms | The dual Lattice | Attacking cryptosystems | End |
|-------|-------------|------------|------------------|-------------------------|-----|
|       | 00000       |            | 000              | 00                      |     |

# Lower bounding OPT



・ロト ・ 四ト ・ ヨト ・ ヨト

E

590

 $b_I = b_I^*$ 

| Title | Definitions | Algorithms | The dual Lattice | Attacking cryptosystems | End |
|-------|-------------|------------|------------------|-------------------------|-----|
|       | 00000       | 00000      | 000              | 00                      |     |

### Lower bounding OPT



If OPT is the length of the shortest vector in the lattice then:

$$OPT \geq min\{\|\mathbf{b}_1^*\|, \cdots, \|\mathbf{b}_n^*\|\}$$

・ロト ・ 語 ・ ・ 語 ・ ・ 語 ・ ・ の へ ()



<□▶ <□▶ < □▶ < □▶ < □▶ = □ の < ⊙

The basis  $\mathbf{b_1}, \cdots, \mathbf{b_n}$  is LLL reduced if for  $1 \le i \le n-1$ :



▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

The basis  $\mathbf{b_1}, \cdots, \mathbf{b_n}$  is LLL reduced if for  $1 \le i \le n-1$ :

- $|\mu_{ij}| \leq \frac{1}{2}$  for  $1 \leq i < j \leq n$  and
- $\|\mathbf{b}_{\mathbf{i}}^*\|^2 \le \frac{4}{3} \|\mathbf{b}_{\mathbf{i+1}}^* + \mu_{i+1,i} \mathbf{b}_{\mathbf{i}}^*\|^2$



The basis  $\mathbf{b_1}, \cdots, \mathbf{b_n}$  is LLL reduced if for  $1 \le i \le n-1$ :

- $|\mu_{ij}| \leq \frac{1}{2}$  for  $1 \leq i < j \leq n$  and
- $\|\mathbf{b}_{\mathbf{i}}^*\|^2 \le \frac{4}{3} \|\mathbf{b}_{\mathbf{i+1}}^* + \mu_{i+1,i} \mathbf{b}_{\mathbf{i}}^*\|^2$

An LLL Reduced Basis is reasonably orthogonal:

$$\frac{\|\mathbf{b_1}\|\cdots\|\mathbf{b_n}\|}{\det\mathcal{L}} \leq 2^{\frac{n(n-1)}{2}}$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●



The basis  $\mathbf{b_1}, \cdots, \mathbf{b_n}$  is LLL reduced if for  $1 \le i \le n-1$ :

- $|\mu_{ij}| \leq \frac{1}{2}$  for  $1 \leq i < j \leq n$  and
- $\|\mathbf{b}_{\mathbf{i}}^*\|^2 \leq \frac{4}{3} \|\mathbf{b}_{\mathbf{i+1}}^* + \mu_{\mathbf{i+1},\mathbf{i}}\mathbf{b}_{\mathbf{i}}^*\|^2$

An LLL Reduced Basis is reasonably orthogonal:

$$\frac{\|\mathbf{b_1}\|\cdots\|\mathbf{b_n}\|}{\det \mathcal{L}} \leq 2^{\frac{n(n-1)}{2}}$$

In an LLL Reduced Basis we have that:

$$\|\mathbf{b_1}\| \le 2^{\frac{n-1}{2}} OPT$$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ



The basis  $\mathbf{b_1}, \cdots, \mathbf{b_n}$  is LLL reduced if for  $1 \le i \le n-1$ :

- $|\mu_{ij}| \leq \frac{1}{2}$  for  $1 \leq i < j \leq n$  and
- $\|\mathbf{b}_{\mathbf{i}}^*\|^2 \le \frac{4}{3} \|\mathbf{b}_{\mathbf{i+1}}^* + \mu_{i+1,i} \mathbf{b}_{\mathbf{i}}^*\|^2$

An LLL Reduced Basis is reasonably orthogonal:

$$\frac{\|\mathbf{b_1}\|\cdots\|\mathbf{b_n}\|}{\det\mathcal{L}} \leq 2^{\frac{n(n-1)}{2}}$$

In an LLL Reduced Basis we have that:

$$\|\mathbf{b_1}\| \le 2^{\frac{n-1}{2}} OPT$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

