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Introduction The Dynamic TCP Acknowledgement Problem

Data transmission in networks using Transmission Control Protocol
(TCP).

The data is partitioned into segments or packets that are sent across
the connection.

Each received packet must be acknowledged so that the sending node
is notified that the transmission was successful.
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Introduction The Dynamic TCP Acknowledgement Problem

Acknowledging each packet individually has enough disadvantages,
e.g.

Network congestion
Overhead at the network nodes for sending and receiving
acknowledgements

The idea is to reduce the number of acknowledgements by employing
some delay mechanism so that the TCP can acknowledge multiple
incoming packets with a single acknowledgement.

This mechanism, though, adds latency to a TCP connection.

The goal is to balance the reduction in the number of
acknowledgements with the increase in the latency.
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Introduction The Dynamic TCP Acknowledgement Problem

Dooly, Goldman and Scott formulated the following problem.

A network node receives a sequence of n data packets.

Let αi denote the arrival time of packet i, 1 ≤ i ≤ n.

At time αi, the arrival times αj , j > i, are not known.

We have to partition the sequence σ = (α1, . . . , αn) into m
subsequences σ1, . . . , σm, m ≥ 1, such that each subsequence ends
with an acknowledgement.

Finally, let ti be the time when the acknowledgement for σi is sent
and we require ti ≥ αj , for all αj ∈ σi.
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Introduction Previous Results

Definition

Given a solution generated by an acknowledgement algorithm A on input
σ, the resulting objective function value is also referred to as the cost
CA(σ) of A on σ.
An online algorithm A is called c− competitive if there exists a constant
b such that CA(σ) ≤ c · COPT (σ) + b, for all inputs σ.
Here COPT (σ) is the cost incurred by an optimal offline algorithm that
knows the entire input σ in advance and can serve it with minimum cost.
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Introduction Previous Results

Previous work has focused mostly on the objective function that
minimizes the number of acknowledgements and the sum of the
delays incurred for all of the packets, i.e.

h = m+
∑m
i=1

∑
aj∈σi

(ti − aj)
h′ = m+

∑m
i=1 maxaj∈σi(ti − aj)

Dooly et al. presented a deterministic 2-competitive online algorithm
for the objective function h (with or without bounded lookahead) and
showed that no deterministic online strategy can achieve a smaller
competitive ratio.
Also, studied the minimization of the objective function h′ and
showed that the best competitive ratio of a deterministic algorithm
without lookahead is equal to 2.
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Introduction Previous Results

Most implementations of TCP have a maximum delay constraint.

In this case, Dooly et al. showed that their algorithm can be modified
and remains 2-competitive.

Karlin, Kenyon and Randall developed a randomized online strategy
that achieves e/(e − 1)-competitiveness (≈ 1.58). Also, pointed out
that the TCP acknowledgement problem with objective functions h
and h′ are ski rental type problems.
Noga and independently Seiden showed that no randomized algorithm
can do better.
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Introduction The Objective Function

In this paper Albers and Bals study the objective functions

f = m+ max
1≤i≤m

di

With di = maxaj∈σi(ti − aj), 1 ≤ i ≤ m.
And

fp = m+ max
1≤i≤m

di
p

Where delays in this function are penalized more heavily.

Note that the current problem is not a ski rental problem.
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Minimizing the Maximum Delay An Optimal Deterministic Online Algorithm
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Minimizing the Maximum Delay An Optimal Deterministic Online Algorithm

Let z be a positive real number.

Algorithm Linear-Delay(z)

Initially, set d = z and send the first acknowledgement at time a + d. In
general, suppose that the i-th acknowledgement has just been sent and
that j packets have been processed so far. Set d = (i+ )z and send the
(i+ )-st acknowledgement at time aj+ + d.
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Minimizing the Maximum Delay An Optimal Deterministic Online Algorithm

Theorem 2.1.

