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Introduction The Class #P
Approximation Schemes

Basic Definitions

@ There are many problems where we want to count the
number of solutions.

@ Of course, this is more “difficult” than finding if a solution
exists!

@ We want to define the class of counting the number of
solutions to NP problems:

Definition

Let L € NP, M its associated verifier, and polynomial p the bound
on the length of its "Yes" certificates.

For a string x € *, define f(x) to be the number of strings y
such that |y| < p(|x]) and M(x,y) = 1.

Functions f : £* — N constitute the class #P.
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Approximation Schemes

Basic Definitions

Definition (#P-Completeness)

Function f is said to be #P-complete if every function g € #P
can be reduced to f in the following sense:
@ There is a polynomial-time function R : X* — ¥* such that,
given an instance x of g, produces an instance R(x) of f.
@ There is a polynomial-time function S : ¥* x Z* — Z™ such
that, given x and f(R(x)), computes g(x), i.e.:

g(x) = S(x,f(R(x))),Vx € **

@ The solution conting versions of all known NP-complete
problems are #P-complete!
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Approximation Schemes

Basic Definitions

Definition

A Randomized Approximation Scheme (RAS) for a function

f :X* — N is a Probabilistic Turing Machine that takes as input a
pair (x,e) € X* x (0,1) and produces as output an integer random
variable Y satisfying the condition:

Pre *f(x) < Y < f(x)] >

Bl w

A RAS is said to be fully polynomial (FPRAS) if it runs in time
poly(|x|,e~1).
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Counting DNF Solutions

Counting DNF solutions
Let:

f.-GVGV---VCy

Where C; = Ab A--- Al and [; is a literal. We assume that
each clause is satisfiable.

We want to compute #f ="“the number of satisfying truth
assignments of f".
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Counting DNF Solutions

@ The idea is to define a r.v. X s.t. E[X] = #f (unbiased
estimator).

o Let S; the set of t.a. to x1,...,x, that satisfy C;.

o |Sj| =2""" and #f = US|

o Let ¢(7) the number of clauses t.a. 7 satisfies.

@ Let M be the multiset union of S;'s=-It contains each
satisfying t.a. 7, ¢(7) times!

@ Pick a satisfying t.a. 7 for f with probability c(7)/|M].

o Define

L4

X0 =)

@ X can be efficiently sampled:
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Counting DNF Solutions

Random Variable X can be efficiently sampled.

Proof:
e Pick clause: Pr[Picking Clause Ci]=|Si|/|M]|
@ Among the t.a. satisfying the picked clause, choose one at
random.
@ The probability with which 7 is picked is:

3 5 1 _clr)
M| 1S M

iiT satisfies C;

O
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Counting DNF Solutions

X is an unbiased estimator for #f.

Proof:

E[X]ZZPr[T is picked] - X (1) = Z mx(m:#f

T satisfies f

O
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Counting DNF Solutions

If m denotes the number of clauses in f, then:

o (X)
Epqg =™ 1

Proof:

o Let = |M|/m. Clearly, E[X] > a (1).

@ For each satisfying t.a. 7 of f: 1 < ¢(7
X(7) € [, ma] and |[X(7) — E[X(7)]|

e So, o(X) < (m—1)a (2).

@ (1) & (2) prove the lemmal!

m. So,

—1a.

) <
< (m

0
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Counting DNF Solutions

For any € > 0,
Pr[IXe — #f] < c#f] > -
where k = 4(m — 1)2/2.
Proof:
Pr{1X — E[X| > ¢ E[Xd]] < <Ué)[<§<)k]> - (%) <l
So finally,

The is an FPRAS for the problem of counting DNF solutions!
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Basic Definitions

Definition

An approximation-preserving reduction from f to g is a
probabilistic oracle Turing Machine M that takes as input a pair
(x,e) € £* x (0,1), and satisfies the following conditions:

@ Every oracle call made by M is of the form (w,¢), where w is
an instance of g, and ¢ € (0,1) is an error bound satisfying
5 < poly(|x|,e™1).
@ M is a RAS for f whenever its oracle is a RAS for g.
© M runs in poly(|x|,e71).
If such a reduction form f to g exists, we write f <ap g
(AP-reducible).
If (f <ap g) A (g <ap f), we write f =ap g (AP-interreducible).
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Essential Counting Problems

#SAT Definition

Instance: A Boolean formula ¢ in CNF.
Output: The number of satisfying assignments to ¢.

| A

#BIS Definition

Instance: A bipartite graph B.
Output: The number of indepedent sets in B.

Three classes of AP-interreducible problems:
@ The class of counting problems that admit an FPRAS.
@ The class of counting problems AP-interreducible with #SAT.
© The class of counting problems AP-interreducible with #BIS.
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Counting Problems that admit an FPRAS

@ Problems that admit an FPRAS despite being #P-Complete!

#MATCH Definition

Instance: A Graph G.
Output: The number of matchings (of all sizes) in G.

| \

#DNF Definition

Instance: A Boolean formula ¢ in DNF.
Output: The number of satisfying assignments to ¢.
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Counting problems AP-interreducible with #SAT

Definition

Suppose f,g : ¥* — N. A parsimonious reduction from f to g is a
function p : X* — X* satisfying:

0 f(w)=g(p(w)),Yw € T*
@ p is computable by a polynomial-time deterministic TM

@ Parsimonious reduction preserve the number of solutions.

@ A parsimonious reduction is a special instance of an
AP-reduction.

@ #SAT is #P-complete with respect to AP-reducibility.