So we want an algorithm which turns an arbitrary basis into an LLL reduced in polynomial time in n.

| Title | Definitions<br>00000<br>00 | Algorithms | The dual Lattice<br>000<br>00 | Attacking cryptosystems<br>00 | End |
|-------|----------------------------|------------|-------------------------------|-------------------------------|-----|
|       |                            |            |                               |                               |     |

### Contents

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

#### Title

Definitions Useful Def

The Problem

### Algorithms

Main Idea-Algorithms for 1,2-dimensions Preparation for the LLL Algorithm

### The Algorithm

### The dual Lattice

Some definitions

Gram-Schmidt lower bound property

Attacking cryptosystems

A Lattice attack on RSA

#### End

| Title | Definitions | Algorithms | The dual Lattice | Attacking cryptosystems | End |
|-------|-------------|------------|------------------|-------------------------|-----|
|       | 00000       | 00000      | 000              | 00                      |     |

### Shortest vector Algorithm

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

LLL 
$$(\mathbf{B} = \mathbf{b}_1, \cdots, \mathbf{b}_n)$$
  
 $\mathbf{B} \leftarrow SizeReduce(\mathbf{B})$   
while  $\exists i$  violating  $\|\mathbf{b}_i^*\|^2 \leq \frac{4}{3} \|\mathbf{b}_{i+1}^* + \mu_{i+1,i}\mathbf{b}_i^*\|^2$  do  
swap  $\mathbf{b}_i, \mathbf{b}_{i+1}$   
update  $\mu_{hk}$  and  $\mathbf{b}_k^*$  for all  $h, k$   
 $\mathbf{B} \leftarrow SizeReduce(\mathbf{B})$   
end while  
return  $\mathbf{b}_1$ 

 $\begin{array}{l} \mbox{SizeReduce } (\mathbf{B} = \mathbf{b_1}, \cdots, \mathbf{b_n}) \\ \mbox{for } j = 2, \cdots, n \ \mbox{do} \\ \mbox{for } i = j - 1, \cdots, 1 \ \mbox{do} \\ \mbox{b_j} \leftarrow \mbox{b_j} - \lfloor \mu_{ji} \mbox{b_i} \end{bmatrix} \\ \mu_{jk} \leftarrow \mu_{jk} - \mu_{jj} \mbox{b_i} \mu_{ik} \ \mbox{for } k = 1, \cdots, i \\ \mbox{end for} \\ \mbox{end for} \\ \mbox{return } \ \mbox{B} \end{array}$ 

| Title | Definitions<br>00000<br>00 | Algorithms<br>00000<br>0000<br>00 | The dual Lattice<br>●○○<br>○○ | Attacking cryptosystems<br>00 | End |
|-------|----------------------------|-----------------------------------|-------------------------------|-------------------------------|-----|
|       |                            |                                   |                               |                               |     |

### Contents

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

#### Title

### Definitions

Useful Definitions The Problem

#### Algorithms

Main Idea-Algorithms for 1,2-dimensions Preparation for the LLL Algorithm The Algorithm

# The dual Lattice

### Some definitions

Gram-Schmidt lower bound property

### Attacking cryptosystems

A Lattice attack on RSA

#### End

| Title | Definitions | Algorithms          | The dual Lattice | Attacking cryptosystems | End |
|-------|-------------|---------------------|------------------|-------------------------|-----|
|       | 00000<br>00 | 00000<br>0000<br>00 | 000<br>00        | 00                      |     |

| Title | Definitions | Algorithms | The dual Lattice | Attacking cryptosystems | End |
|-------|-------------|------------|------------------|-------------------------|-----|
|       | 00000       | 00000      | 000              | 00                      |     |
|       | 00          | 0000       | 00               |                         |     |

#### Definition

The *dual lattice*  $\mathcal{L}^*$  of the lattice  $\mathcal{L}$  is defined by:

$$\mathcal{L}^* = \{oldsymbol{v} \in \Re^n | orall oldsymbol{b} \in \mathcal{L}, oldsymbol{b} \cdot oldsymbol{v} \in \mathbb{Z} \}$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ



#### Definition

The *dual lattice*  $\mathcal{L}^*$  of the lattice  $\mathcal{L}$  is defined by:

$$\mathcal{L}^* = \{oldsymbol{v} \in \Re^n | orall oldsymbol{b} \in \mathcal{L}, oldsymbol{b} \cdot oldsymbol{v} \in \mathbb{Z}\}$$

#### Theorem

Let  $\mathbf{b_1} \cdots \mathbf{b_n}$  be any basis for  $\mathcal{L}$ . Then, the rows of  $\mathbf{B}^{-\mathsf{T}}$  form a basis for the dual lattice  $\mathcal{L}^*$ . Furthermore, det  $\mathcal{L}^* = \frac{1}{\det \mathcal{L}}$ .

