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Introduction
The theory of cuts in graphs occupies a central place not only in the 
study of exact algorithms, but also approximation algorithms

Primal-Dual schema was used to derive a factor 2 algorithm for the 
weighted vertex cover problem

For that algorithm, the relaxed dual complementary slackness 
conditions were automatically satisfied in any integral solution

In this chapter, we will use the primal-dual schema to obtain an 
algorithm for a generalization of this problem

This time, enforcing relaxed dual complementary slackness conditions 
will be a non-trivial part of the algorithm

Moreover, the procedure of reverse delete will be introduced (useful for 
several other primal-dual algorithms



The problems and their LP-relaxations
The following is an important generalization of the minimum     cut 
problem. It also generalizes the multiway cut problem (Chapter 4) 
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Problem 18.1 (Minimum multicut)

Let                   be an undirected graph with nonnegative capacity       for 
each edge          . Let                         be a specified set of pairs of vertices, 
where each pair is distinct, but vertices in different pairs are not required 
to be distinct. A  multicut is a set of edges whose removal separates each 
of the pairs. The problem is to find a minimum capacity multicut in G.   
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The minimum            cut problem is the special case of multicut for       .          
Problem 18.1 generalizes multiway cut because separating terminals 

is equivalent to separating all pairs           , for                 .
Therefore, the minimum multicut problem is NP-hard even for          , 
since the the multiway cut problem is NP-hard for the case of 3 terminals.
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The problems and their LP-relaxations

Since G is a tree, there is a unique path between     and    , and the 
multicut must pick an edge on this path to disconnect     from  .
The minimum multicut problem is NP-hard even if restricted to trees of 
height 1 and unit capacity edges.

In chapter 20 an                factor approximation algorithm will be obtained 
for the minimum multicut problem.

In this chapter a factor 2 algorithm will be obtained for the special case 
when is restricted to be a tree.
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The minimum multicut problem is NP-hard even if restricted to trees of 
height 1 and unit capacity edges. 
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Integer programming formulation
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Linear Programming Relaxation
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Consider      as the fractional extent to which edge     is picked.ed e
Fractional multicut: A solution to this LP-relaxation problem

Condition:   On each path     , the sum of fractions of edges picked 
is at least 1.

ip

In general, minimum fractional multicut may be strictly cheaper than 
minimum integral multicut



Fractional multicommodity flow

We will interpret the dual program as specifying a multicommodity flow in 
G, with a separate commodity corresponding to each vertex pair   .
Dual variable     will denote the amount of this commodity routed along the 
unique path from    to    .
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Dual program formulation (18.2)
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The commodities are routed concurrently.

The object is to maximize the sum of the 
commodities routed, subject to the 
constraint that the sum of flows routed 
through an edge is bounded by the 
capacity of the edge.

Notice that the sum of flows through an edge           includes flow going in 
either direction,     to      and     to  
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Problem 18.2 (Fractional mutlicommodity flow)



Example
Example 18.2

Consider the followig graph with unit capacity edges and 3 vertex pairs

The arrows show how to send        units of 
flow by sending       unit of each commodity.

3 2
1 2

Picking an edge to the extent of       gives a 
multicut of capacity      as well.

1 2
3 2

The above must be optimal solutions to the 
primal and dual programs

On the other hand, any integral multicut 
must pick at least two of the three edges in 
order to disconnect all three pairs. Hence, 
minimum integral multicut has capacity 2

Maximum integral multicommodity flow is 1, since sending 1 unit of any of 
the three commodities will saturate two of the edges.



Integer multicommodity flow
Problem 18.3 (Integer multicommodity flow)

Graph G and the source-sink pairs are specified as in the minimum 
multicut problem; however, the edge capacities are all integral. A separate 
commodity is defined for each         pair. The object is to maximize the sum 
of commodities routed, subject to the edge capacity constraints and subject 
to routing each commodity integrally.
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Integer program formulation (18.3)
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Let us consider the problem when G is 
restricted to be a tree.

Construct this integer program formulation 
by constraining the    varaiables to be non-
negative

if

Clearly the objective function value of this 
problem is bounded by that of the linear 
program (18.2)
This problem is NP-hard even for trees of height 
3 (though the capacity has to be arbitrary)



Example
Example 18.2

Consider the followig graph with unit capacity edges and 3 vertex pairs

The arrows show how to send        units of 
flow by sending       unit of each commodity.

3 2
1 2

Picking an edge to the extent of       gives a 
multicut of capacity      as well.

1 2
3 2

The above must be optimal solutions to the 
primal and dual programs

On the other hand, any integral multicut 
must pick at least two of the three edges in 
order to disconnect all three pairs. Hence, 
minimum integral multicut has capacity 2

Maximum integral multicommodity flow is 1, since sending 1 unit of any of 
the three commodities will saturate two of the edges.



