Authoritative Sources in a Hyperlinked Enviroment

Dimitris Sakavalas

June 15, 2010

Outline

Introduction

Problem description Authorities and Broad-topic queries Algorithm outline

Construction of a Focused Subgraph of the www Expanding R_{σ} into the base set S_{σ} Heuristics impoving base set S_{σ}

Computing Hubs and Authorities

Iterative Algorithm Elements of Linear Algebra Convergence of the Iterative Algorithm

Similar page queries

Multiple Sets of Hubs and Authorities Non-Principal Eigenvectors and Clustering of G_{σ}

Introduction Problem description

www-search

- Discover pages relevant to a given query string
- Discover the most authoritative pages (subjective, requires human evaluation)

Introduction Problem description

www-search

- Discover pages relevant to a given query string
- Discover the most authoritative pages (subjective, requires human evaluation)

Queries

- Specific queries $\longrightarrow Scarcity \ Problem$
- Broad-topic queries $\longrightarrow Abundance \ Problem$
- Similar-page queries

Authorities and Broad-topic queries

In search of a definition of authority

Authorities and Broad-topic queries

In search of a definition of authority

 No endogenous measure of a page to assess authority (ex. *Text-based* ranking functions for queries: "Harvard", "search engines", "automobile manufacturers", images)

Authorities and Broad-topic queries

In search of a definition of authority

- No endogenous measure of a page to assess authority (ex. *Text-based* ranking functions for queries: "Harvard", "search engines", "automobile manufacturers", images)
- Solution: Analysis of the link structure

Authorities and Broad-topic queries

In search of a definition of authority

- No endogenous measure of a page to assess authority (ex. *Text-based* ranking functions for queries: "Harvard", "search engines", "automobile manufacturers", images)
- Solution: Analysis of the link structure

Pitfalls:

- Advertising links
- Navigational links
- Universal Popularity links

Authorities and Broad-topic queries

In search of a definition of authority

- No endogenous measure of a page to assess authority (ex. *Text-based* ranking functions for queries: "Harvard", "search engines", "automobile manufacturers", images)
- Solution: Analysis of the link structure

Pitfalls:

- Advertising links
- Navigational links
- Universal Popularity links

Question. How reliable is page p?

Dimitris Sakavalas,

Algorithm outline

Hubs

Pages that link to many Authorities

Algorithm outline

Hubs

Pages that link to many Authorities

Outline of the algorithm

- Create a focused subgraph of the www from the output of a text-based engine (Small collection of pages likely to contain the most authoritative pages)
- ② Identify hubs and authorities

Directed graph G = (V, E) of the www.

 ${\boldsymbol{V}}$ the collection of hyperlinked pages of the www

- V: (nodes correspond to the pages)
- $(p,q) \in E \Leftrightarrow$ There is a link from p to q

 $\mathbf{G}[\mathbf{W}]$. Subgraph of G induced on $W \subseteq V$

Directed graph $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ of the www.

 \boldsymbol{V} the collection of hyperlinked pages of the www

- V: (nodes correspond to the pages)
- $(p,q) \in E \Leftrightarrow$ There is a link from p to q

 $\mathbf{G}[\mathbf{W}]$. Subgraph of G induced on $W \subseteq V$

Goal

Construct $G_{\sigma} = G[S_{\sigma}]$ such that

- $|S_{\sigma}| \text{ is relatively small} \rightarrow (\text{computational cost})$
- \bigcirc S_{σ} rich in relevant pages \rightarrow (search quality)
- (3) S_{σ} contains most of the *strongest authorities*

Directed graph $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ of the www.

 \boldsymbol{V} the collection of hyperlinked pages of the www

- V: (nodes correspond to the pages)
- $(p,q) \in E \Leftrightarrow$ There is a link from p to q

 $\mathbf{G}[\mathbf{W}]$. Subgraph of G induced on $W \subseteq V$

Goal

Construct $G_{\sigma} = G[S_{\sigma}]$ such that

- $|S_{\sigma}| \text{ is relatively small} \rightarrow (\text{computational cost})$
- 2 S_{σ} rich in relevant pages \rightarrow (search quality)
- (3) S_{σ} contains most of the *strongest authorities*

Observation

 S_{σ} rich in relevant pages \rightarrow many links to authorities

Dimitris Sakavalas,

Notation

- $\Gamma^+(p)$: the set of all pages p points to
- $\Gamma^{-}(p)$: the set of all pages pointing to p
- \mathcal{E} : a text-based search engine

