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Description of the problem

Given a set J of jobs, a set M of machines, and for each         and  ,       
the time taken to process job j on machine i , the problem is to 

schedule the jobs on the machines so as to minimize the makespan, i.e., 
the maximum processing time for any machine. We will denote the 
number of jobs by n and the number of machines by m
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Problem 17.1 (Scheduling on unrelated parallel machines)

Unrelated machines
No relation between the processing times of a job on the different machines

Identical machines
Each job j has the same running time, say     , on each of the machines
Chapter 10        Minimum makespan scheduling (admits PTAS)
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Uniform machines
The processing time for job j on machine i is               ,    is the speed of machine iij j ip p s=
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Parametric Pruning in an LP setting

Integer Program
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t Indicator variable     
denotes whether job j is scheduled on machine I

Makespan  t
Objective is to minimize makespan t

First constraint set
Ensures each job is scheduled on one of the machines

Second constraint set
Ensures each machine has processing time of at most t

ijx

Example 17.2
Suppose we have only one job, which has a processing time of m on each of the m 
machines. Clearly, the minimum makespan is m.
However the optimal solution to the LP-relaxation is to schedule the job to the extent of     

on each machine, leading to an objective function value of 1.
Therefore : Integrality gap = m

Unbounded integrality gap

1 m



Parametric Pruning in an LP setting
“Unfair” advantage given to linear relaxation

Integer program automatically sets           if          
Linear relaxation allowed to set nonzero values:                

Possible solution
Issue following constraint to the linear relaxation:

: if           then           
However, this is NOT a linear constraint

Actual solution provided by parametric pruning technique
Parameter            is our guess for a lower bound on optimal makespan
Define                            
Define a family of linear programs              one for each value of           
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Parametric Pruning in an LP setting

uses the variable        for                 and asks if there is a 
feasible, fractional schedule of makespan         using the restricted 
possibilities
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Properties of extreme point solutions
Initial step of the algorithm

Perform appropriate binary search to find     
is the smallest value of T such that LP(T) has a 

feasible solution.
Clearly      is a lower bound on OPT :                    
LP-rounding algorithm

round an extreme point solution to             to find a schedule 
having makespan            

Extreme point solutons to LP(T) provide many useful properties
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Properties of extreme point solutions
Lemma 17.3

Any extreme point solution to LP(T) has at most            nonzero valuesn m+

Proof

Let             represent the number of variables on which LP(T) is defined.
A fesible solution to LP(T) is an extreme point  solution iff  

it corresponds to setting  r linearly constraints of LP(T) to 
equality

At least                of these constraints must be chosen from the third set of 
constraints (i.e.          )
Therefore at least               variables of      must be set to 0
So, at most                 variables are nonzero
Conclusion: 
Any extreme point solution has at most             nonzero variables             
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Properties of extreme point solutions

Corollary 17.4

Any extreme point solution to LP(T) must set at least            jobs integrally

Let x be an extreme point solution to LP(T). 
Job j is integrally set in x if it is entirely assigned to one machine.
Otherwise job j is fractionally set in x

Proof

Let x be an extreme point solution to LP(T), and let     and     be the 
number of jobs that are integrally and fractionally set by x, respectively
Each job of the later kind is assigned to at least 2 machines and therefore 
results in at least 2 nonzero entries in x. Hence we get

and 
Therefore,            and 

α β

nα β+ = 2 n mα β+ ≤ +
mβ ≤ n mα ≥ −

Define                     to be the bipartite graph  on vertex set            such that            
iff         . Let          be the set of jobs that are fractionally set in x, and let H 

be the subgraph of G induced on vertex set         . A matching in H will be called a 
perfect matching if it matches every job 
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Scheduling algorithm

Algorithm 17.5 (Scheduling on unrelated parallel machines)

1. By a binary search in the interval                , find the smallest value of              
for which LP(T) has a feasible solution. Let this value be       

2. Find an extreme point solution, say x , to LP(T).
3. Assign all integrally set jobs to machines as in x
4. Construct graph H and find a perfect matching M in it (e.g. using the 

procedure of Lemma 17.7)
5. Assign fractionally set jobs to machines according to matching M

[ ],mα α T Z +∈
*T



Additional properties of extreme point solutions

A connected graph on vertex set V is a pseudo-tree if it contains at most      edges.
A graph is a pseudo-forest if each of its connected components is a pseudo-tree.

V

Lemma 17.6

Graph G is a pseudo-forest

Proof
We will show that the number of edges in each connected component of G is 
bounded by the number of vertices in it. Hence, each connected component 
is a pseudo-tree.
Consider a connected component     . Restrict LP(T) and x to the jobs and 
machines of      only, to obtain            and     . Let      represent the rest of x.
The important observation is that     must be an extreme point solution to 

.
Suppose that this is not the case. Then,      is a convex combination of two 
feasible solutions to            . Each of these, together with form a feasible 
solution to LP(T). Therefore, x is a convex combination of two feasible 
solutions to LP(T), leading to a contradiction
Now, applying Lemma 17.3, we get that      is  a pseudo-tree
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Additional properties of extreme point solutions

Lemma 17.7

Graph H has a perfect matching

Proof
Graph H is also a pseudo-forest.
In H, each job has a degree of at least 2. So, all leaves in H must be 
machines. Kepp matching a leaf with the job it is incident to, and remove 
them both from the graph. (at each stage all leaves must be machines.)
I the end we will be left with even cycles (since we started with a bipartite 
graph).
Match off alternate edges of each cycle.
This gives a perfect matching in H.



Additional properties of extreme point solutions

Theorem 17.8

Algorithm 17.5 achieves an approximation guarantee of factor 2 for the 
problem of scheduling on unrelated parallel machines.

Proof
Clearly,                   , since LP(OPT) has a feasible solution. The extreme 
point solution x to             has a fractional makespan of          .
Therefore, the restriction of x to integrally set jobs has a (integral) 
makespan of         . Each edge         of H satisfies            .
The perfect matching found in H schedules at most one extra job on each 
machine.
Hence the total makespan is                             .
Finally the algorithm clearly runs in polynomial time
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