@ Zuckerman (1996) proved that there is no FPRAS for #SAT
unless NP = RP.
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Counting problems AP-interreducible with #SAT

Definition (Counting Versions of NP-Complete Problems)

If A: ¥* — {0,1} some decision problem in NP.
It is known that:

Alx) =1s Ty, lyl = p(x]) : R(x,y) =1)

for a polynomial-time computable predicate R.
The counting problem #A : ¥* — N, corresponding to A, is
defined by:

#A(x) =y« lyl = p(Ix]) A R(x, y)}|
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Counting problems AP-interreducible with #SAT

Let A be an NP-complete decision problem. Then, the
corresponding counting problem #A is #P-complete with respect
to AP-reducibility.

Proof:
o #A€E #P
@ Also, #SAT is AP-reducible to #A: #SAT can be approximated

by PTM M equipped with an oracle for the decision problem
of SAT.

@ This oracle can be replaced by an approximate counting oracle
(RAS) for #A.

@ Thus, M consists an approximation-preserving reduction from
#SAT to #A. O
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Counting problems AP-interreducible with #SAT

#LARGEIS Definition

Instance: A positive integer m and a graph G in which every
indepedent set has size at most m.
Output: The number of size-m indepedent sets in G.

#LARGEIS =ap #SAT

#IS Definition

Instance: A graph G.
Output: The number of indepedent sets (of all sizes) in G.

#IS =AP #SAT
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Counting problems AP-interreducible with #BIS

# P,—COL Definition
Instance: A graph G.

Output: The number of P, colourings of G, where Py is the path
of length 3.

#DOWNSETS Definition

Instance: A partially ordered set (X, <).
Output: The number of downsets in (X, <).

#1P1NSAT Definition

Instance: A CNF Boolean formula ¢, with at most one unnegated
literal per clause, and at most one negated literal.
Output: The number of satisfying assignments to ¢.

| A
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Counting problems AP-interreducible with #BIS

#BEACHCONFIGS Definition

Instance: A graph G.

Output: The number of Beach Configurations in G (P colourings
of G, where P; is the path of length 3 with loops on all four
vertices).

The problems #BIS, #P4 —-COL, #DOWNSETS, #1P1NSAT,
#BEACHCONFIGS are all AP-interreducible.

o Very easily:
#BIS =AP #P4—COL
#DOWNSETS =ap #1P1NSAT
@ We can also show the reduction:
#BIS <ap #BEACHCONFIGS <ap #DOWNSETS <ap #BIS
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Counting problems AP-interreducible with #BIS

#BIS =AP #P4 -COL

Proof:
These problems are essentially the same:

A graph G is Ps-colourable < is Bipartite

Two of the colours point out the IS!
Conversely, an IS in a (connected) bipartite graph arises from one
of the two P, colourings!

0
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Counting problems AP-interreducible with #BIS

_

#DOWNSETS = ap #1P1NSAT

Proof:
The first is a restricted case of the second, in which:

@ All clauses have two literals (x = y)
@ There are no cyclic chains of implications:
Xo = X1 = - = Xy—1 = X0.
-Given an instance of #1P1NSAT, any forced variables (1) may be
removed by substituting TRUE or FALSE.
-Any set of ¢ variables forming a cycle (2) may be replaced by a
single one.

O
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A Logical Characterisation #BIS and its relatives

@ A counting problem is identified with a sentence ¢ in FO
Logic, the objects being counted with models of ¢.
@ Standard Definitions:
o Vocabulary: o = {ko,...kk_l}
k,-'s are relation symbol of arities ry, ..., rx_1
Structure A = (A, Ro, ..., Rk_1) over o consists a universe A
e Each relation R; C A" is an interpretation of k,-.

@ We present counting problems as structures over suitable
vocabularies:

An instance of #IS is a graph which can regarded as a structure
A = (A, ~), where A is the vertex set, and "~" is the symmetric
binary relation of adjacency.
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A Logical Characterisation #BIS and its relatives

@ The objects to be counted are represented as sequences of
relations T = (T1,..., T,—1) and first-order variables

z=1(20,...,Zm-1.

Definition
A counting problem f (from structures over o to N) is in the class
#FO if it can be expressed as:

f(A) = {(T,2): A = ¢(z, T)}|

where ¢ is a FO formula with relation symbols from ¢ U T and
(free) variables from z.
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A Logical Characterisation #BIS and its relatives

If we encode an IS as a unary relation /, then #IS:

fis(A) = {(I) : AEVx,y i x ~y = =l(x) vV =l(y)}]

@ #IS is in the subclass #MN; C #FO (since the formula
contains only universal quantification).

@ In general, we have a (strict) hierarchy of subclasses:
#Yo=H#Mg C#X1 C#MNy CH#Xo CH#Mo = #FO =#P

@ All functions in #X1 admit an FPRAS!

@ All AP-interreducible problems we saw are in the (syntactically
restricted) subclass #RHIMy C #;:
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A Logical Characterisation #BIS and its relatives

Definition
A counting problem f is in the class #RHT1; if it can be expressed
in the form:

F(A) = {(T,2) : A= Vy :(y,z, T)}

where v is an unquantified CNF formula in which each clause has
at most one occurence of an unnegated relation symbol from T,
and at most one occurence of a negated relation symbol from T.

@ "RH" stands for " Restricted Horn"

@ The restriction on clauses of v applies only to terms involving
symbols from T.
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A Logical Characterisation #BIS and its relatives

Example

An instance of #DOWNSETS can be expressed as a structure
A=(AX).

Then, #DOWNSETS € #RHI11, since the number of downsets may
be expressed as:

fos(A) = {(D) : A= Vx,y € A: D(x) A (y = x) = D(y)}

Theorem

The problems #BIS, #P,-COL, #DOWNSETS, #1P1NSAT,
#BEACHCONFIGS are all complete for #RHT1y, with respect to
AP-reducibility!
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Thank You!
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