How much Can Taxes Help Selfish Routing

Ακαδημαϊκό Έτος 2010-2011

Παπαλεξίδης Νίκος

Introduction

- Selfish behavior in networks
- Nash equilibrium
- Pricing network edges impose taxes
- Total cost (disutility) : Latency + Taxes
- Benefits of taxes on networks and complexity of computing optimal taxes

Nash equilibrium - flows

- Selfish routing Each user routes itself on minimum-latency path, given the network congestion due to other users
- Nash equilibrium : Stable point in which no user has an incentive to unilaterally alter its strategy
- Nash flow : All traffic is routed on paths with minimum-possible latency
- Nash equilibrium is not optimal : Latency is not minimized
- Marginal taxes
- Total cost = Latency + Taxes

Routing model

- Traffic from source s to sink t in a graph G(V, E)
- Latency function $l_e(f)$ for each edge e (function of the flow f)

Braess paradox

Initial network

<u>delay = 1.5</u>

Extra edge v-w added

<u>delay = 2.0</u>

Improve situation with taxes

Tax = $\frac{1}{2}$ on edge $\frac{v-w}{w}$ <u>delay = 1.5</u> <u>tax + delay = 1.5</u>

<u>Result</u> : No taxes paid Latency improved (*1.5* from *2.0*)

Total cost = Latency + Taxes

Marginal taxes

Marginal cost pricing : Each user should pay a tax equal to the additional delay other users experience because of his presence

Marginal taxes on edges s-v and x-t are $\frac{1}{2}$ and 0 on other edges delay = 1.5

but : tax + delay = 2.0

Latency improved Total cost did not improve

Problem - Questions

- Goal : Decrease the total cost (Latency + Taxes) using taxes
- Questions studied :
 - Are marginal taxes a good idea for minimizing Nash equilibrium?
 - Compare the efficiency of taxes with that of edge removal (note that a large edge tax removes the edge from the network)
 - Compute or approximate efficiently the optimal taxes

Model - definitions

- Simple Path *P* from *s* to *t*
- Flow f_p on each path P
- Flow f_e on edge e
- r : traffic rate
- $l_e(f_e)$: latency function on edge e
- $l_p(f)$: latency of a path *P* with respect to flow *f*
- L(f): total latency $L(f) \equiv \sum_{P} l_{P}(f) f_{P} = \sum_{e \in E} l_{e}(f_{e}) f_{e}$
- Optimal or minimum-latency flow : minimizing *L(f)*
- τ_e : tax on edge *e*
- τ_P : total taxes on a path *P*
- $C(f,\tau)$: Cost of a flow f (Latency + Taxes)
- (G,r,l) instance of G
- $(G,r,l+\tau)$: instance with taxes

$$C(f,\tau) \equiv \sum_{P} [l_{P}(f) + \tau_{P}]f_{P} = \sum_{e \in E} [l_{e}(f_{e}) + \tau_{e}]f_{e}$$

Flows at Nash equilibrium

- Proposition (2.6) : If f is at Nash equilibrium for $(G,r,l+\tau)$, then there is a constant $c \ge 0$ with $l_p(f) + \tau_p = c$. Moreover $C(f,\tau) = r \cdot c$ (all paths have the same latency +tax)
- Marginal tax τ_e : $\tau_e = f_e \cdot l'_e(f_e)$
- **Proposition (3.1)** : *(G,r,l)* instance with latency function admitting minimumlatency flow f^* . If τ_e is marginal cost tax for edge e, f^* is at Nash equilibrium for *(G,r,l+t)*

Meaning : Marginal taxes induce the minimum-latency flow as a flow at Nash equilibrium

- Effective way to minimize the total latency of a Nash flow with edge taxes
- How effective are marginal taxes if we account the total cost (latency+taxes)?

When do marginal costs help?

• Theorem 3.2 : (G,r,l) instance with <u>linear</u> latency function. Let f and f^{T} be Nash flows for (G,r,l) and $(G,r,l+\tau)$ respectively.

Then $C(f, 0) \leq C(f^{T}, \tau)$

- > Meaning : Linear marginal taxes can not improve total cost
- > Same result for latency function $\alpha_e x^p + b_e$ with $\alpha_e, b_e \ge 0$ (fixed p)

Effectiveness of arbitrary taxes – Upper bounds

- *Price of anarchy (PA)*: Largest possible ratio between the total latency of a Nash flow and that of a minimum latency flow.
- Can be used as upper bound of the maximum-possible reduction in cost due to taxes.
- Prop. 4.1 : Linear latency functions, *PA=4/3* (see example Braess Paradox)
- Prop. 4.2 : Latency functions polynomial with degree at most p, $PA \rightarrow O(p/logp)$
- Theorem 4.5 : (G,r,l) and (G,r,l+τ) instances with f and f^T Nash flows respectively. Then

$$L(f) \leq \left\lfloor \frac{n}{2} \right\rfloor \cdot C(f^{\tau}, \tau)$$

Comparing Taxes with Edge Removal

- <u>Networks with linear latency functions</u>
- Theorem 5.1 : An instance with linear latency functions admits an optimal set of taxes that is $0/\infty$
 - Meaning: Taxes in linear latency networks are equivalent with edge removal with respect to the maximum reduction of the Nash flow (= 4/3)
 - Taxes in these networks can not improve the Nash flow more than the removal of some edges

Comparing Taxes with Edge Removal

- <u>Networks with general latency functions</u>
- Theorem 5.2 : For each integer $n \ge 2$, there is an instance (G,r,l) with $c(H,r,l) = \left\lfloor \frac{n}{2} \right\rfloor$ for all subgraphs H of G but $c(H,r,l+\tau) = 1$ for some tax $\tau \ge 0$.
 - Meaning : Taxes in general latency networks can improve the Nash flow by a $\lfloor \frac{n}{2} \rfloor$ factor beyond what is achievable by removing edges.
 - Removing edges can improve the Nash flow by a $\left|\frac{n}{2}\right|$ factor ([1])
 - Combined taxes+edge removal cannot improve more than $\left\lfloor \frac{n}{2} \right\rfloor$ (due to Theorem 4.5)

Comparing Taxes with Edge Removal

• Examples : Braess Graphs

S

(b) B^{3}

Complexity of Computing Optimal Taxes

Trivial algorithm : Assign all edges zero taxes

Approximation factor

- Linear latency : 4/3
- Polynomial latency functions with degree p : Θ(p/logp)
- General latency functions : $\left|\frac{n}{2}\right|$
- Theorem 6.2 : Unless P=NP, ($\epsilon>0$), the problem of computing optimal taxes has no approximation algorithm with factor
 - (4/3-ε) for linear latency networks
 - o(p/logp) for polynomial with degree p networks
 - O(n^{1-ε}) for general networks

Conclusion

Problem Studied	Linear Latency function	General latency function
Can marginal taxes help?	No	Yes
Maximum benefit of taxes	4/3	n/2
Taxes better than network design (edge removal)	No	Yes
Approximability of optimal taxes	4/3	O(n ^{1-ε})

References

- [1] T. Roughgarden. Designing networks for selfish users is hard. In *Proceedings of the 42nd* Annual Symposium on Foundations of Computer Science, pages 472–481, 2001.
- [2] T. Roughgarden and E. Tardos. How bad is selfish routing? *Journal of the ACM,* 49(2):236–259, 2002. Preliminary version in FOCS '00.
- [3] R.Cole, Y.Dodis and T.Roughgarden. How Much Can Taxes Help Selfish Routing? EC '03, pages 98-107.