For any z with z ≥ 1/2, Linear-Delay(z) is c-competitive, where
c = max {1 + z, (1 + z)/(2 + z − π2/6)}.

Corollary 2.1.

Setting z = π2/6− 1, Linear-Delay(z) achieves a competitive ratio of
π2/6 ≈ 1.644.
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Minimizing the Maximum Delay An Optimal Deterministic Online Algorithm

Proof

In the following we call the online algorithm LD(z) for short.

Suppose that LD(z) serves the input sequence using m
acknowledgements.
The online cost is CLD(z)(σ) = m(1 + z).

We have to lower bound the cost incurred by an optimal offline
algorithm OPT .
Suppose that the optimum offline algorithm uses l acknowledgements
and that the maximum acknowledgement delay is C, C ≥ 0. Then
COPT (σ) = l + C.
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Minimizing the Maximum Delay An Optimal Deterministic Online Algorithm

Proof

Definition

In the sequence of n packets we identify a subsequence of m main
packets, numbered from 0 to m− 1. Main packet 0 is the first packet in
the input sequence. Main packet i, 1 ≤ i ≤ m− 1, is the first packet that
arrives after the i-th acknowledgement sent by LD(z).

Note that the time difference between the (i− 1)-st and the i-th main
packets is larger than iz, for i = 1, . . . ,m− 1.
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Minimizing the Maximum Delay An Optimal Deterministic Online Algorithm

Proof

Definition

Associated with each acknowledgement α sent by OPT is an
acknowledgement interval that starts when the first packet
acknowledged by α arrives and ends when α is sent. The length of each
interval is bounded by C.

Lemma 2.1.

Any acknowledgement interval starting at or after the arrival of main
packet b Ciz c can contain at most i main packets.
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Minimizing the Maximum Delay An Optimal Deterministic Online Algorithm

Proof

Proof of Lemma 2.1.

Main packet k with k ≥ b Ciz c+ 1 has a distance of more than z(b Ciz c+ 1)
to the previous main packet. If the ackowledgement interval contained at
least i+ 1 main packets, then the length of the interval would be at least
iz(b Ciz c+ 1) > iz( Ciz ) = C, which is impossible. �

Define i0 = b 3

√
C
z c − 1. In the rest of this proof we assume i0 ≥ 2. If

i0 ≤ 1, then C ≤ 27z and OPT must acknowledge each of the last
m− 27z main packets with seperate acknowledgements. In this case
LD(z) is clearly (1 + z)-competitive.
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Minimizing the Maximum Delay An Optimal Deterministic Online Algorithm

Proof

Lemma 2.2.

Let 1 ≤ i ≤ i0. The acknowledgement interval containing main packet k,
for k ≥ b Ciz c, must have started after the arrival of main packet b C

(i+)z c.

Proof of Lemma 2.2.

If not, the nunber of main packets in this time window would be
b Ciz c − b

C
(i+)z c+ 1 > b C

i(i+)z c ≥ i+ 2. The last inequality is equivalent

to C/z ≥ i(i+ 1)(i+ 2) and holds for all i ≤ i0. Thus there are at least
i+ 2 main packets in this time window. Each of the last i+ 1 of these is
more than z(b C

(i+)z c+ 1) time units away from the previous main packet
and thus the length of the window is greater than
(i+ )z(b C

(i+)z c+ 1) > (i+ )z( C
(i+)z ) = C, which is impossible. �
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Minimizing the Maximum Delay An Optimal Deterministic Online Algorithm

Proof

In order to estimate the number of acknowledgements sent by OPT , we
use the following charging scheme.

Consider an ackowledgement costs 1.

We charge this cost to the main packets contained in the associated
acknowledgement interval and split the cost evenly among these main
packets.

If an acknowledgement interval does not contain a main packet, then
we ignore it in the analysis of OPT ’s cost.

