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Basic Definitions

There are many problems where we want to count the
number of solutions.

Of course, this is more “difficult” than finding if a solution
exists!

We want to define the class of counting the number of
solutions to NP problems:

Definition

Let L ∈ NP, M its associated verifier, and polynomial p the bound
on the length of its “Yes” certificates.
For a string x ∈ Σ∗, define f (x) to be the number of strings y
such that |y | ≤ p(|x |) and M(x , y) = 1.
Functions f : Σ∗ → N constitute the class #P.
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Definition (#P-Completeness)

Function f is said to be #P-complete if every function g ∈ #P
can be reduced to f in the following sense:

There is a polynomial-time function R : Σ∗ → Σ∗ such that,
given an instance x of g , produces an instance R(x) of f .

There is a polynomial-time function S : Σ∗ × Z+ → Z+ such
that, given x and f (R(x)), computes g(x), i.e.:

g(x) = S(x , f (R(x))), ∀x ∈ Σ∗

The solution conting versions of all known NP-complete
problems are #P-complete!
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Definition

A Randomized Approximation Scheme (RAS) for a function
f : Σ∗ → N is a Probabilistic Turing Machine that takes as input a
pair (x , ε) ∈ Σ∗ × (0, 1) and produces as output an integer random
variable Y satisfying the condition:

Pr
[
e−εf (x) ≤ Y ≤ eεf (x)

]
≥ 3

4

A RAS is said to be fully polynomial (FPRAS) if it runs in time
poly(|x |, ε−1).
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Counting DNF solutions

Let:
f : C1 ∨ C2 ∨ · · · ∨ Cm

Where Ci = l1 ∧ l2 ∧ · · · ∧ lri , and lj is a literal. We assume that
each clause is satisfiable.
We want to compute #f =“the number of satisfying truth
assignments of f ”.
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The idea is to define a r.v. X s.t. E [X ] = #f (unbiased
estimator).

Let Si the set of t.a. to x1, . . . , xn that satisfy Ci .

|Si | = 2n−ri and #f = |∪m
i=1Si |.

Let c(τ) the number of clauses t.a. τ satisfies.

Let M be the multiset union of Si ’s⇒It contains each
satisfying t.a. τ , c(τ) times!

Pick a satisfying t.a. τ for f with probability c(τ)/|M|.
Define

X (τ) =
|M|
c(τ)

X can be efficiently sampled:
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Lemma 1

Random Variable X can be efficiently sampled.

Proof:

Pick clause: Pr[Picking Clause Ci ]= |Si |/|M|
Among the t.a. satisfying the picked clause, choose one at
random.

The probability with which τ is picked is:∑
i :τ satisfies Ci

|Si |
|M|
× 1

|Si |
=

c(τ)

|M|

�
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Lemma 2

X is an unbiased estimator for #f .

Proof:

E [X ] =
∑
τ

Pr [τ is picked ] · X (τ) =
∑

τ satisfies f

c(τ)

|M|
× |M|

c(τ)
= #f

�
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Lemma 3

If m denotes the number of clauses in f , then:

σ (X )

E [X ]
≤ m − 1

Proof:

Let α = |M|/m. Clearly, E [X ] ≥ α (1).

For each satisfying t.a. τ of f : 1 ≤ c(τ) ≤ m. So,
X (τ) ∈ [α,mα] and |X (τ)− E [X (τ)] | ≤ (m − 1)α.

So, σ(X ) ≤ (m − 1)α (2).

(1) & (2) prove the lemma!

�
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Lemma 4

For any ε > 0,

Pr [|Xk −#f | ≤ ε#f ] ≥ 3

4

where k = 4(m − 1)2/ε2.

Proof:

Pr [|Xk − E [Xk ] | ≥ ε · E [Xk ]] ≤
(

σ (Xk )

ε · E [Xk ]

)2

=

(
σ (X )

ε
√

kE [X ]

)2

≤ 1

4

So finally,

Theorem

The is an FPRAS for the problem of counting DNF solutions!