Notation

- $\Gamma^+(p)$: the set of all pages p points to
- $\Gamma^{-}(p)$: the set of all pages pointing to p
- \mathcal{E} : a text-based search engine

1st Step

Root set $R_{\sigma} = \{t \text{ highest ranked pages for the query } \sigma \text{ from } \mathcal{E}\}$

- R_{σ} satisfies (i), (ii) .
- Generally doesn't satisfy (iii) and is structureless (few links)

Notation

- $\Gamma^+(p)$: the set of all pages p points to
- $\Gamma^{-}(p)$: the set of all pages pointing to p
- \mathcal{E} : a text-based search engine

1st Step

Root set $R_{\sigma} = \{t \text{ highest ranked pages for the query } \sigma \text{ from } \mathcal{E}\}$

- R_{σ} satisfies (i), (ii) .
- Generally doesn't satisfy (iii) and is structureless (few links)

Observation

If $a \notin R_{\sigma}$, strong authority, there is a high probability that $\exists p \in R_{\sigma}$ such that $a \in \Gamma^{+}(p)$

Expanding R_{σ} into the base set S_{σ}

2nd Step

Idea:Expand R_{σ} into the Base set S_{σ} by adding strong authorities and relevant pages

Expanding R_{σ} into the base set S_{σ}

2nd Step

Idea:Expand R_{σ} into the Base set S_{σ} by adding strong authorities and relevant pages

```
Subgraph(\sigma, \mathcal{E}, t, d)

t, d \in \mathbb{N}

Set S_{\sigma} := R_{\sigma}

For each page p \in R_{\sigma}

Add all pages in \Gamma^+(p) to S_{\sigma}

If |\Gamma^-(p)| \leq d then,

Add all pages in \Gamma^-(p) to S_{\sigma}

Else

Add an arbitary set of d pages from \Gamma^-(p) to S_{\sigma}
```

End.

Expanding R_{σ} into the base set S_{σ}

Heuristics impoving S_{σ}

Links

- Transverse: link between pages with different domain name
- *Intrinsic*: link between pages with the same domain name (navigational)

Heuristics impoving S_{σ}

Links

- Transverse: link between pages with different domain name
- *Intrinsic*: link between pages with the same domain name (navigational)

3rd Step:Heuristics

- **1** Delete all *Intrinsic* links from the graph G_{σ}
- **2** Allow up to a small number m pages from a single domain to point to any given page p

Heuristics impoving S_{σ}

Links

- Transverse: link between pages with different domain name
- *Intrinsic*: link between pages with the same domain name (navigational)

3rd Step:Heuristics

- **1** Delete all *Intrinsic* links from the graph G_{σ}
- **2** Allow up to a small number m pages from a single domain to point to any given page p

Finally we obtain a small subgraph G_{σ} , relatively focused on the query σ , containing many relevant pages and strong authorities.

Purely In-degree ordering of Authorities

Purely In-degree ordering of Authorities

Problem. "Universally popular" pages, large in-degree regardless of the underlying query topic (ex.Amazon Books)

Purely In-degree ordering of Authorities

Problem. "Universally popular" pages, large in-degree regardless of the underlying query topic (ex.Amazon Books)

Observation

Authorities: high in-degree, considerable overlap in the sets of pages that point to them(hubs)

Dimitris Sakavalas,

Observation (mutually reinforcing relationship)

- Good Hub: a page that points to many good authorities
- Good Authority: a page that is pointed by many good hubs

Observation (mutually reinforcing relationship)

- Good Hub: a page that points to many good authorities
- Good Authority: a page that is pointed by many good hubs

Definitions

 $orall p \in S_\sigma = \{1, 2, ..., n\}$ assign:

- authority weight $x^{} \ge 0$
- hub weight $y^{} \ge 0$

Observation (mutually reinforcing relationship)

- Good Hub: a page that points to many good authorities
- Good Authority: a page that is pointed by many good hubs

Definitions

 $orall p \in S_\sigma = \{1,2,...,n\}$ assign:

- authority weight $x^{} \ge 0$
- hub weight $y^{} \ge 0$

• corresponding vectors $x = \begin{bmatrix} x^{<1>} \\ x^{<2>} \\ \vdots \\ x^{<n>} \end{bmatrix}$ and $y = \begin{bmatrix} y^{<1>} \\ y^{<2>} \\ \vdots \\ y^{<n>} \end{bmatrix}$ Normalized such that ||x|| = ||y|| = 1example. For norm $|| \cdot ||_1, \sum_{i=1}^n x^{<i>} = \sum_{i=1}^n y^{<i>} = 1$

