Faster Communication in Known Topology Radio Networks Λέων-Χαράλαμπος Σταματάρης

- Two classical problems of information dissemination in computer networks:
 - The broadcasting problem:
 - Distributing a particular message from a distinguished source node to all other nodes in the network
 - The gossiping problem:

Each node u in the network initially holds a message m_u , and it is required to distribute all messages m_u to all nodes in the network

- The model of the network:
 - An undirected connected graph *G* = (*V*, *E*), (*u*, *w*) ∈ *E* iff the transmissions of node *u* can directly reach node *w* and vice versa.
 - The number of neighbors of a node w is called its degree. the maximum degree of any node in the network is called the max-degree of the network and is denoted by Δ.
 - each node *u* either transmits or listens.
 - a node *w* adjacent to *u* successfully receives this message iff in this step *w* is listening and *u* is the only transmitting node among *w*'s neighbors.

- Part 1:
 - Deterministic schedule $O(D + \Delta \log n)$ for the gossiping task Best known gossiping schedule $O(D + {}^{i+2}\sqrt{D}\Delta \log {}^{i+1}n)$
 - Deterministic schedule $D + O(\log^3 n)$ for the broadcast task Randomized schedule $D + O(\log^2 n)$ for the broadcast task Best known broadcasting schedule $D + O(\log^4 n)$

- Part 2:
 - Broadcasting schedule for planar graphs $\geq 3D$ Best known broadcasting schedule $D + O(\log^3 n)$

- The gossiping task can be performed in two consecutive stages.
 - First Stage: gather all individual messages in one (central) point of the graph.
 - Second Stage: the collection of individual messages is broadcast to all nodes in the network.

- We start this section with the presentation of a simple gathering procedure that works in time $O((D + \Delta) \log n)$ in free trees.
- Later we show how to choose a spanning breadthfirst (BFS) tree in an arbitrary graph G in order to gather (along its branches) all messages in G also in time $O((D + \Delta) \log n)$
- Finally, we show how the gathering process can be pipelined and sped up to time $O(D + \Delta \log n)$

• Ranking procedure:

- Given an arbitrary tree, we choose as the root its central node *c*. The nodes in a tree rooted in *c* are partitioned into consecutive layers $L_i = \{v \mid dist(c, v) = i\}$ for i = 0, ..., r where *r* is a radius of the tree. We denote the size of each layer L_i by $|L_i|$
- Each leaf v has rank(v) = 1
- A non-leaf node determines its rank as $rank(v) = r_{max}$ where r_{max} is the maximum rank of its children.
- If there are at least two children with the rank r_{max} then the rank of node v is set to rank $(v) = r_{max} + 1$

• Ranking procedure:

• Lemma 2.1. *The largest rank in a tree of size n is bounded by* [log n]

Figure 1: A ranked tree of size n = 37

- The schedule is now defined in stages using the ranked tree by partitioning the nodes into different rank sets $R_i = \{v \mid rank(v) = i\}$ for $1 \le i \le r_{max} \le \lceil \log n \rceil$
- The meaning of this partition is that the nodes in R_i are involved in transmissions only during the stage *i*.

• We now define two key subsets of nodes for each stage. The fast transmission set:

 $F_i^k = \{v \mid v \in L_k \cap R_i \text{ and } parent(v) \in R_i\}.$ Also define $F_i = \bigcup_{k=1}^D F_i^k$ and $F = \bigcup_{i=1}^{r_{max} \leq \lceil \log n \rceil} F_i.$ The slow transmission set:

 $S_i^k = \{ v \mid v \in L_k \cap R_i \text{ and } parent(v) \in R_j, j > i \}.$ Also define $S_i = \bigcup_{k=1}^D S_i^k$ and $S = \bigcup_{i=1}^{r_{max} \le \lceil \log n \rceil} S_i.$

• Lemma 2.2. During the *i*th stage, all nodes in F_i^k can transmit to their parents simultaneously without any collisions, for $i = 1, ..., r_{max} \leq \lceil \log n \rceil$ and k = 1, ..., D.