A.Antonopoulos (N.T.U.A.) Network Algorithms The Complexity of Approximating Counting Problems



Introduction
Approximate Counting Problems

The Class #P
Approximation Schemes

Basic Definitions

Definition

An approximation-preserving reduction from f to g is a
probabilistic oracle Turing Machine M that takes as input a pair
(x , ε) ∈ Σ∗ × (0, 1), and satisfies the following conditions:

1 Every oracle call made by M is of the form (w , δ), where w is
an instance of g , and δ ∈ (0, 1) is an error bound satisfying
δ−1 ≤ poly(|x |, ε−1).

2 M is a RAS for f whenever its oracle is a RAS for g .

3 M runs in poly(|x |, ε−1).

If such a reduction form f to g exists, we write f ≤AP g
(AP-reducible).
If (f ≤AP g) ∧ (g ≤AP f ), we write f ≡AP g (AP-interreducible).
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#SAT Definition

Instance: A Boolean formula φ in CNF.
Output: The number of satisfying assignments to φ.

#BIS Definition

Instance: A bipartite graph B.
Output: The number of indepedent sets in B.

Three classes of AP-interreducible problems:

1 The class of counting problems that admit an FPRAS.

2 The class of counting problems AP-interreducible with #SAT.

3 The class of counting problems AP-interreducible with #BIS.
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Problems that admit an FPRAS despite being #P-Complete!

#MATCH Definition

Instance: A Graph G .
Output: The number of matchings (of all sizes) in G .

#DNF Definition

Instance: A Boolean formula φ in DNF.
Output: The number of satisfying assignments to φ.
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Definition

Suppose f , g : Σ∗ → N. A parsimonious reduction from f to g is a
function p : Σ∗ → Σ∗ satisfying:

1 f (w) = g(p(w)),∀w ∈ Σ∗

2 p is computable by a polynomial-time deterministic TM

Parsimonious reduction preserve the number of solutions.

A parsimonious reduction is a special instance of an
AP-reduction.

#SAT is #P-complete with respect to AP-reducibility.

Zuckerman (1996) proved that there is no FPRAS for #SAT
unless NP = RP.
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Definition (Counting Versions of NP-Complete Problems)

If A : Σ∗ → {0, 1} some decision problem in NP.
It is known that:

A(x) = 1⇔ (∃y , |y | = p(|x |) : R(x , y) = 1)

for a polynomial-time computable predicate R.
The counting problem #A : Σ∗ → N, corresponding to A, is
defined by:

#A(x) = |{y : |y | = p(|x |) ∧ R(x , y)}|
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Theorem

Let A be an NP-complete decision problem. Then, the
corresponding counting problem #A is #P-complete with respect
to AP-reducibility.

Proof:

#A ∈ #P

Also, #SAT is AP-reducible to #A: #SAT can be approximated
by PTM M equipped with an oracle for the decision problem
of SAT.

This oracle can be replaced by an approximate counting oracle
(RAS) for #A.

Thus, M consists an approximation-preserving reduction from
#SAT to #A. �
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#LARGEIS Definition

Instance: A positive integer m and a graph G in which every
indepedent set has size at most m.
Output: The number of size-m indepedent sets in G .

Corollary

#LARGEIS ≡AP #SAT

#IS Definition

Instance: A graph G .
Output: The number of indepedent sets (of all sizes) in G .

Theorem

#IS ≡AP #SAT
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#P4-COL Definition

Instance: A graph G .
Output: The number of P4 colourings of G , where P4 is the path
of length 3.

#DOWNSETS Definition

Instance: A partially ordered set (X ,�).
Output: The number of downsets in (X ,�).

#1P1NSAT Definition

Instance: A CNF Boolean formula φ, with at most one unnegated
literal per clause, and at most one negated literal.
Output: The number of satisfying assignments to φ.
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#BEACHCONFIGS Definition

Instance: A graph G .
Output: The number of Beach Configurations in G (P∗

4 colourings
of G , where P∗

4 is the path of length 3 with loops on all four
vertices).

