
Information Processing Letters 83 (2002) 287–291

www.elsevier.com/locate/ipl

An improved FPTAS for Restricted Shortest Path

Funda Erguna,∗, Rakesh Sinhab, Lisa Zhangc

a Case Western Reserve University, 10900 Euclid Ave., 44106 Cleveland, OH, USA
b AT&T Labs, Middletown, NJ 07748-0000, USA

c Bell Laboratories, 700 Mountain Av., Murray Hill, NJ 07974-0636, USA

Received 1 November 2000; received in revised form 1 April 2001

Communicated by S.E. Hambrusch

Abstract

Given a graph with a cost and a delay on each edge, Restricted Shortest Path (RSP) aims to find a min-costs–t path subject
to an end-to-end delay constraint. The problem is NP-hard. In this note we present an FPTAS with an improved running time of
O(mn/ε) for acyclic graphs, wherem andn denote the number of edges and nodes in the graph. Our algorithm uses a scaling
and rounding technique similar to that of Hassin [Math. Oper. Res. 17 (1) (1992) 36–42]. The novelty of our algorithm lies in
its “adaptivity”. During each iteration of our algorithm the approximation parameters are fine-tuned according to the quality of
the current solution so that the running time is kept low while progress is guaranteed at each iteration. Our result improves those
of Hassin [Math. Oper. Res. 17 (1) (1992) 36–42], Phillips [Proc. 25th Annual ACM Symposium on the Theory of Computing,
1993, pp. 776–785], and Raz and Lorenz [Technical Report, 1999]. 2002 Elsevier Science B.V. All rights reserved.

Keywords: Approximation algorithms; Combinatorial problems; Shortest path; Acyclic graphs

1. Introduction

The Restricted Shortest Path problem (RSP) is
defined as follows. LetG be a graph withn vertices
andm edges. Each edgeij has an associated positive
integral costcij and positive integral delaydij . The
cost (respectively delay) of a path is defined as the
summation of the costs (respectively delays) along all
of its edges. We would like to find the minimum cost
s–t path inG such that the total delay along this path
does not exceed a given boundD.

* Corresponding author.
E-mail addresses: afe@eecs.cwru.edu (F. Ergun),

sinha@research.att.com (R. Sinha), ylz@research.bell-labs.com
(L. Zhang).

RSP, besides being of theoretical interest, is also an
abstraction of various “path provisioning” problems
arising in Quality of Service (QoS) routing in high-
speed networks. Given the QoS requirements of an ap-
plication and the resource availability of the network,
the goal is the identification of a feasible routing path
satisfying these requirements while optimizing certain
other parameters such as cost. In this context the nodes
may be IP routers or intelligent optical switches run-
ning a protocol similar to Generalized Multiprotocol
Label Switching (GMPLS).

RSP is known to be NP-hard [1]. In this note,
we present afully polynomial time approximation
scheme (FPTAS), which allows a trade-off between
the goodness of the approximation and the running
time. Let OPT denote the cost of the minimum cost

0020-0190/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(02)00205-3

288 F. Ergun et al. / Information Processing Letters 83 (2002) 287–291

path satisfying the delay constraint. We say that an
algorithm gives a(1+ε)-approximation of the optimal
solution if it finds a path of cost at most(1 + ε)OPT
and of delay at mostD. For any given parameterε > 0,
our FPTAS gives a(1 + ε)-approximation for acyclic
graphs in time O(mn/ε). This is an improvement
over Hassin [3], Phillips [4] and Lorenz and Raz [5].
Recently, a similar problem was discussed in [2],
where an algorithm for finding a path of cost at most
OPT and of delay at most(1+ ε)D was given.

2. An exact solution

To better understand the approximation, let us
first study a dynamic programming formulation of
the problem that yields an exact solution in pseudo-
polynomial time. Even though RSP aims to find the
minimum cost path subject to a delay constraint, the
following dynamic program computes minimum delay
for a given cost at each node. More precisely, let
gj (c) be the minimum delay for ans–j path of total
cost at mostc. Since the minimum delays–j path
goes through some intermediate nodei (whereij is
an edge), we computegj (c) by minimizing over all
possible intermediate nodesi (Fig. 1). Since for each
value ofc every edge is examined once, we have:

Lemma 1. The running time of EXACT is O(OPT ·m).

