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Lattice

Definition

A Lattice L in <n is a discrete subgroup of <n which spans the
real vector space <n.

L =

{
n∑

i=1

λiai | λi ∈ Z

}
a1, a2, · · · , an is a basis of the lattice

Figure: A Lattice in <2
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More useful things

Theorem

Let L be a n-dimensional lattice and

• A be the n × n matrix whose rows are the basis a1, · · · , an.

• B be the n × n matrix whose rows b1, · · · , bn ∈ L.

The following conditions are equivalent:

1. b1, · · · , bn form a basis for L.

2. | det(A)| = | det(B)|.
3. there is an n × n matrix U such that B = UA and
| det(U)| = 1.

So the determinant of all the bases of L is invariable.
det(A) = detL
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More useful things

Definition

The Eucledian norm of a vector x is ‖x‖ =
√

x2
1 + · · ·+ x2

n where

x1, x2, · · · , xn are the coefficients in an orthonormal system.

Definition

Hadamard’s inequality states that detL ≤ ‖a1‖ · · · ‖an‖

Definition

Orthogonality defect of the basis a1, a2, · · · , an

‖a1‖ · · · ‖an‖
detL
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Primitivity

Definition

The linearly independent vectors b1, · · · ,bk ∈ L are primitive if
they can be extended to a basis of L.

Definition

A vector a ∈ L is shortest in its direction if xa is not in L for
0 < x < 1.

Theorem

Vector a ∈ L is primitive iff a is shortest in its direction.
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Shortest vector problem

Definition

Given a lattice L, find the shortest vector, in Eucledian norm, in L.

The shortest of the basis is not always the shortest vector.
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The main idea

A good strategy:

1. Change the basis of the lattice (in some way) to a good one
(short vectors nearly orthogonal).

2. Take the shortest vector of the basis.

We must prove that this vector is the shortest, or the shortest
within some factor.
Step 1 is called Lattice (Basis) Reduction
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Algorithm for the 1-dimensional Lattices
Euclid’s Algorithm

• Consider an 1-d lattice with basis a ∈ <.

Then the shortest vector is simply a.

• Consider an 1-d lattice with basis a, b ∈ <.

Then the shortest vector is the smallest number expressed as
an integer l.c. of a, b: gcd(a, b).
Euclid’s algorithm: gcd(a, b) = gcd(b, a−mb) where m is the
integer closest to a/b.
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Algorithm for the 2-dimensional Lattices
Gauss reduced basis

How orthogonal our basis vectors have to be?

Theorem

Suppose b1, b2 is a basis for a 2-d L and ‖b1‖ ≤ ‖b2‖. Suppose
θ ∈ (0◦, 180◦) the angle between the two vectors. If
60◦ ≤ θ ≤ 120◦ then b1 is the shortest vector in L.

Let µ21b1 denote the projection of the vector b2 in the direction of
the vector b1:

µ21 =
‖b2‖ · ‖b1‖
‖b1‖2

If ‖b1‖ ≤ ‖b2‖ and |µ21| ≤ 1/2 then the basis b1, b2 is Gauss
reduced basis.
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Gauss’s Algorithm

Algorithm for S.V. in 2-d

repeat
if ‖b1‖ > ‖b2‖ then

swap b1,b2
end if
m← bµ21e
b2 ← b2 −mb1

until ‖b1‖ < ‖b2‖
return b1

• Similarity with the
Euclidean Algorithm

• Terminates in a finite
amount of time

• Polynomial complexity
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Gram-Schmidt orthogonalization

Let b1 · · ·bn the basis of L.

The Gram-Schmidt orthogonalization
of this basis is: b∗1 · · ·b∗n and is given by the following iterative
formula:

b∗1 = b1

b∗i = bi −
i−1∑
j=1

bib∗j

‖b∗j ‖2
b∗j

Define

µij =
bib∗j

‖b∗j ‖2

and µii = 1. Then

bi =
i−1∑
j=1

µijb
∗
j
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Lower bounding OPT

If OPT is the length of the shortest vector in the lattice then:

OPT ≥ min{‖b∗1‖, · · · , ‖b
∗
n‖}
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LLL Reduced Basis

The basis b1, · · · , bn is LLL reduced if for 1 ≤ i ≤ n − 1:

• |µij | ≤ 1
2 for 1 ≤ i < j ≤ n and

• ‖b∗i ‖2 ≤ 4
3‖b

∗
i+1 + µi+1,ib

∗
i ‖2

An LLL Reduced Basis is reasonably orthogonal:

‖b1‖ · · · ‖bn‖
detL

≤ 2
n(n−1)

2

In an LLL Reduced Basis we have that:

‖b1‖ ≤ 2
n−1

2 OPT

So we want an algorithm which turns an arbitrary basis into an
LLL reduced in polynomial time in n.
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Shortest vector Algorithm

LLL (B = b1, · · · , bn)

B← SizeReduce(B)
while ∃i violating ‖b∗

i ‖2 ≤ 4
3
‖b∗

i+1 + µi+1,ib
∗
i ‖2 do

swap bi, bi+1

update µhk and b∗
k for all h, k

B← SizeReduce(B)
end while
return b1

SizeReduce (B = b1, · · · , bn)

for j = 2, · · · , n do
for i = j − 1, · · · , 1 do

bj ← bj − bµjibie
µjk ← µjk − µjibiµik for k = 1, · · · , i

end for
end for
return B



Title Definitions Algorithms The dual Lattice Attacking cryptosystems End

Contents

Title

Definitions
Useful Definitions
The Problem

Algorithms
Main Idea-Algorithms for 1,2-dimensions
Preparation for the LLL Algorithm
The Algorithm

The dual Lattice
Some definitions
Gram-Schmidt lower bound property

Attacking cryptosystems
A Lattice attack on RSA

End



Title Definitions Algorithms The dual Lattice Attacking cryptosystems End

The dual lattice L∗

Definition

The dual lattice L∗ of the lattice L is defined by:

L∗ = {υ ∈ <n|∀b ∈ L,b · υ ∈ Z}

Theorem

Let b1 · · ·bn be any basis for L. Then, the rows of B−T form a
basis for the dual lattice L∗. Furthermore, detL∗ = 1

detL .

Definition

Let υ ∈ <n be a non-zero vector. Then, υ⊥ will denote the
(n − 1)-dimensional space {b ∈ <n|b · υ = 0}
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The dual lattice L∗

Definition

A set L′ ⊂ L that is a lattice in its own right will be called
sublattice of L

Lemma

Let υ ∈ L∗ be primitive. Then

• L ∩ (υ⊥) is an (n − 1)-dimensional sublattice of L.

• There is a vector b ∈ L such that υ · b = 1

Lemma

We can create a basis wn, · · · ,w1 with Gram-Schmidt
orthogonalization ( υn

‖υn‖2 , · · · , υ1
‖υ1‖2 ).
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Gram-Schmidt lower bound is not so bad

Minkowski’s theorem

There is a vector b ∈ L such that ‖b‖ ≤
√

n n
√

detL.

Theorem

There is a basis for L whose Gram-Schmidt lower bound is at least
OPT/n.
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Solving modular equations

Lemma

If f is a polynomial modulo n and h is a polynomial having the
same roots as f modulo n and has ’small’ norm then all the roots
of f (smaller than some value) are also roots of h over the integers.

The LLL algorithm can find such a polynomial h and then solve
the equation h(x) = 0 over the integers to get small solutions.
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