
LINEAR PROGRAMMING

Vazirani Chapter 12 – Introduction to LP-Duality

George Alexandridis (NTUA)

gealexan@mail.ntua.gr

18/5/2010 1Linear Programming (George Alexandridis)



LINEAR PROGRAMMING

• What is it?
– A tool for optimal allocation of scarce resources, among a number of competing activities.

– Powerful and general problem-solving method that encompasses:
• shortest path, network flow, MST, matching

• Ax = b, 2-person zero sum games

• Definition
– Linear Programming is the problem of optimizing (i.e minimizing or maximizing) a linear 

function subject to linear inequality constraints. The function being optimized is called the 
objective functionobjective function

• Example
– minimize 7x1 + x2 + 5x3 (the objective function)

– subject to (the constraints)
• x1 - x2 + 3x3 ≥ 10

• 5x1 + 2x2 - 5x3 ≥ 6

• x1, x2, x3 ≥ 0

• Any setting for the variables in this linear program that satisfies all the constraints 
is said to be a feasible solution
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History
• 1939, Leonid Vitaliyevich Kantorovich

– Soviet Mathematician and Economist

– He came up with the technique of Linear Programming after having been assigned to the task 
of optimizing production in a plywood industry

– He was awarded with the Nobel Prize in Economics in 1975 for contributions to the theory of 
the optimum allocation of resources

• 1947, George Bernard Dantzig
– American Mathematician

– He developed the simplex algorithm for solving linear programming problems

– One of the first LPs to be solved by hand using the simplex method was the “Berlin Airlift” – One of the first LPs to be solved by hand using the simplex method was the “Berlin Airlift” 
linear program

• 1947, John von Neumann
– Developed the theory of Linear Programming Duality

• 1979, Leonid Genrikhovich Khachiyan
– Armenian Mathematician

– Developed the Ellipsoid Algorithm, which was the first to solve LP in polynomial time

• 1984, Narendra K. Karmarkar
– Indian Mathematician

– Developed the Karmarkar Algorithm, which also solves LP in polynomial time
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Applications

• Telecommunication
– Network design, Internet routing 

• Computer science
– Compiler register allocation, data mining.

• Electrical engineering
– VLSI design, optimal clocking.– VLSI design, optimal clocking.

• Energy
– Blending petroleum products.

• Economics.
– Equilibrium theory, two-person zero-sum games.

• Logistics
– Supply-chain management.
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Example: Profit maximization

• Dasgupta-Papadimitriou-Vazirani: “Algorithms”, Chapter 7

• A boutique chocolatier produces two types of chocolate: 
Pyramide ($1 profit apiece) and Pyramide Nuit ($6 profit 
apiece).

• How much of each should it produce to maximize profit, 
given the fact thatgiven the fact that
– The daily demand for these chocolates is limited to at most 200 

boxes of Pyramide and 300 boxes of Pyramide Nuit

– The current workforce can produce a total of at most 400 boxes 
of chocolate

• Let’s assume that the current daily production is
– x1 boxes of Pyramide

– x2 boxes of Pyramide Nuit
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Profit Maximization as a Linear 

Program

• Objective Function

– max   x1 + 6x2 

• Constraints

– x1 ≤ 200– x1 ≤ 200

– x2 ≤ 300

– x1 + x2 ≤ 400

– x1 , x2 ≥ 0
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The simplex algorithm

• Let v be any vertex of 

the feasible region

• While there is a 

neighbor v’ of v with neighbor v’ of v with 

better objective value:

– Set v = v’

• This local test implies 

global optimality
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Introduction to Duality

• Simplex outputs (x1, x2) = (100, 300) as the optimum 
solution, with an objective value of 1900. Can this answer 
be verified?
– Multiply the second inequality by six and add it to the first 

inequality
• x1 + 6x2 ≤ 2000• x1 + 6x2 ≤ 2000

• The objective function cannot have a value of more than 2000!

– An even lower bound can be achieved if the second inequality is 
multiplied by 5 and then added to the third

• x1 + 6x2 ≤ 1900

– Therefore, the multipliers (0, 5, 1) constitute a certificate of 
optimality for our solution!

• Do such certificates exist for other LP programs as well?
– If they do, is there any systematic way of obtaining them?
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The Dual
• Let’s define the multipliers y1, y2, y3 for the three constraints of our 

problem
– They must be non-negative in order to maintain the direction of the 

inequalities

– After the multiplication and the addition steps, the following bound is 
obtained

• (y1 + y3)x1 + (y2 + y3)x2 ≤ 200y1 + 300y2 + 400y3

– The left hand-side of the inequality must resemble the objective 
function. Thereforefunction. Therefore

• x1 + 6x2 ≤ 200y1 + 300y2 + 400y3, if
– y1, y2, y3 ≥ 0

– y1 + y3 ≥ 1

– y2 + y3 ≥ 6

• Finding the set of multipliers that give the best upper bound on the 
original LP is equivalent to solving a new LP!
– min  200y1 + 300y2 + 400y3, subject to