We remark that the dynamic programming ap-
proach in EXACT applies as long as the graph is
acyclic or has positive integral costs. Hence, the val-
ues ofgj (c) are computed based ongj ′(c′) wherec′ is
strictly smaller thanc.

3. Approximation algorithms and analysis

The framework of our FPTAS is similar to [3] and
is based on a technique calledrounding-and-scaling
[6]. The exact solution above has a pseudo-polynomial
complexity which is proportional toOPT. However,
if all the costs are “scaled” down enough, then the
scaled optimum becomes small enough that the scaled
version of the problem can be solved optimally in
polynomial time. The solution is then “rounded” back
to the original cost values with some bounded error.
There is a trade-off, determined by the scaling factor,
between the running time and the rounding error
bound. A small scaling factor results in large scaled-
down costs and consequently a long running time with
a small error. On the other hand, a large scaling factor
results in small scaled-down costs and consequently a
short running time with larger error.

The trick here is to start off with a range[LB,UB]
of possible values forOPT, and then successively
narrow down this range. This is achieved by using an
approximate test procedure to check how a valueV

inside the range[LB,UB] compares withOPT. Each
iteration of the test narrows down the valid range for
OPT; when the upper and lower bounds are within a
constant factor of each other, we can efficiently use
a dynamic programming like procedure to obtain a
(1 + ε)-approximation. We now list the steps in this
algorithm.

Step 1. Begin with a rough upper boundUB and a
rough lower boundLB onOPT.

Step 2. Repeatedly apply an approximate test proce-
dure to narrow the gap betweenUB andLB
until UB/LB � 2.

EXACT(c, d)

COMMENT: returns min-cost path with delay constraintD

1. initialization
2. for all c � 0, setgs(c) = 0
3. for all j �= s, setgj (0) = ∞
4. for c = 1,2, . . .

5. for all j �= s, setgj (c) = minedgeij :cij �c{gj (c − 1),min{gi(c − cij) + dij }}
6. if gt (c) � D

7. outputOPT = c and its corresponding path, exit.

Fig. 1. An exact solution for RSP.

F. Ergun et al. / Information Processing Letters 83 (2002) 287–291 289

Step 3. Obtain a(1 + ε)-approximation givenUB/

LB � 2.

3.1. Earlier approximations

We first describe Steps 1–3 by Hassin in [3] and
by Raz and Lorenz in [5] before presenting our
techniques. We do not include the proofs of Lemmas 2,
3 and 4, since the first two are implied in [3] and the
last one in [5].

For Step 1 Hassin sets the initial lower boundLB
to 1 and the initial upper boundUB to nC whereC

is the maximum edge cost. The test procedure used
in Step 2 is due to Warburton [7]. (See Fig. 2.) The
essence of this test procedure is scaling and rounding.
TEST(V , δ) scales down the cost on each edge by a
factor of roughlyV δ/n. If a path with delay at most
D and scaled cost at most�n/δ� exists, thenTEST
returnsOPT � (1 + δ)V . Otherwise,TEST returns
OPT > V . In each iteration of Step 2, Hassin sets
δ = ε andV = √

UB · LB, the geometric mean of the
current upper and lower bounds. It takes O(lg lg(nC))

iterations to findUB andLB that are within a factor
two of each other.

We remark that the scaled costs in theTEST proce-
dure may be zero. Therefore, the dynamic program-
ming approach of computinggj (c) fails unless the
graph is acyclic. (If the graph is acyclic the nodes can
be processed in a topologically sorted order.) In order
to present the successive improvements on the run-
ning time of RSP in a consistent manner, we present
the algorithm for acyclic graphs. We revisit the case
of cyclic graphs in Section 3.3 and show how to mod-

ify our algorithm to work with a subset (but not all) of
graphs that contain cycles.

Lemma 2. TEST(V , δ) runs in O(mn/δ) time for δ �
n.

For Step 3 Hassin invokes theEXACT procedure
using scaled costŝcij = �cij /(LBε/n)� for all edges
ij . OPT � 2LB implies that the scaled-down optimum
is O(n/ε). Substituting this in the expression for the
running time ofEXACT (Lemma 1), we conclude:

Lemma 3. If UB and LB are within a constant factor
of each other, then EXACT(�c/(LBε/n)�, d) returns a
path of cost at most (1+ ε)OPT in time O(mn/ε).

Combining Lemmas 2 and 3, Hassin obtains an FP-
TAS for RSP with a running time O(mn/ε · lg lg(nC)).