Theorem

The problems #BIS, #P4-COL, #DOWNSETS, #1P1NSAT,
#BEACHCONFIGS are all AP-interreducible.

Very easily:
#BIS ≡AP #P4-COL
#DOWNSETS ≡AP #1P1NSAT

We can also show the reduction:
#BIS ≤AP #BEACHCONFIGS ≤AP #DOWNSETS ≤AP #BIS
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Lemma

#BIS ≡AP #P4-COL

Proof:
These problems are essentially the same:

A graph G is P4-colourable ⇔ is Bipartite

Two of the colours point out the IS!
Conversely, an IS in a (connected) bipartite graph arises from one
of the two P4 colourings!

�
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Lemma

#DOWNSETS ≡AP #1P1NSAT

Proof:
The first is a restricted case of the second, in which:

1 All clauses have two literals (x ⇒ y)

2 There are no cyclic chains of implications:
x0 ⇒ x1 ⇒ · · · ⇒ x`−1 ⇒ x0.

-Given an instance of #1P1NSAT, any forced variables (1) may be
removed by substituting TRUE or FALSE.
-Any set of ` variables forming a cycle (2) may be replaced by a
single one.

�
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A counting problem is identified with a sentence φ in FO
Logic, the objects being counted with models of φ.

Standard Definitions:

Vocabulary: σ = {R̃0, . . . R̃k−1}
R̃i ’s are relation symbol of arities r0, . . . , rk−1

Structure A = (A,R0, . . . ,Rk−1) over σ consists a universe A

Each relation Ri ⊆ Ari is an interpretation of R̃i .

We present counting problems as structures over suitable
vocabularies:

Example

An instance of #IS is a graph which can regarded as a structure
A = (A,∼), where A is the vertex set, and ”∼” is the symmetric
binary relation of adjacency.
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The objects to be counted are represented as sequences of
relations T = (T1, . . . ,Tr−1) and first-order variables
z = (z0, . . . , zm−1.

Definition

A counting problem f (from structures over σ to N) is in the class
#FO if it can be expressed as:

f (A) = |{(T, z) : A |= φ(z,T)}|

where φ is a FO formula with relation symbols from σ ∪ T and
(free) variables from z.
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Example

If we encode an IS as a unary relation I , then #IS:

fIS (A) = |{(I ) : A |= ∀x , y : x ∼ y ⇒ ¬I (x) ∨ ¬I (y)}|

#IS is in the subclass #Π1 ⊆ #FO (since the formula
contains only universal quantification).

In general, we have a (strict) hierarchy of subclasses:

#Σ0 = #Π0 ⊂ #Σ1 ⊂ #Π1 ⊂ #Σ2 ⊂ #Π2 = #FO = #P

All functions in #Σ1 admit an FPRAS!

All AP-interreducible problems we saw are in the (syntactically
restricted) subclass #RHΠ1 ⊆ #Π1:
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Definition

A counting problem f is in the class #RHΠ1 if it can be expressed
in the form:

f (A) = |{(T, z) : A |= ∀y : ψ(y, z,T)}|

where ψ is an unquantified CNF formula in which each clause has
at most one occurence of an unnegated relation symbol from T,
and at most one occurence of a negated relation symbol from T.

”RH” stands for ”Restricted Horn”

The restriction on clauses of ψ applies only to terms involving
symbols from T.
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Example

An instance of #DOWNSETS can be expressed as a structure
A = (A,�).
Then, #DOWNSETS ∈ #RHΠ1, since the number of downsets may
be expressed as:

fDS (A) = |{(D) : A |= ∀x , y ∈ A : D(x) ∧ (y � x)⇒ D(y)}|

Theorem

The problems #BIS, #P4-COL, #DOWNSETS, #1P1NSAT,
#BEACHCONFIGS are all complete for #RHΠ1, with respect to
AP-reducibility!
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Thank You!
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