– y1, y2, y3 ≥ 0

– y1 + y3 ≥ 1

– y2 + y3 ≥ 6
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Primal – Dual

• Any feasible value of this dual LP is an upper 

bound on the original primal LP (the reverse 

also holds)

– If a pair of primal and dual feasible values are – If a pair of primal and dual feasible values are 

equal, then they are both optimal

– In our example both (x1, x2) = (100, 300) and (y1, 

y2, y3) = (0, 5, 1) have value 1900 and therefore 

certify each other’s optimality
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Formal Definition of the Primal and 

Dual Problem

Here, the primal problem is a minimization problem.
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LP Duality Theorem

• The LP-duality is a min-max relation

• Corollary 1 
– LP is well – characterized

• Corollary 2
– LP is in NP ∩ co-NP

– Feasible solutions to the primal (dual) provide Yes (No) certificates to 
the question:

• “Is the optimum value less than or equal to α?”
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Weak Duality Theorem

• LP Duality Theorem

– The basis of several Exact Algorithms

• Weak Duality Theorem

– Approximation Algorithms
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Complementary Slackness Conditions

18/5/2010 14Linear Programming (George Alexandridis)



MAX FLOW as LP: Primal Problem

• Introduce a fictitious arc 
from sink t to source s: fts

– flow is now converted to 
circulation

– maximize flow on this arc

• The second set of 
inequalities implies flow 

• The second set of 
inequalities implies flow 
conservation at each node
– If this inequality holds at each 

node, then, in fact, it must be 
replaced by an equality at 
each node

– This tricky notation is used so 
as to have a LP in standard 
form
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MAX FLOW as LP: Dual Problem

• The variables dij and pi

correspond to the two 

types of inequalities  in 

the primal

d : distance labels on – dij: distance labels on 

arcs

– pi: potentials on nodes
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MAX FLOW as LP: Transformation of 

the Dual to an Integer Program
• The integer program seeks 0/1 

solutions

• If (d*,p*) is an optimal solution to IP, 
then the 2nd inequality is satisfied 
only if ps

* = 1 and pt
* = 0, thus 

defining an s-t cut
– S is the set of potential 1 nodes and V / 

S the set of potential 0 nodesS the set of potential 0 nodes

• If the nodes of an arc belong to the 
different sets ( ), 
then by the first inequality dij

* = 1

• The distance label for each of the 
remaining arcs may be set to 0 or 1 
without violation of the constraint

– it will be set to 0 in order to minimize 
the objective function

• Therefore the objective function will 
be equal to the capacity of the cut, 
thus defining a minimum s-t cut
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MAX FLOW as LP: LP-relaxation

• The previous IP is a formulation of the minimum s-t cut problem!

• The dual program may be seen as a relaxation of the IP
– the integrality constraint is dropped

– 1 ≥ dij ≥ 0, for every arc of the graph

– 1 ≥ pi ≥ 0, for every node of the graph

– the upper bound constraints on the variables are redundant– the upper bound constraints on the variables are redundant
• Their omission cannot give a better solution

• The dual program is said to be an LP-Relaxation of the IP

• Any feasible solution to the dual problem is considered to be a 
fractional s-t cut
– Indeed, the distance labels on any s-t path add up to at least 1

• The capacity of the fractional s-t cut is then defined to be the dual 
objective function value achieved by it
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The max-flow min-cut theorem as a 

special case of LP-Duality
• A polyhedron defines the set of feasible solutions to the 

dual program
– A feasible solution is set to be an extreme point solution if it is a 

vertex of the polyhedron
• It cannot be expressed as a convex combination of two feasible 

solutions

– LP theory: there is an extreme point solution that is optimal– LP theory: there is an extreme point solution that is optimal

• It can be further proven that each extreme point solution of 
the polyhedron is integral with each coordinate being 0 or 1

• The dual problem has always an integral optimal solution

• By the LP duality theory, maximum flow in G must equal 
the capacity of a minimum fractional s-t cut
– Since the latter equals the capacity of a minimum s-t cut, we get 

the max-flow min-cut theorem
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Another consequence of the LP-

Duality Theorem: The Farkas’ Lemma
• Ax = b, x ≥ 0 has a solution iff there is no vector y ≠ 0 saTsfying ATy ≤ 0 and bTy > 0

• Primal: min 0Tx
– Ax = b

– x ≥ 0

• Dual: max  bTy
– ATy ≤ 0

– y ≠ 0

• If the primal is feasible, it has an optimal point of cost 0• If the primal is feasible, it has an optimal point of cost 0
– y = 0 is feasible in the dual and therefore it is either unbounded or has an optimal point

• First direction
– If Ax = b has an non-negative solution, then the primal is feasible and its optimal cost is 0. 