Raz and Lorenz improve Step l by finding tighter
initial bounds as stated in Lemma 4 below. Further-
more, by usingδ = 1 in Step 2 they bound the running
time per iteration by O(mn) and the number of itera-
tions by O(lg lgn). Hence, the overall running time of
their FPTAS is O(mn · lg lgn + mn/ε).

Lemma 4. An initial UB and LB where UB � nLB can
be found in O(n lg2 n + m lgn) time.

3.2. Speeding up the approximation

Following Lemma 4, we begin withUB and LB
whereUB � nLB. We show how to reduce the gap
such that UB � 2LB in O(mn) time. Combining

TEST(V , δ)

COMMENT: checks ifOPT > V or OPT � V (1+ δ)

1. initialization
2. for all ij , setĉij = �cij /(V δ/n)�
3. for all c � 0, setgs(c) = 0
4. for all j �= s, setgj (0) = ∞
5. for c = 1,2, . . . , �n/δ�
6. for all j �= s, setgj (c) = minedgeij :ĉij �c{gj (c − 1),min{gi(c − ĉij) + dij }}
7. if gt (c) � D

8. outputOPT � V (1+ δ), exit
9. outputOPT > V

Fig. 2. A (1+ δ)-approximation test procedure.

290 F. Ergun et al. / Information Processing Letters 83 (2002) 287–291

ADAPT(ε)

COMMENT: returns(1+ ε)-approximation

1. initializeUB andLB s.t.UB � nLB
2. whileUB > 2LB
3. setδ = √

UB/LB − 1
4. setV = √

UB · LB/(1+ δ)

5. if TEST(V , δ) outputsOPT � V

6. setLB = V

7. else setUB = (1+ δ)V

8. obtain(1+ ε)-approximation by invokingEXACT(�c/(LBε/n)�, d)

Fig. 3.ADAPT, our FPTAS.

Lemma 3 we obtain an FPTAS with running time
O(mn/ε).

Our key idea is to chooseδ to be a function of
UB/LB when applying theTEST procedure repeatedly
in Step 2. The running time and quality of approxima-
tion depend on the value ofδ. The intuition is that ini-
tially whenUB andLB are far apart, we can afford to
choose a largeδ and apply a very coarse approxima-
tion: the test procedure will be much faster, and it will
still narrow down the gap betweenUB andLB signif-
icantly. As UB andLB get closer, we choose smaller
δ and apply finer approximations. More precisely, at
each iteration, we let,

δ = √
UB/LB − 1. (1)

We refer to our algorithm asADAPT and present it in
Fig. 3.

Lemma 5. If initially UB � nLB, then Step 2 takes
O(mn) time in our algorithm.

Proof. Let UBi , LBi , Vi and δi be the parameters
used in theith application ofTEST. At the end of
this application, we know that eitherOPT � Vi or
that OPT � (1 + δi)Vi . In the former case we set
the new lower boundLBi+1 = Vi and the new upper
boundUBi+1 = UBi , and thereforeUBi+1/LBi+1 =
UBi/Vi . In the latter case we set the new upper bound
UBi+1 = Vi(1 + δi) andLBi+1 = LBi , and therefore
UBi+1/LBi+1 = Vi(1+ δi)/LBi . By the definitions of
Vi and δi , the following holds for both of the above
cases.

UBi+1/LBi+1 = (UBi/LBi)
3/4. (2)

Let k be the number of applications ofTEST. By
Lemma 2, the total time required to narrow down

the upper and lower bound to within a factor two is∑
1�i�k O(mn/δi). It therefore suffices to show that∑

1�i�k

1/δi = O(1).

The definition ofδi implies 1/δi = 1/(
√

UBi/LBi −
1). SinceUBi > 2LBi for i � k, we have√

LBi/UBi � 1/δi � (2+ √
2)

√
LBi/UBi .

Hence,∑
1�i�k

1/δi = O

(∑
1�i�k

√
LBi/UBi

)
.

We also have,∑
1�i�k

√
LBi/UBi =

∑
0�j<k

(LBk/UBk)
(1/2)·(4/3)j

�
∑

0�j<k

2−(1/2)·(4/3)j

� 2−1/2
∑

0�j<k

pj

� 2−1/2/(1− p)

� 6.5,

wherep = 2−1/6. The first equality follows from re-
peatedly applying Eq. (2). The first inequality follows
from the fact thatUBk > 2LBk. The second inequal-
ity holds since 2−(1/2)·(4/3)j+1 � p · 2−(1/2)·(4/3)j for
j � 0. ✷

Given the running times for Steps 2 and 3, combin-
ing Lemmas 4, 5 and 3, we obtain,

Theorem 6. ADAPT, our FPTAS for RSP, has running
time O(mn/ε).