・ロット (四)・ (田)・ (日)・ (日)

| Title | Definitions | Algorithms | The dual Lattice | Attacking cryptosystems | End |
|-------|-------------|------------|------------------|-------------------------|-----|
|       | 00000       | 00000      | 000              | 00                      |     |
|       | 00          | 0000       | 00               |                         |     |
|       |             | 00         |                  |                         |     |

#### Definition

The *dual lattice*  $\mathcal{L}^*$  of the lattice  $\mathcal{L}$  is defined by:

$$\mathcal{L}^* = \{oldsymbol{v} \in \Re^n | orall oldsymbol{b} \in \mathcal{L}, oldsymbol{b} \cdot oldsymbol{v} \in \mathbb{Z}\}$$

#### Theorem

Let  $\mathbf{b_1} \cdots \mathbf{b_n}$  be any basis for  $\mathcal{L}$ . Then, the rows of  $\mathbf{B}^{-\mathsf{T}}$  form a basis for the dual lattice  $\mathcal{L}^*$ . Furthermore, det  $\mathcal{L}^* = \frac{1}{\det \mathcal{L}}$ .

#### Definition

Let  $v \in \Re^n$  be a non-zero vector. Then,  $v^{\perp}$  will denote the (n-1)-dimensional space  $\{\mathbf{b} \in \Re^n | \mathbf{b} \cdot v = 0\}$ 

San

| Title | Definitions | Algorithms | The dual Lattice | Attacking cryptosyst |
|-------|-------------|------------|------------------|----------------------|
|       | 00000       | 00000      | 000              | 00                   |
|       | 00          | 0000       | 00               |                      |
|       |             | 00         |                  |                      |

Definition

A set  $\mathcal{L}'\subset\mathcal{L}$  that is a lattice in its own right will be called sublattice of  $\mathcal L$ 



▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

| Title | Definitions | Algorithms | The dual Lattice |  |
|-------|-------------|------------|------------------|--|
|       | 00000       | 00000      | 000              |  |
|       | 00          | 0000       | 00               |  |

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

#### End

## The dual lattice $\mathcal{L}^*$

#### Definition

A set  $\mathcal{L}'\subset\mathcal{L}$  that is a lattice in its own right will be called sublattice of  $\mathcal L$ 

#### Lemma

Let  $v \in \mathcal{L}^*$  be primitive. Then

- $\mathcal{L} \cap (v^{\perp})$  is an (n-1)-dimensional sublattice of  $\mathcal{L}$ .
- There is a vector  $\mathbf{b} \in \mathcal{L}$  such that  $\boldsymbol{v} \cdot \mathbf{b} = 1$

| itle | Definitions | Algorithms | The dual Lattice |  |
|------|-------------|------------|------------------|--|
|      | 00000       | 00000      | 000              |  |
|      | 00          | 0000       | 00               |  |

#### Definition

A set  $\mathcal{L}'\subset\mathcal{L}$  that is a lattice in its own right will be called sublattice of  $\mathcal L$ 

#### Lemma

Let  $\boldsymbol{\upsilon} \in \mathcal{L}^*$  be primitive. Then

- $\mathcal{L} \cap (v^{\perp})$  is an (n-1)-dimensional sublattice of  $\mathcal{L}$ .
- There is a vector  $\mathbf{b} \in \mathcal{L}$  such that  $v \cdot \mathbf{b} = 1$

#### Lemma

We can create a basis  $\mathbf{w}_n, \dots, \mathbf{w}_1$  with Gram-Schmidt orthogonalization  $\left(\frac{\boldsymbol{v}_n}{\|\boldsymbol{v}_n\|^2}, \dots, \frac{\boldsymbol{v}_1}{\|\boldsymbol{v}_1\|^2}\right)$ .