Definitions

• $\mathcal{I}(x, y)$ (x-weight update):

$$\forall x^{}, x^{} \leftarrow \sum_{q:(q,p)\in E} y^{< q>}$$

Hubs and Authorities Definitions

• $\mathcal{I}(x, y)$ (x-weight update):

$$\forall x^{}, \ x^{} \leftarrow \sum_{q:(q,p)\in E} y^{< q>}$$

• $\mathcal{O}(x, y)$ (y-weight update):

$$\forall y^{}, \ y^{} \leftarrow \sum_{q:(p,q)\in E} x^{< q>},$$

• $\mathcal{I}(x, y)$ (x-weight update):

$$\forall x^{}, \ x^{} \leftarrow \sum_{q:(q,p)\in E} y^{< q>}$$

• $\mathcal{O}(x, y)$ (y-weight update):

$$\forall y^{}, y^{} \leftarrow \sum_{q:(p,q)\in E} x^{< q>},$$

ldea

Find the disired "equilibrium" values for the weights by applying \mathcal{I}, \mathcal{O} operations iterativelly.

Dimitris Sakavalas,

Hubs and Authorities Definitions

• $\mathcal{I}(x, y)$ (x-weight update):

$$\forall x^{}, \ x^{} \leftarrow \sum_{q:(q,p) \in E} y^{< q>}$$

• $\mathcal{O}(x, y)$ (y-weight update):

$$\forall y^{}, y^{} \leftarrow \sum_{q:(p,q)\in E} x^{< q>},$$

Idea

Find the disired "equilibrium" values for the weights by applying \mathcal{I}, \mathcal{O} operations iterativelly. Question. Does this "equilibrium" exist?

Dimitris Sakavalas,

Authoritative Sources in a Hyperlinked Enviroment

Hubs and Authorities Definitions

$$\forall x^{}, \ x^{} \leftarrow \sum_{q:(q,p) \in E} y^{< q>}$$

• $\mathcal{O}(x, y)$ (y-weight update):

$$\forall y^{}, y^{} \leftarrow \sum_{q:(p,q)\in E} x^{< q>},$$

ldea

Find the disired "equilibrium" values for the weights by applying \mathcal{I}, \mathcal{O} operations iterativelly. **Question.** Does this "equilibrium" exist? \rightarrow YES (linear algebra) Dimitris Sakavalas,

Iterative algorithm

```
• Iterate(G_{\sigma}, k)
z := (1, 1, ..., 1) \in \mathbb{R}^n
Set x_0 := z
Set y_0 := z
For i = 1, 2, ..., k
  Apply the \mathcal{I}(x_{i-1}, y_{i-1}) operation to obtain new x-weights x'_i
  Apply the \mathcal{O}(x'_i, y_{i-1}) operation to obtain new y-weights y'_i
  Normalize x'_i, obtaining x_i
  Normalize y'_i, obtaining y_i
End
Return (x_k, y_k)
```

Iterative algorithm

• Iterate(G_{σ}, k) $z := (1, 1, ..., 1) \in \mathbb{R}^n$ Set $x_0 := z$ Set $y_0 := z$ For i = 1, 2, ..., kApply the $\mathcal{I}(x_{i-1}, y_{i-1})$ operation to obtain new x-weights x'_i Apply the $\mathcal{O}(x'_i, y_{i-1})$ operation to obtain new y-weights y'_i Normalize x'_i , obtaining x_i Normalize y'_i , obtaining y_i End Return (x_k, y_k) • Filter (G_{σ}, k, c) $(x_k, y_k) :=$ lterate (G_{σ}, k) Report the pages with the c largest coordinates in x_k as authorities Report the pages with the c largest coordinates in y_k as hubs

Notation

Matrix $M \in \mathbb{C}^{n \times n}$

- Eigenvalues $\lambda_i(M)$
- Eigenvectors $\omega_i(M)$
- $eigenspace V_{\lambda}$ subspace of \mathbb{C}^n
- multiplicity of $\lambda : m_{\lambda} = dim(V_{\lambda})$

Notation

Matrix $M \in \mathbb{C}^{n \times n}$

- Eigenvalues $\lambda_i(M)$
- Eigenvectors $\omega_i(M)$
- $eigenspace \ V_{\lambda}$ subspace of \mathbb{C}^n
- multiplicity of $\lambda : m_{\lambda} = dim(V_{\lambda})$