Overview of Primal-Dual Schema
Let us consider the following programs, written in standard form
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Primal complementary slackness conditions

Let          
For each              either          or                        .
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Proposition 15.1: If x and y are primal and dual feasible solutions satisfying 
the conditions stated above then:
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Primal-Dual schema based algorithm
We will use the primal-dual schema to obtain an algorithm that simultane-
ously finds a multicut and an integer multicommodity flow that are within a 
factor of 2 of each other, provided the given graph is a tree.
Hence, we get approximation algorithms for both problems, of factor 2 and      .1 2

Let us define the multicut LP to be the primal program. An edge e is saturated
if the total flow through it equals its capacity.

We will ensure primal complementary slackness conditions, i.e., .
We will relax the dual complementary slackness conditions with  .
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Primal conditions: For each                                                
Equivalently, any edge picked in the multicut must be saturated
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Relaxed dual conditions: For each                                                 
Equivalently, at most two edges can be picked from a path carrying nonzero flow

{ }1,..., , 0 2
i

i ee p
i k f d

∈
∈ ≠ ⇒ ≤∑

Root the tree at an arbitrary vertex. Define the depth of vertex v to be the 
length of the path from v to the root; the depth of the root is 0.
For two vertices            , let              denote the lowest common ancestor of u and 
v, i.e. the minimum depth vertex on the path from u to v.

,u Vυ∈ ( ),lca u υ



Primal-Dual schema based algorithm
Algorithm 18.4 (Multicut abd integer multicommodity flow in trees)

1. Initialization:
2. Flow Routing: For each vertex v, in nonincreasing order of depth, do:

For each pair           such that                     , greedily route integral flow 
from    to    .

Add to D all edges that were saturated in the current iteration in arbitrary 
order.

3. Let                   be the ordered list of edges in D.
4. Reverse delete: For j=l downto 1 do:

If               is a multicut in G, then                     .
5. Output the flow and multicut in D.

0; 0f D← ←
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Primal-Dual schema based algorithm
Lemma 18.5

Let          be a pair with nonzero flow, and let               . At most one edge 
is picked in the multicut from each of the two paths,    to     and    to   .
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Proof
The argument is the same for each path. Suppose two edges     and      are 
picked from the          path, with     being the deeper edge. Clearly,     must 
be in D all through reverse delete. Consider the moment during reverse 
delete when edge    is being tested. Since    is not discarded, there must be 
a pair, say          , such that     is the only edge of D on the          path. Let 
u be the lowest common ancestor of     and    . Since     does not lie on the 
path of        , then u must be deeper than     and hence deeper than    .
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After u has been processed, D must contain 
an edge from the         path, say    . Since 
non-zero flow has been routed from    to   ,   
must be added during or after the iteration 
in which     is processed. Since    is ancestor 
of u,    is added after    . So     must be in D
when    is being tested. This contradicts 
that at this moment   is the only edge of D 
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Primal-Dual schema based algorithm
Theorem 18.6

Algorithm 18.4 achieves approximation guarantees of factor 2 for the 
minimum multicut problem and factor       for the maximum integer 
multicommodity flow problem on trees.

1 2

Proof

The flow found at the end of Step 2 is maximal, and since at this point D
contains all the saturated edges, D is a multicut. Since the reverse delete 
step only discards redundant edges, D is a multicut after this step as well. 
Thus, feasible solutions have been found for both the flow and the 
multicut.
Since each edge in the multicut is saturated, the primal conditions are 
satisfied. By Lemma 18.5, at most two edges have been picked in th 
multicut from ach path carrying nonzero flow. Therefore, the relaxed dual 
conditions are also satisfied. Hence, by proposition 15.1, the capacity of the 
multicut found is within twice the flow. 
Since a feasible flow is a lower bound on the optimal multicut, and a 
feasible multicut flow is an upper bound on the optimal integer multi-
commodity flow, the claim follows.



Primal-Dual schema based algorithm
Corollary 18.7

On the trees with integer edge capacities, we obtain the following min-max 
relationship, based on theorem 18.6:

where      represents the value of flow function F and          represents the 
capacity of multicut C. 

F ( )c C

In chapter 20 is presented an              factor algorithm for the minimum 
multicut problem in general graphs; once again, the lower bound used is an 
optimal fractional multicut.
On the other hand, no notrivial approximation algorithms are known for the 
integer multicommodity flow problem in graphs more general than trees.
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As shown in example 18.8, even for planar graphs, the integrality gap of an 
LP analogous to (18.2) is lower bounded by      , where n is the number of 
source-sink pairs specified

2n



Example
Example 18.8

Consider the following planar graph with n source-sink pairs.

Every edge is of unit capacity.

Any pair of paths between the ith and jth
source-sink pairs intersect in at least one 
unit capacity edge.

The magnified part shows how this is 
arranged at each intersection.

Thus sending one unit of any commodity 
blocks all other commodities.

On the other hand, hald a unit of each 
commodity can be routed simultaneously

Therefore, the integrality gap for this example is  2n
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