- The following procedure moves messages from all nodes with rank *i* into their parents with ranks *i* + 1 or higher.
 - Procedure Gathering(*i*);
 - 1. Move messages from nodes in F_i to S_i from F_i^D down to F_i^1 layer by layer.
 - 2. Move messages from nodes in S_i to their parents, all parents collect their messages from their children in S_i one by one.
- The time complexity of step 1 is O(D) due to Lemma 2.2.
 The time complexity of step 2 is bounded by O(Δ)

Theorem 2.3. In any tree of size n, diameter D and maximum degree Δ , the gossiping task can be completed in time $O((D + \Delta) \log n)$.

- Gathering messages in arbitrary graphs:
 - Gathering spanning tree (GST)
 - In an arbitrary graph G = (V, E), any BFS spanning tree T_G of G s.t.
 - (1) T_G is rooted at the central node c of G,
 - (2) T_G is ranked, and
 - (3) all nodes in F_i^k of T_G are able to transmit their messages to their parents simultaneously without any collision, for all $1 \le k \le D$ and $1 \le i \le r_{max} \le \lceil \log n \rceil$

is called a gathering spanning tree, or simply GST

The construction of GST.

- In a graph G = (V, E), an arbitrary ranked BFS spanning tree rooted in the central node *c* is called a pre-gathering-tree $T_{PGT} = (V, E_{PGT})$
- Function Check-collision(*i*, *j*): a pair of nodes;

(1) if $\exists u, v \in F_j^i$ and $(u, parent(v)) \in E$, where $u \neq v$ then return(u, v);

else return('null');

Original Graph

Pre-gathering-tree with ranks

• Procedure Gathering-Spanning-Tree:

(1) For $i := D$ down to 1 do
2) begin
(3) For $j := r_{max}$ down to 1 do
(4) begin
(5) While CHECK-COLLISION $(i, j) \neq 'null'$ do
(6) begin
(7) $\operatorname{rank}(parent(v)) = j + 1;$
(8) $F_j^i = F_j^i - \{v, u\};$
$S_j^i = S_j^i \cup \{v, u\};$
(10) $\check{E}_{PGT} = \check{E}_{PGT} - \{(u, parent(u))\};$
(11) $E_{PGT} = E_{PGT} \cup \{(u, parent(v))\};$
(12) re-rank T_{PGT} only at the top BFS layers
from $i - 1$ down to 0;
(13) recompute sets in F and S in new T_{PGT} ;
(14) end
(15) end
(16) end

Pre-gathering-tree with ranks

Lemma 2.4. After completing the pruning process at layer *i* in T_{PGT} , the structure of edges in T_{PGT} between layers *i* -1,...,*D* is fixed, i.e., the transmissions within layers *i*,...,*D* in all sets F_j , for $j = 1,...,r_{max} \leq \lceil \log n \rceil$ are free of collisions.

• Theorem 2.5. *There exists an efficient polynomial time construction of a GST on an arbitrary graph G.*

• Using the ranks of the GST nodes (constructed in the previous section), all nodes get partitioned into distinct rank sets $R_i = F_i \bigcup S_i$, where $1 \le i \le r_{max} \le \lceil \log n \rceil$ Initially, all messages are gathered into the central node *c*, stage by stage, using the structure of the GST.

- During the ith stage, all messages from nodes in *F_i* are first moved to the nodes in *S_i*.
- We divide the sequence of transmission time slots into three separate (interleaved) subsequences of time slots. Specifically, the nodes in S_i transmit in time slots: t ≡ 0 (mod 3) iff i ≡ 0 (mod 3); t ≡ 1 (mod 3) iff i ≡ 1 (mod 3); and t ≡ 2 (mod 3) iff i ≡ 2 (mod 3). Later, we move all messages from nodes in Si to their parents in GST.