Summing over all main packets, we derive a lower bound on the optimum
cost incurred for sending acknowledgements.
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Minimizing the Maximum Delay An Optimal Deterministic Online Algorithm

Proof

We assume that C < m. If C ≥ m, then LD(z) is clearly
(1 + z)-competitive because LD(z)’s cost is (1 + z)m and the optimum
offline cost is at least m.

First case : C ≤ zm
Each main packet is contained in some acknowledgement interval. Let i
be an integer with 1 ≤ i ≤ i0. We analyze the cost charged to main
packet k with k ≥ b Ciz c and k < b C

(i−)z c. If i = 1, then k < m.
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Minimizing the Maximum Delay An Optimal Deterministic Online Algorithm

Proof

If the acknowledgement interval containing main packet k started at
or after the arrival of main packet b Ciz c, then by Lemma 2.1 at most i
main packets are contained in the interval and main packet k is
assigned a cost of at least 1/i.

If the ackowledgement interval started earlier, then by Lemma 2.2 it
must have started after the arrival of main packet b C

(i+)z c. Applying
Lemma 2.1 for i+ 1, we obtain that the interval contains at most i+ 1
main packets and the packet is assigned a cost of at least 1/(i+ 1).
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Minimizing the Maximum Delay An Optimal Deterministic Online Algorithm

Proof

There is only one acknowledgement interval that starts before and ends
after the arrival of main packet b Ciz c. Thus for at most i+ 1 main packets
considered above, the cost is lower bounded by 1/(i+ 1) instead of 1/i.

For i = 1, the total cost assigned to all main packets k with k ≥ bCz c is

(m− bC
z
c)− 2(1− 1

2
) = (m− bC

z
c)− 1
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Minimizing the Maximum Delay An Optimal Deterministic Online Algorithm

Proof

For 2 ≤ i ≤ i0, the total cost assigned to main packet k,
b Ciz c ≤ k < b

C
(i−)z c is at least

(b C
(i− )z

c − b C
iz
c)1

i
− (i+ 1)(

1

i
− 1

i+ 1
)

= (b C
(i− )z

c − b C
iz
c)1

i
− 1

i
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Minimizing the Maximum Delay An Optimal Deterministic Online Algorithm

Proof

Summing over all i, we obtain that the number of acknowledgements sent
by OPT is at least

l ≥ m− bC
z
c − 1 +

i0∑
i=2

(
(b C

(i− )z
c − b C

iz
c)1

i
− 1

i

)

= m−
i0−1∑
i=1

b C
iz
c
(1

i
− 1

i+ 1

)
− b C

i0z
c 1

i0
− Hi0

Here Hi0 denotes the i0-th Harmonic number. Thus,
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Minimizing the Maximum Delay An Optimal Deterministic Online Algorithm

Proof

l ≥ m− C
z

∞∑
i=1

( 1

i2
− 1

i(i+ 1)

)
− C
i0

2z
− i0

. . .

l ≥ m− C
z

(π2
6
− 1
)
−10 3

√
m

z

The total cost incurred by OPT is at least

COPT (σ) = l + C ≥ m+ C − C
z

(π2
6
− 1
)
−O( 3

√
m)
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Minimizing the Maximum Delay An Optimal Deterministic Online Algorithm

Proof

If z > π2

6 − 1
Choosing C = 0 we obtain that

COPT (σ) ≥ m−O( 3
√
m)

and LD(z) is (1 + z)-competitive.

If z ≤ π2

6 − 1
Choosing C = zm we obtain that

COPT (σ) ≥ (2 + z − π2

6
)m−O( 3

√
m)

and LD(z) achieves (1 + z)/(2 + z − π2

6 ) competitive ratio.
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Minimizing the Maximum Delay An Optimal Deterministic Online Algorithm

