On Coloring of Arc graphs Iskandar Karapetian

Aris Tentes NTUA Network Algorithms

• • The problem

- We have a circular graph and some paths (arcs) on it
- We want to color these arcs in such a way that no two overlapping arcs are colored with the same color
- We also want to use as few colors as possible

Notation

- o L=max load
- ω=max clique of intersection graph
- o p=point with load L
- χ=chromatic number
- $f = [f^-, f^+]$, the arc endpoints clockwise
- o a≤b, if a in [p,b] (clockwise)
- o a≥b, if a not in [p,b] (clockwise)

o It is easy to see, that χ≤2L-1

• • • Steps of proof

- Induction. If L=1, trivial.
- Suppose it holds for L-1
- Take the arc containing p with the shortest length counter-clock size of p.
- Take successively the nearest, non intersecting arcs, starting with p, until we pass p three times.
- The inductive hypothesis holds for the rest of the arcs
- The selected arcs can be three colored.

• **Theorem:** For all circular arc graphs $\chi \le 3/2\omega$.

• Corollary: Tucker's Theorem.

Sweep Subroutines

o Clockwise-Sweep(F,f)

- 1. Start with f.
- 2. Select from F:=F\{arcs not intersecting with f} the arc, g, with the nearest g^- to f^+ .
- 3. Repeat 2 with f:=g, until F is empty.

Counter-Clockwise-Sweep(F,f)

- 1. Start with f.
- 2. Select from F:=F\{arcs not intersecting with f} the arc, g, with the nearest g^+ to f^- .
- 3. Repeat 2 with f:=g, until F is empty.

• The set of arcs selected by a sweep routine contains pair wise independent arcs.

• Let F denote the set of all arcs.

• Let $\{f_1, ..., f_L\}$ be the set of all arcs containing p, s.t. $f_i^+ \leq f_{i+1}^+$

The Coloring Algorithm

- 1. **G:=F**\{ $f_1, ..., f_L$ }
- 2. For i:=1,...,L/2
 - 1. Select g in G with the nearest to p starting point
 - The set A_i = Clockwise-Sweep(G,g) is colored with color L+i.
 - 3. G:=G\ Ai
- 3. **G:=G** $_{U}$ { $f_1, ..., f_L$ }
- 4. For i:=L,...,1
 - The set B_i=Counter-Clockwise-Sweep(G,f_i) is colored with color i.
 - 2. G:=G\ Bi

Proof of Coloring Algorithm

- Our objective is to show that the set G is empty after step 4.
- Then, we will obviously have a 3/2L coloring.
- We suppose that L= ω wlog, because if L< ω we can add arcs, s.t. L= ω without changing χ .
- We are going to use the following three lemata

••• Lemma 1

If after step 2, g in G, then for each i=1,...,L/2, there exists a_i in A_i , s.t. a_i contains g^-

Or else g, would be selected for some i.
Observation: g has load at least L/2

• • Lemma 2

If after step 4, g in G, then there exists k, $2 \le k \le L$, s.t. $g^- \ge f_{k-1}^+$ and $g^- \le f_k^+$

Moreover k-1>L/2.

• Proof:

- If k=1, then g overlaps with $\{f_1, ..., f_L\}$,which implies a load of L+1
- If k>L, then by a similar argument as before we are lead to a load of L+1
- The lemma 1 holds for g. In addition the arcs in $\{g, f_k, ..., f_L\}$ contain g^- . By counting we have the above result.

• • Lemma 3

If after step 4, g in G, s.t. $g^- \ge f_{k-1}^+$ and $g^- \le f_k^+$ then for each $h \in (\bigcup_{i=k}^{L} B_i) \setminus \{f_k, ..., f_L\}, h^- \le g^+$.

Proof: Suppose there is an h, take the closest to g. We are going to find a point with load L+1

o For 1≤i≤k-1

• An analogous to lemma 1 holds, thus define the sets $U = \{b_i \in B_i : g^+ \in b_i \land h^- \in b_i, 1 \le i \le k-1\}$ and $V = \{b_i \in B_i : g^+ \in b_i \land h^- \notin b_i, 1 \le i \le k-1\} \cup \{g\}$

Observe that k-1+L/2-L<|U|≤L/2</p>

• • I ... Proof

- o For k≤i≤L
 - Define the sets

 $I = \{i: \text{there is } b_i \in B_i \text{ s.t. } h^- \in b_i, k \le i \le L\} \text{ and } J = \{i: \text{there is no } b_i \in B_i \text{ s.t. } h^- \in b_i, k \le i \le L\}$

- We can prove that |J|≥L-(k-1)-L/2+|U|
- Let j in J be the smallest, s.t. none of the arcs in B_j contain g^+ (there is one..) and J'=J|_{i<j}
- Observe that each element of (VU{bi:i in J'}) must intersect with fi and hence with the rest through fL.

• • I...Proof

- Let q be the intersection beginning point of (VU{bi:i in J'})
- Lemma 1 holds for this point
- Therefore the load at q is
 [(V∪{bi:i in J'})] + |{fj,...,fL}|+L/2 ≥ |V|+|J|+L/2
 ≥...≥L+1

...Contradiction...

• • I ... Proof of theorem

- Assume that the set G is not empty (there is a g in G) after step 4.
- We are going to construct a set of L+1, pair wise intersecting arcs, which is a contradiction.
- Let the sets H_{k-1},...,H_L be defined as follows:
 - H_{k-1}={g} ∪{b_i ∈ B_i : g⁺ ∈ b_i, 1≤i≤k-1} HiU{fi+1}, if fi intersects all arcs of Hi Hiu{si+1}, else where si the second arc added in Counter-Clockwise Sweep

• • I...Proof of theorem

- Suppose that j is the smallest index, s.t. the arcs of H_j are not mutually intersecting.
- o Clearly H_j= H_{j-1}U{s_j} and there is an h in H_{j-1} which does not intersect with s_j.
- o Either
 - $h \in (H_{j-1} \cap \{s_k, ..., s_{j-1}\}) \cup H_{k-1} \mathsf{Or}$

• $h \in H_{j-1} \cap \{f_k, ..., f_{j-1}\}$.

 However, the arcs in the first set are all overlapping and the second case leads us to a contradiction.

••• I ... first case

- All arcs in H_{k-1} contain g^+
- The same holds for $H=H_j \cap \{s_k,...,s_j\}=\{s_i,...,s_l\}$
- By induction. Suppose it holds for {si,...,sm-1}. We will see, that it holds for sm also.
- Because sm in H_j there is a u which does not intersect fm but contains g⁺ (induction hypoth.)
- Since u was not selected in B_m , $u^+ \leq s_m^+$
- Because o lemma 3, we have the inclusion of g^+

• • I ... second case

- Namely, $h \in H_{j-1} \cap \{f_k, ..., f_{j-1}\}$
- Since, $H_j = H_{j-1} \cup \{s_j\}$ there is an arc $v \in H_{j-1} \setminus \{f_k, ..., f_{j-1}\}$ which does not intersect with f_j .
- Since v was not selected in B_j, we have $v^+ \leq s_j^+$
- Observe that v does not intersect with h.
- Contradiction due to the definition of j.

• G is empty. The proof is complete.