The Complexity of Approximating Counting Problems

A.Antonopoulos (N.T.U.A.) Network Algorithms

June 2011

1 Introduction

- \bullet The Class $\# \mathsf{P}$
- Approximation Schemes

2 Approximate Counting Problems

- **→** → **→**

-

- There are many problems where we want to *count* the **number** of solutions.
- Of course, this is more "difficult" than finding if a solution exists!
- We want to define the class of counting the number of solutions to **NP** problems:

Definition

Let $L \in \mathbf{NP}$, M its associated verifier, and polynomial p the bound on the length of its "Yes" certificates. For a string $x \in \Sigma^*$, define f(x) to be the number of strings ysuch that $|y| \le p(|x|)$ and M(x, y) = 1. Functions $f : \Sigma^* \to \mathbb{N}$ constitute the class **#P**.

< ロ > < 同 > < 回 > < 回 >

Definition (#P-Completeness)

Function f is said to be #P-complete if every function $g \in #P$ can be reduced to f in the following sense:

- There is a polynomial-time function R : Σ* → Σ* such that, given an instance x of g, produces an instance R(x) of f.
- There is a polynomial-time function $S : \Sigma^* \times \mathbb{Z}^+ \to \mathbb{Z}^+$ such that, given x and f(R(x)), computes g(x), i.e.:

$$g(x) = S(x, f(R(x))), \forall x \in \Sigma^*$$

• The solution conting versions of all known **NP**-complete problems are **#P**-complete!

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

-

Definition

A Randomized Approximation Scheme (RAS) for a function $f: \Sigma^* \to \mathbb{N}$ is a Probabilistic Turing Machine that takes as input a pair $(x, \varepsilon) \in \Sigma^* \times (0, 1)$ and produces as output an integer random variable Y satisfying the condition:

$$\Pr\left[e^{-arepsilon}f(x)\leq Y\leq e^{arepsilon}f(x)
ight]\geqrac{3}{4}$$

A RAS is said to be *fully polynomial* (*FPRAS*) if it runs in time $poly(|x|, \varepsilon^{-1})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Class #P Approximation Schemes

Counting DNF Solutions

Counting DNF solutions

Let:

$$f: C_1 \vee C_2 \vee \cdots \vee C_m$$

Where $C_i = l_1 \wedge l_2 \wedge \cdots \wedge l_{r_i}$, and l_j is a literal. We assume that each clause is satisfiable. We want to compute #f = "the number of satisfying truth assignments of f".

イロト イポト イヨト イヨト 二日

Counting DNF Solutions

- The idea is to define a r.v. X s.t. **E** [X] = #f (unbiased estimator).
- Let S_i the set of t.a. to x_1, \ldots, x_n that satisfy C_i .

•
$$|S_i| = 2^{n-r_i}$$
 and $\#f = |\cup_{i=1}^m S_i|$.

- Let $c(\tau)$ the number of <u>clauses</u> t.a. τ satisfies.
- Let *M* be the *multiset* union of S_i's⇒lt contains each satisfying t.a. τ, c(τ) times!
- Pick a satisfying t.a. au for f with probability c(au)/|M|.
- Define

$$X(\tau) = \frac{|M|}{c(\tau)}$$

• X can be efficiently sampled:

(4月) (4日) (4日)

Counting DNF Solutions

Lemma 1

Random Variable X can be efficiently sampled.

Proof:

- Pick clause: $\Pr[Picking \ Clause \ C_i] = |S_i|/|M|$
- Among the t.a. satisfying the picked clause, choose one at random.
- The probability with which au is picked is:

$$\sum_{i:\tau \text{ satisfies } C_i} \frac{|S_i|}{|M|} \times \frac{1}{|S_i|} = \frac{c(\tau)}{|M|}$$

- 4 周 ト 4 月 ト 4 月

The Class #P Approximation Schemes

Counting DNF Solutions

Lemma 2

X is an unbiased estimator for #f.