Proof

Second case : C > zm
The only difference in this case is that there are main packets k with
k ≥ b C2z c and k < m because C < m ≤ 2zm since z ≥ 1/2. Thus the
number of acknowledgements sent by OPT is

l ≥ (m− b C
2z
c)1

2
− 1

2
+

i0∑
i=3

(
(b C

(i− )z
c − b C

iz
c)1

i
− 1

i

)
≥ . . . ≥

≥ 1

2
m− C

z

(π2
6
− 1.5

)
−10 3

√
m

z
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Minimizing the Maximum Delay An Optimal Deterministic Online Algorithm

Proof

Thus the optimum cost is at least

COPT (σ) = l + C ≥ 1

2
m+ C − C

z

(π2
6
− 1.5

)
−O( 3

√
m)

Note that z ≥ 1/2 > (π
2

6 − 1.5). Since C > zm, we obtain

COPT (σ) ≥ (2 + z − π2

6
)m−O( 3

√
m)

and LD(z) achieves (1 + z)/(2 + z − π2

6 ) competitive ratio. �
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Minimizing the Maximum Delay Lower Bound

Theorem 2.2

Let A be a deterministic online algorithm. If A is c-competitive, then
c ≥ π2/6.

Proof
We construct a family of request sequences σl, for any l ≥ 8. For a fixed l
in this range, let i0 = b 3

√
lc − 2 and l′ = b l

i0+1c. We number the packets
in σl starting with l′. Packet l′ is sent at time 0.
For any i with l′ < i ≤ l, packet i is sent exactly (π

2

6 − 1)i time units after

packet i− 1. For any i with i > l, packet i is sent exactly (π
2

6 − 1)l time
units after packet i− 1.
The adversary stops sending packets as soon as the online algorithm
acknowledges an incoming packet together with the preceding packet.
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For any i with l′ < i ≤ l, packet i is sent exactly (π

2

6 − 1)i time units after

packet i− 1. For any i with i > l, packet i is sent exactly (π
2

6 − 1)l time
units after packet i− 1.
The adversary stops sending packets as soon as the online algorithm
acknowledges an incoming packet together with the preceding packet.

Karousatou Christina (Network Algorithms) Dynamic TCP Acknowledgement June 8, 2010 31 / 63



Minimizing the Maximum Delay Lower Bound

Let m be the number of the last packet sent by the adversary.

If m ≤ l
The adversary can acknowledge each packet immediately and its cost
is CADV(σl) = m− l′ + 1.
The online algorithm A serves the first m− l′ − 1 packets with
seperate acknowledgements and the last two packets with a joint
acknowledgement. The total online cost is at least

CA(σl) = m− l′ + (
π2

6
− 1)m =

π2

6
(m− 6

π2
l′)

≥ π2

6
(m− l′ + 1) =

π2

6
CADV (σl)

The last inequality holds because l′ ≥ π2

6 /(π
2

6 − 1), for l ≥ 8.
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Minimizing the Maximum Delay Lower Bound

Lemma 2.3

Let 1 ≤ i ≤ i0. An acknowledgement interval that ends after the arrival of
packet b lic must have started after the arrival of packet b l

i+1c.

If m > l
The adversary chooses acknowledgement intervals of length (π

2

6 − 1)l.
To estimate the total number of acknowledgements incurred by the
adversary we use the following charging scheme, which is similar to
the previous.
If an acknowledgement interval contains i packets, then the cost of 1
is distributed evenly among the packets.
An acknowledgement interval that ends no later than the arrival of
packet b lic, 1 ≤ i ≤ i0, contains at least i+ 1 packets.
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Minimizing the Maximum Delay Lower Bound

Hence, packets k with b l
i+1c < k ≤ b lic are charged a cost of at most

b 1
i+1c.

However a packet k, with b l
i+1c < k ≤ b lic, may be contained in an

acknowledgement interval that ends after the arrival of packet b lic. By
Lemma 2.3, such an acknowledgement interval cannot end after the arrival
of packet b l

i−1c, if i ≥ 2. Thus, packet k is assigned a cost of 1
i .

