
Compact Routing
Algorithms

Christos Litsas

June 21, 2011



Outline

The Problem

Algorithms



The Problem

Given a network, represented as a graph we ask how to deliver
one or more messages between its nodes.
A mechanism is required that is able to deliver packages of
data from any node of the network to any other node.



What We Need...

I local routing tables
I routing strategy

I A global preprocessing algorithm, which initializes the local
data structures of all nodes and which-if this is allowed by
the model of the network - assigns labels to the nodes and
port numbers to the edges (otherwise, the node labels and
port numbers, respectively, are part of the input graph and
cannot be changed), and

I a distributed algorithm, called the routing scheme, which
implements an adequate routing function.



A Dummy Algorithm

Preprocessing phase:
I Calculate all shortest paths between all pairs of nodes.
I At each node v of the network a routing table is stored

which contains for each node w of the network the port
number of the edge leading from v to the next node on the
shortest path from v to w .

Routing:
I If a data package whose header contains the label of a

node w as destination address arrives at a node v , the
routing algorithm at v searches in the local routing table of
v for the entry belonging to w and sends the package
through the edge determined by the port number found in
the table.



Performance Measurements

I the memory space needed in each node (called local
memory).

I the total memory space used by all nodes (called total
memory),

I the stretch,
I the sizes of the addresses and package headers,
I the time needed to compute the routing function (called

routing time or latency),
I the time needed for the preprocessing.



Universal Routing Strategies

I Labeled Routing
I Name-Independent Routing.



An Interval Routing Scheme for Trees

Preprocessing the tree is rooted at an arbitrary node, and the
nodes are labeled via a depth first search (DFS).

Node Data I its address a(v)
I the highest address occurring in the subtree

rooted at v , denoted with fv ,
I the port number of the edge leading to the

parent of v , and
I a table with one entry (ai ,pi) for each child vi

of v , (ai : highest node address occurring in
the subtree rooted at vi and pi is the port
number p(v , vi) of the edge leading from v to
vi ).



An Interval Routing Scheme for Trees

1

2

3

4

5

6 7

8

9

10 11

12

13

1

1

1

2
3

1

2

1 1

2 3

1 1

2

1

2

2

1

3

1

2

1

3

1

Figure: A network.



An Interval Routing Scheme for Trees

1. If a(w) = a(v): The package has reached its destination.
Stop.

2. If a(w) < a(v) or a(w) > fv : The destination is not a
descendant of v . Send the package to the parent of v and
Stop.

3. Otherwise, the destination node lies in a subtree rooted at
a child of v . Search in the local memory the entry (ai ,pi)
with the smallest ai ≥ a(w) and send the package through
the port numbered with pi .



An Improved Labeled Routing Scheme for Trees
The tree nodes are partitioned (by a DFS) into
heavy and light nodes

Preprocessing the tree is rooted at an arbitrary node, and the
nodes are indexed via a depth first search (DFS).

Node Data I its index dfsv ,
I the highest address occurring in the subtree

rooted at v , denoted with fv ,
I if v has a heavy child, the index of the heavy

child, denoted with hv ; otherwise hv = fv + 1,
I the number of light nodes (including v itself if

v is light) lying on the path from the root to v ,
called the light level of v and denoted with `v ,

I the port number of the edge to the parent of
v , denoted with Pv [0], and

I the port number of the edge leading to the
heavy child of v , denoted with Pv [1] (if v has
no heavy child, Pv [1] contains an arbitrary
entry).



An Improved Labeled Routing Scheme for Trees

1

2

3

4

5

6 7

8

11

12 13

9

10

1

1

1

2

1

2

1 1

2 3

1 1

2

1

2

2

1

3

1

2

1

3

1

3
(2,1)

(8,2)

(9,2,3)(3,1,2) (5,1) (11,2)

(6,1,2) (7,1,3) (12,2,2) (13,2,3) (10,2,3)(4,1,2)

(1)

Figure: A network.



An Improved Labeled Routing Scheme for Trees

1. If dfsw = dfsv : The package has reached its destination.
Stop.

2. If dfsw < dfsv or dfsw > fv : The destination is not a
descendant of v . Send the package through the edge
labeled with Pv [0] to the parent of v and stop.

3. If dfsw ≥ hv : The destination is a node in the subtree
rooted at the heavy child of v (because the heavy child is
the last child visited by the DFS). Send the package
through the edge labeled with Pv [1] to the heavy child of v
and Stop. 4. Otherwise, the destination must be a node in
a subtree rooted at a light child of v . Send the package
through the edge labeled with Lw ,`v+1 to the light child of v
who lies on the path from v to the destination node (the
port number Lw ,`v+1 can be extracted from the destination
address).


	The Problem
	Algorithms