Proof:

$$\mathbf{E}[X] = \sum_{\tau} \mathbf{Pr}[\tau \text{ is picked}] \cdot X(\tau) = \sum_{\tau \text{ satisfies } f} \frac{c(\tau)}{|M|} \times \frac{|M|}{c(\tau)} = \#f$$

< 日 > < 同 > < 三 > < 三 >

3

The Class #P Approximation Schemes

Counting DNF Solutions

Lemma 3

If m denotes the number of clauses in f, then:

$$\frac{\sigma\left(X\right)}{\mathsf{E}\left[X\right]} \le m - 1$$

Proof:

- Let $\alpha = |M|/m$. Clearly, $\mathbf{E}[X] \ge \alpha$ (1).
- For each satisfying t.a. τ of $f: 1 \le c(\tau) \le m$. So, $X(\tau) \in [\alpha, m\alpha]$ and $|X(\tau) \mathbf{E}[X(\tau)]| \le (m-1)\alpha$.
- So, $\sigma(X) \le (m-1)\alpha$ (2).
- (1) & (2) prove the lemma!

・ 同 ト ・ ヨ ト ・ ヨ

The Class #P Approximation Schemes

Counting DNF Solutions

Lemma 4

For any arepsilon>0, $\Pr\left[|X_k-\#f|\learepsilon\#f
ight]\gerac{3}{4}$ where $k=4(m-1)^2/arepsilon^2.$

Proof:

$$\Pr\left[|X_k - \mathsf{E}\left[X_k\right]| \ge \varepsilon \cdot \mathsf{E}\left[X_k\right]\right] \le \left(\frac{\sigma\left(X_k\right)}{\varepsilon \cdot \mathsf{E}\left[X_k\right]}\right)^2 = \left(\frac{\sigma\left(X\right)}{\varepsilon \sqrt{k}\mathsf{E}\left[X\right]}\right)^2 \le \frac{1}{4}$$

So finally,

Theorem

The is an FPRAS for the problem of counting DNF solutions!

A.Antonopoulos (N.T.U.A.) Network Algorithms

The Complexity of Approximating Counting Problems

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Definition

An approximation-preserving reduction from f to g is a probabilistic oracle Turing Machine M that takes as input a pair $(x, \varepsilon) \in \Sigma^* \times (0, 1)$, and satisfies the following conditions:

- Every oracle call made by *M* is of the form (*w*, δ), where *w* is an instance of *g*, and δ ∈ (0, 1) is an <u>error bound</u> satisfying δ⁻¹ ≤ poly(|x|, ε⁻¹).
- **2** M is a RAS for f whenever its oracle is a RAS for g.
- 3 *M* runs in $poly(|x|, \varepsilon^{-1})$.

If such a reduction form f to g exists, we write $f \leq_{AP} g$ (*AP-reducible*). If $(f \leq_{AP} g) \land (g \leq_{AP} f)$, we write $f \equiv_{AP} g$ (*AP-interreducible*).

・ロト ・同ト ・ヨト ・ヨト

Essential Counting Problems

#SAT Definition

Instance: A Boolean formula ϕ in CNF. Output: The number of satisfying assignments to ϕ .

#BIS Definition

Instance: A bipartite graph *B*. *Output:* The number of indepedent sets in *B*.

Three classes of AP-interreducible problems:

- The class of counting problems that admit an *FPRAS*.
- Intervalue of counting problems AP-interreducible with #SAT.
- **③** The class of counting problems AP-interreducible with #BIS.

Counting Problems that admit an FPRAS

• Problems that admit an FPRAS despite being #P-Complete!

#MATCH Definition

Instance: A Graph G.

Output: The number of matchings (of all sizes) in G.

#DNF Definition

Instance: A Boolean formula ϕ in DNF. Output: The number of satisfying assignments to ϕ .