There are at most i+ 1 packets that have this cost because each packet k
in the latter range has a distance of at least
(π

2

6 − 1)(b l
i+1c+ 1) > (π

2

6 − 1) l
i+1 to its preceding packet.
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Minimizing the Maximum Delay Lower Bound

The total cost charged to all of the packets is upper bounded by

(m− l−1)
1

2
+1+

i0∑
i=1

(
(b l
i
c−b l

i+ 1
c) 1

i+ 1
+(i+1)(

1

i
− 1

i+ 1
)
)

+
1

i0 + 1

≤ . . . ≤

≤ m

2
+
l

2
− l
(π2

6
− 1
)

+O(log l)

Since the maximum acknowledgement delay incurred by the adversary is
(π

2

6 − 1)l, its total cost is 1
2(m+ l) +O(log l).
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Minimizing the Maximum Delay Lower Bound

The total cost incurred by the online algorithm A is m− l′ + (π
2

6 − 1)l.

We conclude that the ratio of the online cost to the adversary’s cost is

π2

6 l +m− l − l′

l + 1
2(m− l) +O(log l)

Since l′ = o(l) and O(log l) = o(l), this ratio approaches a value of at least
π2

6 as l→∞, no matter how the online algorithm chooses m, m > l. �
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Minimizing the Maximum Delay Taken to the p-th Power

For any integer p ≥ 1, we want to minimize

fp = m+ max
1≤i≤m

di
p

Let

cp = 1 +

p+1∑
q=1

(−1)p+1−qζ(q)

Where ζ(p) =
∑∞

i=1
1
ip , for any p ≥ 2, known as the Riemann zeta

function. We define ζ(1) := 1.

Karousatou Christina (Network Algorithms) Dynamic TCP Acknowledgement June 8, 2010 37 / 63



Minimizing the Maximum Delay Taken to the p-th Power

For any integer p ≥ 1, we want to minimize

fp = m+ max
1≤i≤m

di
p

Let

cp = 1 +

p+1∑
q=1

(−1)p+1−qζ(q)

Where ζ(p) =
∑∞

i=1
1
ip , for any p ≥ 2, known as the Riemann zeta

function. We define ζ(1) := 1.

Karousatou Christina (Network Algorithms) Dynamic TCP Acknowledgement June 8, 2010 37 / 63



Minimizing the Maximum Delay Taken to the p-th Power

Let g(p) =
∑∞

i=1
1

ip(i+1) . Then, for p ≥ 2,

g(p) =
∞∑
i=1

1

ip(i+ 1)
=
∞∑
i=1

1

ip
−
∞∑
i=1

1

ip−1(i+ 1)

= ζ(p)− g(p− 1)

Applying this reccurence repeatedly we obtain g(p) =
∑p

q=1(−1)p−qζ(q).
Thus, cp = 1 + g(p+ 1).
Further, we have g(p+ 1) = 1

2 +
∑∞

i=2
1

ip+1(i+1)
, where the last sum is

always positive and tends to 0 as p→∞.
We conclude that cp is decreasing in p and tends to 1.5 as p→∞.
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Minimizing the Maximum Delay Taken to the p-th Power

p cp
1 1.6449
2 1.5571
3 1.5252
4 1.5117
5 1.5056
6 1.5027
7 1.5013
8 1.5007
9 1.5003

10 1.5002

Table 1: Some values of cp
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Minimizing the Maximum Delay Taken to the p-th Power An Optimal Deterministic Online Algorithm

We generalize the previous algorithm. Let z be a positive real number.

Algorithm Delay(z, p)

Set the initial delay to d = p
√
z and send out the first acknowledgement at

time a + d. In general, assume that i acknowledgements have been sent
and that j packets have been processed so far. Set d = p

√
(i+ 1)z and

send the (i+ 1)-st acknowledgement at time aj+1 + d.

Theorem 3.1

Setting zp = cp − 1, the algorithm Delay(zp, p) is cp-competitive.
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Minimizing the Maximum Delay Taken to the p-th Power An Optimal Deterministic Online Algorithm

Proof

In the following we call the online algorithm D(zp, p) for short.