F. Ergun et al. / Information Processing Letters 83 (2002) 287–291 291

MODIFIED-TEST(V , δ)

COMMENT: checks ifOPT > V or OPT � V (1+ δ)

1. initialization
2. for all ij , setĉij = � cij

V δ/n
�

3. create graphH
4. for all i, create nodes(i, c) for 0� c � �n/δ�
5. for all ij , create edges between nodes(i, c) and(j, c + ĉij) for 0� c � �n/δ� − ĉij

let these edges have delaydij

6. find min delay inH from (s,0) to (t, c) for 0� c � �n/δ�
7. if any delay� �n/δ�
8. outputOPT � V (1+ δ)

9. else
10. outputOPT > V

Fig. 4. A modified(1+ δ)-approximation test procedure.

3.3. Graphs with cycles

Recall that the scaled costŝcij in the procedure
TEST(V , δ) may be zero and hence the dynamic
programming approach fails for graphs with cycles.
One obvious fix is to define scaled cost byĉij =
�cij /(V δ/n)� + 1 instead of ĉij = �cij /(V δ/n)�.
(Modifying line 2 of Fig. 2.) Unfortunately, such a fix
does not lead to a(1+δ)-approximation test procedure
with desired running time of O(mn/δ) if δ > 1.

It is not obvious whether there are any easy ways
of generalizing our algorithm to work for all cyclic
graphs. However, a simple modification works for a
large class of cyclic graphs, the only exception being
graphs that contain a cycle such thatall the edges in
the cycle has zero modified cost.

We propose the following modification toTEST(V ,

δ). We computegt (c) for all c � �n/δ� in one large
graph which we callH . For a graphG whose edges
ij have costcij and delaydij , we create a graphH as
follows. For each nodei in G, we create�n/δ� nodes
in H and label them(i, c) for 0 � c � �n/δ�. For each
edgeij in G, we add an edge between nodes(i, c)

and (i, c + ĉij) and let this edge have delaydij . The
new graphH has at mostm�n/δ� edges, and at most
n�n/δ� nodes. We modify ourTEST algorithm to work
on this new graphH ; note that for the algorithm to
work properly,H needs to be acyclic.

The modifiedTEST procedure is given in Fig. 4.
Note that, sinceH is acyclic, line 6 takes O(mn/ε)

time. Thus,MODIFIED-TEST still takes total time
O(mn/ε) and the overall algorithm remains unchanged.

We now explore for which graphsG the corre-
spondingH are acyclic. Note that along any path in
H the costs are nondecreasing; i.e., if node(i, c2) fol-
lows (j, c1), thenc2 � c1. Thus, ifH has a cycle, the
costs of the nodes in the cycle are the same. More pre-
cisely, the nodes around a cycle of sizek are of the
form (i1, c1), . . . , (ik, ck), wherec1 = · · · = ck. This
happens only when all the edges in the corresponding
cycle inG have zero scaled down cost. So even ifG

has cycles,H will be acyclic as long as one or more
edges in every cycle ofG have a positive scaled cost.

References

[1] M.R. Garey, D.S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W.H. Freeman,
New York, 1979.

[2] A. Goel, K.G. Ramakrishnan, D. Kataria, D. Logothetis, Effi-
cient computation of delay-sensitive routes from one source to
all destinations, in: Proceedings INFOCOM, 2001.

[3] R. Hassin, Approximation schemes for the restricted shortest
path problems, Math. Oper. Res. 17 (1) (1992) 36–42.

[4] C. Phillips, The network inhibition problem, in: Proceedings
25th Annual ACM Symposium on the Theory of Computing,
San Diego, CA, May 1993, pp. 776–785.

[5] D. Raz, D. Lorenz, Simple efficient approximation scheme
for the restricted shortest path problem, Technical Report
10009674-991214-04TM, Bell Labs, 1999.

[6] S. Sahni, Algorithms for scheduling independent tasks,
J. ACM 23 (1976) 116–127.

[7] A. Warburton, Approximation of Pareto optima in multiple-
objective, shortest path problems, Oper. Res. 35 (1987) 70–79.