- 4 同 6 4 日 6 4 日 6

Definition

Suppose $f, g : \Sigma^* \to \mathbb{N}$. A parsimonious reduction from f to g is a function $p : \Sigma^* \to \Sigma^*$ satisfying:

1
$$f(w) = g(p(w)), \forall w \in \Sigma^*$$

- \bigcirc p is computable by a polynomial-time deterministic TM
 - Parsimonious reduction preserve the number of solutions.
 - A parsimonious reduction is a special instance of an AP-reduction.
 - #SAT is #**P**-complete with respect to *AP-reducibility*.
 - Zuckerman (1996) proved that there is <u>no</u> *FPRAS* for #SAT unless **NP** = **RP**.

(日) (同) (三) (三)

Definition (Counting Versions of NP-Complete Problems)

If $A: \Sigma^* \to \{0,1\}$ some decision problem in **NP**. It is known that:

$$A(x) = 1 \Leftrightarrow (\exists y, |y| = p(|x|) : R(x, y) = 1)$$

for a polynomial-time computable predicate R. The **counting problem** $#A : \Sigma^* \to \mathbb{N}$, corresponding to A, is defined by:

$$#A(x) = |\{y : |y| = p(|x|) \land R(x, y)\}|$$

(4月) (4日) (4日)

Theorem

Let A be an **NP**-complete decision problem. Then, the corresponding counting problem #A is #P-complete with respect to AP-reducibility.

Proof:

- #A ∈ #P
- Also, #SAT is AP-reducible to #A: #SAT can be approximated by PTM *M* equipped with an oracle for the *decision* problem of SAT.
- This oracle can be replaced by an *approximate counting oracle* (RAS) for #*A*.
- Thus, *M* consists an approximation-preserving reduction from #SAT to #A. \Box

- 4 同 6 4 日 6 4 日 6

#LARGEIS Definition

Instance: A positive integer m and a graph G in which every indepedent set has size at most m.

Output: The number of size-m indepedent sets in G.

Corollary

 $\#LARGEIS \equiv_{AP} \#SAT$

#IS Definition

Instance: A graph G.

Output: The number of indepedent sets (of all sizes) in G.

Theorem

 $\#IS \equiv_{AP} \#SAT$

$#P_4$ -COL Definition

Instance: A graph G. *Output:* The number of P_4 colourings of G, where P_4 is the path of length 3.

#DOWNSETS Definition

Instance: A partially ordered set (X, \preceq) . Output: The number of downsets in (X, \preceq) .

#1P1NSAT Definition

Instance: A CNF Boolean formula ϕ , with at most one unnegated literal per clause, and at most one negated literal. *Output:* The number of satisfying assignments to ϕ .

-

#BEACHCONFIGS Definition

Instance: A graph G.

Output: The number of *Beach Configurations* in $G(P_4^* \text{ colourings} \text{ of } G$, where P_4^* is the path of length 3 with loops on all four vertices).

Theorem

The problems #BIS, $\#P_4$ -COL, #DOWNSETS, #1P1NSAT, #BEACHCONFIGS are all AP-interreducible.

• Very easily:
#BIS
$$\equiv_{AP} \#P_4$$
-COL
#DOWNSETS $\equiv_{AP} \#1P1NSAT$

• We can also show the reduction: #BIS \leq_{AP} #BEACHCONFIGS \leq_{AP} #DOWNSETS \leq_{AP} #BIS

Lemma

 $\#BIS \equiv_{AP} \#P_4-COL$

Proof:

These problems are essentially the same:

A graph G is P_4 -colourable \Leftrightarrow is Bipartite

Two of the colours point out the IS! Conversely, an IS in a (connected) bipartite graph arises from one of the two P_4 colourings!

Lemma

 $\#DOWNSETS \equiv_{AP} \#1P1NSAT$

Proof:

The first is a *restricted* case of the second, in which:

- All clauses have two literals $(x \Rightarrow y)$
- 2 There are **no** cyclic chains of implications:

 $x_0 \Rightarrow x_1 \Rightarrow \cdots \Rightarrow x_{\ell-1} \Rightarrow x_0.$

-Given an instance of #1P1NSAT, any forced variables (1) may be removed by substituting TRUE or FALSE.

-Any set of ℓ variables forming a cycle (2) may be replaced by a single one.