Suppose that the online algorithm serves the input sequence using m
ackowledgements. Then, its total cost is
CD(zp,p)(σ) = m+ ( p

√
mzp)p = (1 + zp)m = cpm.

Let C be the maximum acknowledgement delay incurred by the
optimum offline algorithm OPT . If C > p

√
m, then the optimum

offline cost is at least m and D(zp, p) is clearly cp-competitive.
Therefore we assume C ≤ p

√
m.
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Minimizing the Maximum Delay Taken to the p-th Power An Optimal Deterministic Online Algorithm

Proof

We analyze the optimum offline cost using the same terms and charging
scheme we used in the proof of Theorem 2.1.

We number the m main packets in the input from 0 to m− 1.

Let i0 = b 2p+1
√
Cp/zpc − 1. We assume i0 ≥ 4. If i0 ≤ 3, C is upper

bounded by a constant and we can easily conclude that D(zp, p) is
cp-competitive.
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Minimizing the Maximum Delay Taken to the p-th Power An Optimal Deterministic Online Algorithm

Proof

First case : C < p
√
zpm

If an acknowledgement interval starting at or after the arrival of main
packet b Cpipzp

c can contain at most i main packets.

An acknowledgement interval containing main packet k, with
k ≥ b Cpipzp

c must have started after packet b Cp
(i+1)pzp

c.

We conclude, using the same arguments as in the proof of Theorem 2.1,
that the number l of acknowledgements sent by OPT is at least . . .
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Minimizing the Maximum Delay Taken to the p-th Power An Optimal Deterministic Online Algorithm

Proof

l ≥ m− bC
p

zp
c − 1 +

i0∑
i=2

(
(b Cp

(i− 1)pzp
c − b C

p

ipzp
c)1

i
− 1

i

)
. . .

l ≥ m− C
p

zp
zp −

Cp

i0
p+1zp

− Hi0

Here Hi0 denotes the i0-th Harmonic number.

Lemma 3.1

The term Cp
i0p+1zp

is o(m)

Karousatou Christina (Network Algorithms) Dynamic TCP Acknowledgement June 8, 2010 45 / 63



Minimizing the Maximum Delay Taken to the p-th Power An Optimal Deterministic Online Algorithm

Proof

Using the above Lemma we obtain that the number of acknowledgements
sent by OPT is at least m− Cp − o(m) and the total cost is
COPT (σ) ≥ m− o(m). This implies that D(zp, p) is cp-competitive.

Second case : C ≥ p
√
zpm

In this case, since C is large, there are not necessarily main packets k with
k ≥ bCpzp c and C < m.

However there are packets k ≥ b Cp2pzp
c and k < m because

Cp/(2pzp) < m is equivalent to
C ≤ p

√
m2pzp and this holds because

C ≤ p
√
m and zp = g(p+ 1) = 1

2 +
∑∞

i=2
1

ip+1(i+1)
> 1

2 .
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Minimizing the Maximum Delay Taken to the p-th Power An Optimal Deterministic Online Algorithm

Proof

Thus the number of ackowledgements l sent by OPT is at least

l ≥
(
m− b C

p

2pzp
c
)1

2
− 1

2
+

i0∑
i=3

(
(b Cp

(i− 1)pzp
c − b C

p

ipzp
c)1

i
− 1

i

)
. . .

l ≥ m

2
− C

p

zp
(zp −

1

2
)− o(m)

We conclude that the optimum offline cost is at least
COPT (σ) ≥ m

2 + Cp
2zp
− o(m) ≥ m− o(m) because C ≥ p

√
zpm and

D(zp, p) is cp-competitive. �
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Minimizing the Maximum Delay Taken to the p-th Power An Optimal Deterministic Online Algorithm

Proof
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Minimizing the Maximum Delay Taken to the p-th Power Lower Bound
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Minimizing the Maximum Delay Taken to the p-th Power Lower Bound

Theorem 3.2

Let A be a deterministic online algorithm. If A is c-competitive, then
c ≥ cp.