Therefore, the dual’s optimal cost is 0 and there can be no vector y satisfying the dual’s first 
constraint and bTy > 0

• Second direction
– If there is no vector y satisfying ATy ≤ 0 and bTy > 0, then the dual is not unbounded. It has an 

optimal point. As a consequence the primal has an optimal point and therefore it is feasible
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LP Duality in 2-person zero sum games

• Non-symmetric game

• In this scenario, if Row announces a strategy x = (x1, x2), there is always a 

m t

e 3 -1

s -2 1

• In this scenario, if Row announces a strategy x = (x1, x2), there is always a 
pure strategy that is optimal for Column
– m, with payoff  3x1 – 2x2

– t, with payoff  –x1 + x2

• Any mixed strategy y for Column is a weighted average of the 
abovementioned pure strategy and therefore it cannot be better of them

• If Row is forced to announce her strategy, she wants to defensively pick 
an x that would maximize her payoff against Column’s best response
– Pick (x1, x2) that maximizes the min{3x1 – 2x2, –x1 + x2} (which is the payoff from 

Column’s best response to x
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LP of the 2-person zero sum game

• If Row, announces her strategy 
first, she needs to pick x1 and x2
so that
– z = min{3x1 – 2x2, –x1 + x2}

– max z
• z ≤ 3x1 – 2x2

• z ≤ –x1 + x2

• In LP form

• If Column, announces his strategy 
first, he needs to pick y1 and y2 so 
that
– w = max{3y1 – y2, –2y1 + y2}

– min w
• w ≥ 3y1 – y2

• w ≥ –2y1 + y2

• In LP form• In LP form
• max z

• x1 – 2x2 + z ≤ 0

• x1 – x2 + z ≤ 0

• x1 + x2 = 1

• x1, x2 ≥  0

• In LP form
• min w

• 3y1 – y2 + w ≥ 0

• -2y1 + y2 + w ≥ 0

• y1 + y2 = 1

• y1, y2 ≥  0
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These two LPs are dual to each other

They have the same optimum V



The min-max theorem of game theory

• By solving an LP, the maximizer (Row) can determine a 
strategy for herself that guarantees an expected outcome 
of at least V no matter what Column does
– The minimizer, by solving the dual LP, can guarantee an 

expected outcome of at most V, no matter what Row does

• This is the uniquely defined optimal play and V is the value• This is the uniquely defined optimal play and V is the value
of the game
– It wasn’t a priori certain that such a play existed

• This example cat be generalized to arbitrary games
– It proves the existence of mixed strategies that are optimal for 

both players

– Both players achieve the same value V

– This is the min-max theorem of game theory
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Linear Programming in Approximation 

Algorithms
• Many combinatorial optimization problems can be stated 

as integer problems
– The linear relaxation of this program then provides a lower 

bound on the cost of the optimal solution

– In NP-hard problems, the polyhedron defining the optimal 
solution does not have integer verticessolution does not have integer vertices

• In that case a near-optimal solution is sought

– Two basic techniques for obtaining approximation algorithms 
using LP

• LP-rounding

• Primal-Dual Schema

– LP-duality theory has been used in combinatorially obtained 
approximation algorithms

• Method of dual fitting (Chapter 13)
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LP-Rounding and Primal-Dual Schema

• LP-Rounding
– Solve the LP

– Convert the fractional solution obtained into an integral solution
• Ensuring in the process that the cost does not increase much

• Primal-Dual Schema
– Use the dual of the LP-relaxation (in which case becomes the – Use the dual of the LP-relaxation (in which case becomes the 

primal) in the design of the algorithm

– An integral solution to the primal and a feasible solution to the 
duela are constructed iteratively

– Any feasible solution to the dual provides a lower bound for OPT

• These techniques are illustrated in the case of SET COVER, 
in Chapter 14 and 15 of the book
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The integrality gap of an LP-relaxation

• Given an LP-relaxation of a minimization problem Π, let 
OPTf(I) be the optimal fractional solution to instance I

• The integrality gap is then defined to be

– The supremum of the ratio of the optimal integral and 
fractional solutionsfractional solutions

– In case of a maximization problem, it would have been the 
infimum of this ratio

• If the cost of the solution found by the algorithm is 
compared directly with the cost of an optimal 
fractional solution, then the best approximation factor 
is the integrality gap of the relaxation 

18/5/2010 26Linear Programming (George Alexandridis)



Running times of the two techniques

• LP-rounding needs to find an optimal solution to the linear 
programming relaxation
– LP is in P and therefore this can be done in polynomial time if 

the relaxation has polynomially many constraints.

– Even if the relaxation has exponentially many constraints, it may 
still be solved in polynomial time if a polynomial time 
separation oracle can be constructed
still be solved in polynomial time if a polynomial time 
separation oracle can be constructed

• A polynomial time algorithm that given a point in Rn (n: the number of 
variables in the relaxation) either confirms that it is a feasible solution 
or outputs a violated constraint.

• The primal-dual schema may exploit the special 
combinatorial structure of individual problems and is able 
to yield algorithms having good running times
– Once a basic problem is solved, variants and generalizations of 

the basic problem can be solved too

18/5/2010 27Linear Programming (George Alexandridis)