Definitions

- Positive matrix M: If $M_{i,j} > 0, \forall i, j$
- Primitive matrix M: If $\exists m \in \mathbb{N}, M^m$: positive

Let $M \in \mathbb{R}^{n \times n}$ symmetric, nonnegative matrix $(M_{i,j} \ge 0, \forall i, j)$

Theorems

 ${f 0}~~M$ has at most n distinct eigenvalues and $\sum_{m_{\lambda,i}}=n$

Let $M \in \mathbb{R}^{n \times n}$ symmetric, nonnegative matrix $(M_{i,j} \ge 0, \forall i, j)$

Theorems

- ${f 0}~~M$ has at most n distinct eigenvalues and $\sum_{m_{\lambda_{+}}}=n$
- 2 *M* has only real eigenvalues λ_i Denote them $|\lambda_1(M)| \ge |\lambda_2(M)| \ge ... \ge |\lambda_n(M)|$

Let $M \in \mathbb{R}^{n \times n}$ symmetric, nonnegative matrix $(M_{i,j} \ge 0, \forall i, j)$

Theorems

- ${f 0}~M$ has at most n distinct eigenvalues and $\sum_{m_{\lambda,i}}=n$
- M has only real eigenvalues λ_i Denote them $|\lambda_1(M)| \ge |\lambda_2(M)| \ge ... \ge |\lambda_n(M)|$
- \bigcirc (*Perron-Frobenius*) If M is primitive then:
 - i. Largest eigenvalue $\lambda_1(M)>0$ and $m_\lambda=1$
 - ii. $\lambda_1 > |\lambda_i| orall i
 eq 1$
 - iii. λ_1 has a corresponding eigenvector $\omega_1(M)$ with all entries positive (the principal eigenvector) Consider $\omega_1(M)$ normalized, $||\omega_1(M)|| = 1$

Let $M \in \mathbb{R}^{n \times n}$ symmetric, nonnegative matrix $(M_{i,j} \ge 0, \forall i, j)$

Theorems

- ${f 0}~~M$ has at most n distinct eigenvalues and $\sum_{m_{\lambda,i}}=n$
- M has only real eigenvalues λ_i Denote them $|\lambda_1(M)| \ge |\lambda_2(M)| \ge ... \ge |\lambda_n(M)|$
- \bigcirc (*Perron-Frobenius*) If M is primitive then:
 - i. Largest eigenvalue $\lambda_1(M) > 0$ and $m_\lambda = 1$
 - ii. $\lambda_1 > |\lambda_i| orall i
 eq 1$
 - iii. λ_1 has a corresponding eigenvector $\omega_1(M)$ with all entries positive (the principal eigenvector) Consider $\omega_1(M)$ normalized, $||\omega_1(M)|| = 1$
- ④ If M is primitive and vector v not orthogonal to the principal eigenvector $\omega_1(M)$, let v_k be the unit vector in the direction of $M^k v$. Then $v_k \xrightarrow{k \to \infty} \omega_1(M)$

Observation

Note that we can consider $\omega_1(M)$ as a vector of the orthonormal base of V_{λ_1} . Moreover $\dim V_{\lambda_1} = m_{\lambda_1} = 1$ and all entries in $\omega_1(M)$ are positive. Hence the principal eigenvector $\omega_1(M)$ is unique. Connection of Iterative algorithm to linear Algebra Let A be the adjacency matrix of G_{σ}

Observation

Operations $\mathcal{I}(x, y)$ and $\mathcal{O}(x, y)$ can be written as

 $x \leftarrow A^{\top}y$ and $y \leftarrow Ax$ respectively

Connection of Iterative algorithm to linear Algebra Let A be the adjacency matrix of G_{σ}

Observation

Operations $\mathcal{I}(x,y)$ and $\mathcal{O}(x,y)$ can be written as

 $x \leftarrow A^{\top}y$ and $y \leftarrow Ax$ respectively

Iterate Algorithm

The algorithm initializes $x_0 = y_0 = z = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$. In the and i - th

step of thalgorithm we have the following steps:

•
$$\mathcal{I}(x_i, y_i - 1) \dashrightarrow x_i = A^\top y_{i-1}$$

•
$$\mathcal{O}(x_i, y_i) \dashrightarrow y_i = Ax_i$$

Connection of Iterative algorithm to linear Algebra Let A be the adjacency matrix of G_{σ}