• Lemma 2.6. In stage i, nodes in set S_i of the GST transmit their messages to the parents in time $O(\Delta)$.

Theorem 2.7. In any graph G, the gossiping task can be completed in time $O((D + \Delta) \log n)$.

- In this section we show how to pipeline the transmissions of different stages.
- The pattern of transmissions of a node *v* at layer *i* and with rank *j* in GST depends on whether it belongs to the set *F* or to the set *S*, and it is as follows:

(1) if $v \in F$, then v transmits within the time block (D - i) + j Δ

(2) otherwise ($v \in S$), v transmits within the time block (D - i) + $j \varDelta$ + s(v), $1 \le s(v) \le \varDelta$

Lemma 2.8. A node v transmits its message as well as all messages collected from its descendants towards its parent in GST successfully during the time block allocated to it by the pattern of transmissions.

• Theorem 2.9. In any graph G, the gossiping task can be completed in time $O(D + \Delta \log n)$.

• Corollary 2.10. The gossiping can be completed in time O(D) in all graphs with $\Delta = O(D / \log n)$.

- The deterministic algorithm B uses the concept of the ranked gathering spanning tree
- Let us start with an overview of the broadcast process from the point of view of a copy of the message that was eventually received at some leaf a of the tree.
- Let us denote that the message follow the shortest path p(a)

$$p(a) = \langle p_1^F(a), p_1^S(a), p_2^F(a), p_2^S(a), \dots, p_q^F(a), p_q^S(a) \rangle$$

- During the broadcasting process the nodes in the tree use the following pattern of transmissions:
 - Consider a node v of rank $1 \le i \le r_{max}$ on BFS layer L_i with a child w of the same rank at the next BFS layer. Then v is set to perform a fast transmission to w in time steps t satisfying $t \equiv i + 6j \pmod{6 r_{max}}$
 - The slow transmissions at the BFS layer L_i are performed in time steps t satisfying $t \equiv i + 3 \pmod{6}$
 - For slow transmissions, algorithm B uses the O(log² n) transmission Procedure CW

• The total time required for the broadcast message to reach a leaf a in the tree can be bounded as follows. Let D_i , for $1 \le i \le r_{max}$, denote the length of $p^F(a)$, the ith fast segment of the route p(a) used by the broadcast message that has reached a. Thus the time required to communicate a is bounded by $O(\log n) + D_1 + ::: + O(\log n) + Dr_{max} D +$ $O(\log^2 n)$ for the fast transmissions plus r_{max} $O(\log^2 n) =$ $O(\log^3 n)$ for the slow transmissions, yielding a total of $D+O(\log^3 n).$

Theorem 3.1. There exists a deterministic polynomial time algorithm that constructs, for any n node radio network of diameter D, a broadcasting schedule of length $D + O(\log^3 n)$.

• Claim 3.2. Consider an uninformed node w in L_j+1 . Suppose that at the beginning of the current activation of procedure RCW, w has some informed neighbors on layer L_j . Then w will get the message during the current activation of procedure RCW with constant probability $p \ge 1/(4e)$.

Theorem 3.3. There exists a randomized algorithm that for any known topology of n node radio network of diameter D and any source node s; following a polynomial preprocessing stage, broadcasts a message from s with high probability in time $D + O(\log^2 n)$.

• Corollary 3.4. For any known topology n nodes radio network of diameter D; there exists a broadcasting schedule of length $D + O(\log^2 n)$:

- In this section we sketch an algorithm for constructing a transmission schedule for performing broadcast from a given source s on a known planar radio network *G* in asymptotically optimal *O*(*D*) time. The schedule consists of *D* phases, each of up to 3 rounds.
- let L_p denote the set of vertices at distance p from s.
- Phase 1: Only s transmits, and by the end of this round, all the vertices of L₁ are informed.
- Assuming all the vertices of layer $U = L_{p-1}$ are informed, let us now describe the algorithm for constructing the sub-schedule of phase p, designed to inform all the vertices of $D = L_p$