| Title | Definitions<br>00000<br>00 | Algorithms<br>00000<br>0000<br>000 | The dual Lattice<br>○○○<br>●○ | Attacking cryptosystems<br>00 | End |
|-------|----------------------------|------------------------------------|-------------------------------|-------------------------------|-----|
|       |                            |                                    |                               |                               |     |

### Contents

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

#### Title

### Definitions

Useful Definitions The Problem

#### Algorithms

Main Idea-Algorithms for 1,2-dimensions Preparation for the LLL Algorithm The Algorithm

### The dual Lattice

Some definitions

### Gram-Schmidt lower bound property

Attacking cryptosystems

A Lattice attack on RSA

#### End

| Title | Definitions | Algorithms | The dual Lattice | Attacking cryptosystems | E |
|-------|-------------|------------|------------------|-------------------------|---|
|       | 00000       | 00000      | 000              | 00                      |   |
|       |             | 00         |                  |                         |   |

# Gram-Schmidt lower bound is not so bad

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回 りへぐ



The dual Lattice

# Gram-Schmidt lower bound is not so bad

#### Minkowski's theorem

### There is a vector $\mathbf{b} \in \mathcal{L}$ such that $\|\mathbf{b}\| \leq \sqrt{n} \sqrt[n]{\det \mathcal{L}}$ .

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●



The dual Lattice

## Gram-Schmidt lower bound is not so bad

#### Minkowski's theorem

There is a vector  $\mathbf{b} \in \mathcal{L}$  such that  $\|\mathbf{b}\| \leq \sqrt{n}\sqrt[n]{\det \mathcal{L}}$ .

#### Theorem

There is a basis for  $\mathcal{L}$  whose Gram-Schmidt lower bound is at least OPT/n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

| Title | Definitions<br>00000<br>00 | Algorithms<br>00000<br>0000<br>000 | The dual Lattice<br>000<br>00 | Attacking cryptosystems<br>●0 | End |
|-------|----------------------------|------------------------------------|-------------------------------|-------------------------------|-----|
|       |                            |                                    |                               |                               |     |

# Contents

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

#### Title

### Definitions

Useful Definitions The Problem

#### Algorithms

Main Idea-Algorithms for 1,2-dimensions Preparation for the LLL Algorithm The Algorithm

### The dual Lattice

Some definitions Gram-Schmidt lower bound property

### Attacking cryptosystems

A Lattice attack on RSA

#### End

| Title | Definitions | Algorithms | The dual Lattice | Attacking cryptosystems | End |
|-------|-------------|------------|------------------|-------------------------|-----|
|       | 00000       | 00000      | 000              | 0.                      |     |

# Solving modular equations

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回 りへぐ

| Title | Definitions<br>00000<br>00 | Algorithms<br>00000<br>0000 | The dual Lattice<br>000<br>00 | Attacking cryptosystems<br>O• | End |
|-------|----------------------------|-----------------------------|-------------------------------|-------------------------------|-----|
|       |                            | 00                          |                               |                               |     |

# Solving modular equations

#### Lemma

If f is a polynomial modulo n and h is a polynomial having the same roots as f modulo n and has 'small' norm then all the roots of f (smaller than some value) are also roots of h over the integers.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

| Title | Definitions | Algorithms          | The dual Lattice | Attacking cryptosystems | End |
|-------|-------------|---------------------|------------------|-------------------------|-----|
|       | 00000       | 00000<br>0000<br>00 | 000<br>00        | 0•                      |     |

# Solving modular equations

#### Lemma

If f is a polynomial modulo n and h is a polynomial having the same roots as f modulo n and has 'small' norm then all the roots of f (smaller than some value) are also roots of h over the integers.

The LLL algorithm can find such a polynomial h and then solve the equation h(x) = 0 over the integers to get small solutions.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ
| Title | Definitions<br>00000<br>00 | Algorithms<br>00000<br>0000<br>000 | The dual Lattice<br>000<br>00 | Attacking cryptosyste |
|-------|----------------------------|------------------------------------|-------------------------------|-----------------------|
|       |                            |                                    |                               |                       |

## QUESTIONS



・ロト ・ 通 ト ・ 注 ト ・ 注 ・ つ へ ()・

End