Observation

Operations $\mathcal{I}(x,y)$ and $\mathcal{O}(x,y)$ can be written as

 $x \leftarrow A^{\top}y$ and $y \leftarrow Ax$ respectively

Iterate Algorithm

The algorithm initializes $x_0 = y_0 = z = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$. In the and i - th step of thalgorithm we have the following steps:

•
$$\mathcal{I}(x_i, y_i - 1) \dashrightarrow x_i = A^\top y_{i-1}$$

• $\mathcal{O}(x_i, y_i) \dashrightarrow y_i = Ax_i$
 $\Rightarrow \begin{array}{l} x_i = A^\top A x_{i-1} = (A^\top A)^i \cdot x_0 \\ y_i = A A^\top y_{i-1} = (A A^\top)^i \cdot y_0 \end{array} \right\} \Rightarrow \begin{array}{l} x_i = (A^\top A)^i \cdot z \\ y_i = (A A^\top)^i \cdot z \end{array}$ (*)

Dimitris Sakavalas,

Convergence of the Iterative Algorithm

Observation

- We consider x_i, y_i normalized in each step as in Iterate algorithm. So in every step ||x_i|| = ||y_i|| = 1
- For simplicity, matrices AA[⊤] and A[⊤]A are considered primitive
- Obviously $z \cdot c \neq 0, \forall c \in \mathbb{R}^n_{\geq 0}$

Convergence of the Iterative Algorithm

Observation

- We consider x_i, y_i normalized in each step as in Iterate algorithm. So in every step ||x_i|| = ||y_i|| = 1
- For simplicity, matrices AA^{\top} and $A^{\top}A$ are considered primitive
- Obviously $z \cdot c \neq 0, \forall c \in \mathbb{R}^n_{\geq 0}$

Theorem

The sequences $\{x_i\}$ and $\{y_i\}$ produced by Iterate Algorithm converge to limits x^*, y^* respectively

Convergence of the Iterative Algorithm

Observation

- We consider x_i, y_i normalized in each step as in Iterate algorithm. So in every step ||x_i|| = ||y_i|| = 1
- For simplicity, matrices AA^{\top} and $A^{\top}A$ are considered primitive
- Obviously $z \cdot c \neq 0, \forall c \in \mathbb{R}^n_{\geq 0}$

Theorem

The sequences $\{x_i\}$ and $\{y_i\}$ produced by Iterate Algorithm converge to limits x^*, y^* respectively

Proof.

 $A^{\top}A$ primitive, z not orthogonal to the principal eigenvector $\omega_1(A^{\top}A) = x^*$, x_i the unit vector in the direction $(A^{\top}A)^i \cdot z$ Hence from Theorem $4 \Rightarrow \{x_i\} \to x^*$, simirarly $\{y_i\} \to y^* = \omega_1(AA^{\top})$

Conclusion

Conclusion

The process of iterated \mathcal{I}/\mathcal{O} operations will converge. The desired equilibrium values for the x, y weights, are the values x^*, y^* .

Conclusion

Conclusion

The process of iterated \mathcal{I}/\mathcal{O} operations will converge. The desired equilibrium values for the x, y weights, are the values x^*, y^* .

Observation

In practice the convergence of *Iterate* is quite rapid, so one can compute x, y weights by starting from any initial vectors x_0, y_0 , and performing a fixed number of \mathcal{I}, \mathcal{O} operations

Conclusion

Conclusion

The process of iterated \mathcal{I}/\mathcal{O} operations will converge. The desired equilibrium values for the x, y weights, are the values x^*, y^* .

Observation

In practice the convergence of *Iterate* is quite rapid, so one can compute x, y weights by starting from any initial vectors x_0, y_0 , and performing a fixed number of \mathcal{I}, \mathcal{O} operations

Hyperlink-Induced Topic Search (HITS) algorithm (Ask.com)

Similar-Page Queries

Query. Find pages similar to p

ldea

- Initiate search with the page p instead of a query string σ
- Use the link structure to infer "similarity among pages"
- Similar pages to $p
 ightarrow {\sf Strongest}$ authorities in local region of p

Similar-Page Queries

Query. Find pages similar to p

ldea

- Initiate search with the page p instead of a query string σ
- Use the link structure to infer "similarity among pages"
- Similar pages to $p
 ightarrow {\sf Strongest}$ authorities in local region of p