Proof
We construct a family of request sequences σl, for any l ≥ 1. For a fixed l,
let i0 = b 2p+1

√
lc − 1 and l′ = b l

i0+1p c. We number the packets in σl
starting with l′. Packet l′ is sent at time 0.

For any k with l′ < k ≤ l, packet k is sent p
√
zpk time units after

packet k − 1.

For k > l, packets k and k − 1 are separated by exactly p
√
zpl time

units .
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Minimizing the Maximum Delay Taken to the p-th Power Lower Bound

Proof

The adversary stops sending packets as soon as the online algorithm
acknowledges an incoming packet together with the preceding packet. Let
m be the number of the last packet sent.

If m ≤ l
The cost incurred by the online algorithm A is at least

m− l′ + (zpm)
p
p = cpm− l′.

The cost incurred by the adversary is at most m− l′ + 1.

The ratio of the cost incurred by A to the cost incurred by the
adversary is at least . . .
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Minimizing the Maximum Delay Taken to the p-th Power Lower Bound

Proof

cpm− l′

m− l′ + 1
= cp +

zpm
′ − cp

m− l′ + 1

and this expression is at least cp if l ≥ 22p+1.

If m > l The adversary chooses an acknowledgement interval of
p
√
zpm time units.

Using the familiar charging scheme we conclude that the total
number of acknowledgements sent by the adversary is at most . . .
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Minimizing the Maximum Delay Taken to the p-th Power Lower Bound

Proof

(m− l)1

2
+

1

2
+

i0∑
i=1

(
(b l
ip
c − b l

i+ 1p
c) 1

i+ 1
+

1

i

)
+

1

i0 + 1

. . .

≤ (m− l)1

2
+ l − zpl +O(log l)

The total cost paid by the adversary is at most (m− l)12 + l +O(log l)
and the ratio of the cost incurred by A to the cost incurred by the
adversary is at least

cpl +m− l′ − l
(m− l)12 + l +O(log l)

This ratio approaches a value of at least cp as l→∞ because l′ = o(l). �
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Randomization Randomization

Theorem 4.1

For the dynamic TCP acknowledgement problem with objective function
f , no randomized online algorithm can achieve a competitive ratio smaller
than c ≥ 3/(3− 2

e ) against any oblivious adversary.

Proof
We apply Yao’s principle and construct a probability distribution on input
sequences σl, for any integer l ≥ 1, such that for any deterministic online
algorithm D,

lim
l→∞

E [CD(σl)]

E [CADV (σl)]
≥ 3

3− 2/e

and
lim
l→∞

E [CADV (σl)] =∞
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Randomization Randomization

Proof

An input σl consists of triples.

A triple is a set of three data packets that are separated by l time
units each.

The adversary sends triples with a large time distance between them.

With probability pi = q(1− q)i−1, where q = 1/l, the adversary sends
exactly i triples, for any i ≥ 1.

Triple i and i+ 1 are separated by 3l/pi+1 time units.

Karousatou Christina (Network Algorithms) Dynamic TCP Acknowledgement June 8, 2010 55 / 63



Randomization Randomization

Proof

First case : the deterministic online algorithm acknowledges packets
from different triples together.

If this happens for the first time for packets from triples i and i+ 1,
then the expected cost is at least pi+1(3l/pi+1) = 3l.

Second case : the deterministic online algorithm never acknowledges
packets from different triples together.

We characterize an algorithm by two integers l1, l2 ≥ 0, with l1 < l2.
l1 + 1 is the first triple where the algorithm acknowledges at least two
packets together.
l2 + 1 is the first triple where all the three packets are acknowledged
together.
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Randomization Randomization

Proof

We refer to this strategy as D(l1, l2), l1 ≤ l2.