- Preprocessing stage: Constructs a bipartite graph consisting only of the nodes of the two layers *U* and *D* and the edges connecting them.
 - Construct a planar embedding of *G* with *s* at the top (on the outer face) and all other vertices below it.
 - Erase from the graph all the vertices of layers L_j for j > p and their edges, as well as all the edges connecting vertices of D
 - mark on the graph a shortest paths tree *T* rooted at s and leading to all the vertices of *U*
 - Next, erase from the graph all the vertices of layers other than *D* and *U* that do not participate in this tree

- Next, we replace the tree *T* by a star connecting *s* directly to the vertices of layer *U*.
- Next, we modify the embedding so that the vertices of layer *U* occur on a straight horizontal line and the vertices of layer *D* occur below this line.

- We now assign depth values to the vertices of *D*. This is done recursively as follows. Let *d* = 1. Assign each vertex *v* ∈ *D* on the outer face a depth value depth(*v*) = *d*. Now erase all the vertices of *D* on the outer face and their edges, and increase *d* by 1. If *D* is still nonempty then recurse.
- For each vertex v ∈ D, denote its leftmost U neighbor by left(v), its rightmost U neighbor by right(v), and the list of its remaining neighbours (if any) by rest(v), taken from left to right.
- Finally, the schedule is defined as follows. The three time slots of the current phase *p* are $t_1 = 3p 4$, $t_2 = 3p 3$ and $t_3 = 3p 2$.

- Stage *l* starts with the depth 1 vertices, kept in the ordered list D₁ = <v₁,..., v_κ>. Construct the ordered list of "breakpoint vertices"
- $B = \langle \operatorname{left}(v_1), \operatorname{right}(v_1), \ldots, \operatorname{left}(v_{\kappa}), \operatorname{right}(v_{\kappa}) \rangle$
- Assign time slots t_1 and t_2 alternately to the vertices of the list *B*.
- Next, for each v_i with nonempty list rest (v_i) , assign time slots to the vertices of that list as follows.
- If left(v_i) was assigned the time slot t₁ (hence right(v_i) was assigned the time slot t₂), then assign the time slots t₃ and t₁ alternately to the nodes of rest(v_i) from left to right.

- Let us now describe stage *l* ≥ 2, showing how to assign time slots to some *U* neighbors of vertices in *D_l* so as to ensure that they get the message during the current phase. The inductive hypotheses we rely on at the beginning of stage *l* are the following:
 - (P1) At the end of stage *l*-1, all the neighbors of vertices of *D_k* for *k* < *l* were already assigned time slots,
 - (P2) these previously made assignments ensure that all the vertices of D_k for k < l receive the message during the phase, and
 - (P3) at the end of stage *l*-1, every two consecutive vertices in U_{assigned} are assigned different time slots

Let *A* be the rightmost *U* vertex to the left of left(*v*) that has already been assigned a time slot t_A previously. (A can possibly be left(*v*) itself.) Similarly, let *B* be the leftmost *U* vertex to the right of right(*v*) (possibly right(*v*) itself) that has already been assigned a time slot t_B previously.

Note that left(v) and right(v) may have already been assigned a time slot previously, but the vertices of rest(v) (if any exist) are necessarily still unassigned at the beginning of stage l. Moreover, if both left(v) and right(v) have been assigned a time slot previously then these time slots must be different [(P3)], as A and B occur consecutively in $U_{assigned}$.

Now assign time slots to all unassigned U neighbors of v as follows. Let $t_C \in \{t_1, t_2, t_3\}$ be a time slot different from t_A and t_B . Go over the unassigned U neighbors of v from left to right, and assign them the time slots t_C and t_A alternately.

: Final assignment of transmission times in D.

CONCLUSION

- We proposed here new efficient (polynomial time) construction of the deterministic schedule that performs the gossiping task in time $O(D + \Delta \log n)$.
- The new gossiping schedule is asymptotically optimal if $\Delta = O(D/\log n)$