Adaptation of the broad-topic query method

- **(1)** Find t pages pointing to $p \longrightarrow Assemble \ root \ set \ R_p$
- ② Expand R_p to base set S_p as before
- $\ensuremath{\mathfrak{S}}$ Search for authorities and hubs in the focused subgraph G_p

Multiple Sets of Hubs and Authorities

Situation. For a query string σ , relevant pages grouped into *clusters*. Reasons

- Different meanings of σ . ex. "jaguar"
- String σ arises as term in multiple technical communities. ex. "randomized algorithms"
- String σ refers to a highly polarized issue. ex. "abortion"

Multiple Sets of Hubs and Authorities

Situation. For a query string σ , relevant pages grouped into *clusters*. Reasons

- Different meanings of $\sigma.$ ex. "jaguar"
- String σ arises as term in multiple technical communities. ex. "randomized algorithms"
- String σ refers to a highly polarized issue. ex. "abortion"

Problem. Identify the *clusters*

Multiple Sets of Hubs and Authorities

Situation. For a query string σ , relevant pages grouped into *clusters*. Reasons

- Different meanings of $\sigma.$ ex. "jaguar"
- String σ arises as term in multiple technical communities. ex. "randomized algorithms"
- String σ refers to a highly polarized issue. ex. "abortion"

Problem. Identify the *clusters*

ldea

- Clusters represented in focused subgraph G_{σ} as densely linked subgraphs(collection of hubs and authorities)
- Extract densely linked collections of hubs and authorities through *non-principal* eigenvectors of AA^{\top} and $A^{\top}A$

Non-Principal Eigenvectors and Clustering of G_{σ}

Proposition

 AA^{\top} and $A^{\top}A$ have the same multiset of eigenvalues, and their eigenvectors can be chosen so that $\omega_i(AA^{\top}) = A\omega_i(A^{\top}A)$

Non-Principal Eigenvectors and Clustering of G_{σ}

Proposition

 AA^{\top} and $A^{\top}A$ have the same multiset of eigenvalues, and their eigenvectors can be chosen so that $\omega_i(AA^{\top}) = A\omega_i(A^{\top}A)$

Observation

For each pair of eigenvectors x_i^{*} = ω_i(A^TA), y_i^{*} = ω_i(AA^T) operation *I*(x_i^{*}, y_i^{*}) keeps x-weights parallel to x_i^{*}:
 x = A^Tω_i(AA^T) = A^TAω_i(A^TA) = λ_ix_i^{*} Simirarly operation O(x_i^{*}, y_i^{*}) keeps x-weights parallel to y_i^{*}

Non-Principal Eigenvectors and Clustering of G_{σ}

Proposition

 AA^{\top} and $A^{\top}A$ have the same multiset of eigenvalues, and their eigenvectors can be chosen so that $\omega_i(AA^{\top}) = A\omega_i(A^{\top}A)$

Observation

- For each pair of eigenvectors x_i^{*} = ω_i(A^TA), y_i^{*} = ω_i(AA^T) operation *I*(x_i^{*}, y_i^{*}) keeps x-weights parallel to x_i^{*}: x = A^Tω_i(AA^T) = A^TAω_i(A^TA) = λ_ix_i^{*} Siminarly operation O(x_i^{*}, y_i^{*}) keeps x-weights parallel to y_i^{*}
- Non-principal eigenvectors have both positive and negative entries. Hence each pair of (x_i^*, y_i^*) provide us with two densely connected set of hubs and authorities
 - Pages that correspond to the c coordinates with the most positive values
 - Pages that correspond to the c coordinates with the most negative values

Non-Principal Eigenvectors and Clustering of G_σ

Description of the method

• For each of the fist few non-principal eigenvectors (x_i^*, y_i^*) find the two densely connected set of hubs and authorities through an algorithm similar(but less clean conceptually) to the *Iterate algorithm*

Non-Principal Eigenvectors and Clustering of G_σ

Description of the method

- For each of the fist few non-principal eigenvectors (x_i^*, y_i^*) find the two densely connected set of hubs and authorities through an algorithm similar(but less clean conceptually) to the *Iterate algorithm*
- The pages with large coordinates in the first few nonprincipal eigenvectors tend to recur, so that essentially the same collection of hubs and authorities will often be generated by several of the strongest nonprincipal eigenvectors

Similar Concepts in Other Areas

- Social networks \longrightarrow "Standing"
- Bibliometrics → "Impact"

Similar Concepts in Other Areas

- Social networks → "Standing"
- Bibliometrics → "Impact"
- *Economics* (Wassily Leontief 1941-Nobel prize 1973)