Algorithm D(l1,∞), l1 ≥ 0, never acknowledges all the three packets
of one triple together.
Algorithm D(∞,∞) never acknowledges any packets together.

Lemma 4.1

a) If l1 < l2, then

E [CD(l1,l2)(σl)] = E [CD(l1+1,l2)(σl)]

b) If l1 ≤ l2, then

E [CD(l1,l2)(σl)] = E [CD(l1,l2+1)(σl)]

c) For any l1 ≥ 0, then

E [CD(l1,∞)(σl)] = E [CD(l1+1,∞)(σl)]
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Randomization Randomization

Proof

Parts a) and b) of the Lemma 4.1 imply that
E [CD(l1,l2)(σl)] = E [CD(0,0)(σl)] for any 0 ≤ l1 ≤ l2.
Hence it suffices to compute
E [CD(0,0)(σl)] =

∑∞
i=1(2l + i)pi = 2l + 1/q = 3l.

Part c) implies E [CD(0,∞)(σl)] = E [CD(l1,∞)(σl)], for any l1 ≥ 0.
We have E [CD(0,∞)(σl)] =

∑∞
i=1(l + 2i)pi = 3l.

Finally, E [CD(∞,∞)(σl)] =
∑∞

i=1 3ipi = 3l.

Thus, in any case the expected online cost is at least 3l.
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Randomization Randomization

Proof

It remains to analyze the expected cost incurred by the adversary.
If the input consists of at most l triples, the adversary acknowledges the
packets individually.
Otherwise it incurs a delay of 2l and acknowledges the packets of each
triple together. So,

E [CADV (σl)] =
l∑

i=1

3ipi +
∞∑

i=l+1

pi(i+ 2l)

. . .

= 3l − 2l(1− 1/l)l

Thus, liml→∞ E [CADV (σl)]/l = 3− 2/e and the Theorem follows. �
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Randomization Randomization

Theorem 4.2

For the dynamic TCP acknowledgement problem with objective function
fp, no randomized online algorithm can achieve a competitive ratio smaller
than c ≥ 2/(2− 1

e ) against any oblivious adversary.

Proof

An input σl, for any integer l ≥ 1, consists of pairs.

A pair are two packets that are p
√
l time units apart.

With probability pi = q(1− q)i−1, where q = 1/l, the input consists
of i pairs, for any i ≥ 1.

Pairs i and i+ 1 are separated by p
√

2l/pi+1 time units.
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Randomization Randomization

Proof

First case : the deterministic online algorithm acknowledges packets
from different pairs together.

If this happens for the first time for packets from pairs i and i+ 1,
then the expected cost is at least pi+1( p

√
2l/pi+1)p = 2l.

Second case : the deterministic online algorithm never acknowledges
packets from different pairs together.

Denote by D(l′), l′ ≥ 1, the algorithm that acknowledges packets in the
first l′ pairs separately and the packets in the (l′ + 1)-st pair together.
D(∞) is the algorithm that never acknowledges packets together.
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Randomization Randomization

Proof

We have E [CD(∞)(σl)] =
∑∞

i=1 2ipi = 2q/q2 = 2l.

It is proved that for any l′ ≥ 0, E [CD(l′)(σl)] = E [CD(l′+1)(σl)]
and hence E [CD(0)(σl)] = E [CD(l′)(σl)].
E [CD(0)(σl)] =

∑∞
i=1 (l + i)pi = 2l.

So we conclude that the expected online cost is at least 2l.
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Randomization Randomization

Proof

The adversary acknowledges the packets of pairs separately if at most l
pairs are sent.
Otherwise, it always acknowledges the packets of pairs together. Hence,

E [CADV (σl)] =
l∑

i=1

2ipi +
∞∑

i=l+1

pi(i+ l)

. . .

= 2l − l(1− 1/l)l

Thus, liml→∞ E [CADV (σl)]/l = 2− 1/e and the Theorem follows. �
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