- 4 回 ト 4 ヨト 4 ヨト

- A counting problem is identified with a <u>sentence</u> φ in FO Logic, the objects being counted with <u>models</u> of φ.
- Standard Definitions:
 - Vocabulary: $\sigma = \{\widetilde{R}_0, \dots, \widetilde{R}_{k-1}\}$
 - R_i 's are relation symbol of arities r_0, \ldots, r_{k-1}
 - Structure $\mathbf{A} = (A, R_0, \dots, R_{k-1})$ over σ consists a universe A
 - Each relation $R_i \subseteq A^{r_i}$ is an interpretation of \widetilde{R}_i .
- We present counting problems as *structures* over suitable vocabularies:

Example

An instance of **#IS** is a graph which can regarded as a structure $\mathbf{A} = (A, \sim)$, where A is the vertex set, and " \sim " is the symmetric binary relation of adjacency.

- 4 同 1 4 日 1 4 日

The objects to be counted are represented as sequences of relations T = (T₁,..., T_{r-1}) and first-order variables
 z = (z₀,..., z_{m-1}.

Definition

A counting problem f (from structures over σ to \mathbb{N}) is in the class $\#\mathcal{FO}$ if it can be expressed as:

$$f(\mathbf{A}) = |\{(\mathbf{T}, \mathbf{z}) : \mathbf{A} \models \phi(\mathbf{z}, \mathbf{T})\}|$$

where ϕ is a FO formula with relation symbols from $\sigma \cup \mathbf{T}$ and (free) variables from \mathbf{z} .

(人間) ト く ヨ ト く ヨ ト

Example

If we encode an IS as a unary relation I, then #IS:

$$f_{IS}(\mathbf{A}) = |\{(I) : \mathbf{A} \models \forall x, y : x \sim y \Rightarrow \neg I(x) \lor \neg I(y)\}|$$

- #IS is in the subclass #Π₁ ⊆ #*FO* (since the formula contains only universal quantification).
- In general, we have a (strict) hierarchy of subclasses:

 $\# \Sigma_0 = \# \Pi_0 \subset \# \Sigma_1 \subset \# \Pi_1 \subset \# \Sigma_2 \subset \# \Pi_2 = \# \mathcal{FO} = \# \textbf{P}$

- All functions in $\#\Sigma_1$ admit an *FPRAS*!
- All AP-interreducible problems we saw are in the (syntactically restricted) subclass #RHΠ₁ ⊆ #Π₁:

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Definition

A counting problem f is in the class $\#RH\Pi_1$ if it can be expressed in the form:

$$f(\mathsf{A}) = |\{(\mathsf{T},\mathsf{z}):\mathsf{A}\models orall\mathsf{y}:\psi(\mathsf{y},\mathsf{z},\mathsf{T})\}|$$

where ψ is an *unquantified* CNF formula in which each clause has at most one occurrence of an unnegated relation symbol from **T**, and at most one occurrence of a negated relation symbol from **T**.

- "RH" stands for "Restricted Horn"
- The restriction on clauses of ψ applies only to terms involving symbols from ${\bf T}.$

同 ト イ ヨ ト イ ヨ ト

Example

An instance of #DOWNSETS can be expressed as a structure $\mathbf{A} = (A, \preceq)$. Then, #DOWNSETS $\in \#RH\Pi_1$, since the number of downsets may be expressed as:

$$f_{DS}(\mathbf{A}) = |\{(D) : \mathbf{A} \models \forall x, y \in A : D(x) \land (y \preceq x) \Rightarrow D(y)\}|$$

Theorem

The problems #BIS, $\#P_4$ -COL, #DOWNSETS, #1P1NSAT, #BEACHCONFIGS are all complete for $\#RH\Pi_1$, with respect to AP-reducibility!

- 4 同 6 4 日 6 4 日 6

References

- The presentation is based on: Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, Mark Jerrum: The Relative Complexity of Approximate Counting Problems, Algorithmica 38(3): 471-500 (2003)
- Also used:

Approximation Algorithms, V.V.Vazirani, Springer 2001

Thank You!