On Coloring of Arc graphs Iskandar Karapetian

Aris Tentes
NTUA
Network Algorithms

The problem

- We have a circular graph and some paths (arcs) on it
- We want to color these arcs in such a way that no two overlapping arcs are colored with the same color
- We also want to use as few colors as possible

Notation

- L=max load
- $\omega=$ max clique of intersection graph
- $p=$ point with load L
- $\mathrm{X}=$ chromatic number
- $f=\left[f^{-}, f^{+}\right]$,the arc endpoints clockwise
o a $\leq \mathrm{b}$, if a in [p,b] (clockwise)
o $a \geq b$, if a not in [p,b] (clockwise)

Alan Tucker

- It is easy to see, that $\chi \leq 2 L-1$
- Theorem: If no three arcs cover the circle, then $x \leq 3 / 2 \mathrm{~L}$

Steps of proof

o Induction. If $L=1$, trivial.

- Suppose it holds for L-1
- Take the arc containing p with the shortest length counter-clock size of p.
- Take successively the nearest, non intersecting arcs, starting with p, until we pass p three times.
- The inductive hypothesis holds for the rest of the arcs
- The selected arcs can be three colored.

This Paper

- Theorem: For all circular arc graphs $x \leq 3 / 2 \omega$.
- Corollary: Tucker's Theorem.

Sweep Subroutines

- Clockwise-Sweep(F,f)

1. Start with f.
2. Select from $\mathrm{F}:=\mathrm{F} \backslash\{\operatorname{arcs}$ not intersecting with f$\}$ the arc, g, with the nearest g^{-}to f^{+}.
3. Repeat 2 with $f:=g$, until F is empty.

- Counter-Clockwise-Sweep(F,f)

1. Start with f.
2. Select from $\mathrm{F}:=\mathrm{F} \backslash\{\operatorname{arcs}$ not intersecting with f$\}$ the arc, g, with the nearest g^{+}to f^{-}.
3. Repeat 2 with $f:=g$, until F is empty.

- The set of arcs selected by a sweep routine contains pair wise independent arcs.
- Let F denote the set of all arcs.
- Let $\left\{f_{1}, \ldots, f_{L}\right\}$ be the set of all arcs containing p, s.t. $f_{i}^{+} \leq f_{i+1}^{+}$

The Coloring Algorithm

1. $\mathrm{G}:=\mathrm{F} \backslash\left\{f_{1}, \ldots, f_{L}\right\}$
2. For $\mathrm{i}:=1, \ldots, \mathrm{~L} / 2$
3. Select g in G with the nearest to p starting point
4. The set $A_{i}=$ Clockwise-Sweep (G, g) is colored with color L+i.
5. $G:=G \backslash A_{i}$
6. $\mathrm{G}:=\mathrm{Gu}\left\{f_{1}, \ldots, f_{L}\right\}$
7. For $\mathrm{i}=\mathrm{L}, \ldots, 1$

The set $\mathrm{B}_{\mathrm{i}}=$ Counter-Clockwise-Sweep($\mathrm{G}, \mathrm{f}_{\mathrm{i}}$) is colored with color i .
2. $\mathrm{G}:=\mathrm{G} \backslash \mathrm{Bi}$

Proof of Coloring Algorithm

- Our objective is to show that the set G is empty after step 4.
- Then, we will obviously have a 3/2L coloring.
- We suppose that $L=\omega$ wlog, because if $L<\omega$ we can add arcs, s.t. $L=\omega$ without changing x.
- We are going to use the following three lemata

Lemma 1

If after step $2, \mathrm{~g}$ in G , then for each $\mathrm{i}=1, \ldots, \mathrm{~L} / 2$, there exists ai in A_{i}, s.t. ai contains g^{-}

- Or else g, would be selected for some i.
- Observation: g^{-}has load at least L/2

Lemma 2

If after step $4, g$ in G, then there exists $k, 2 \leq k \leq L$, s.t. $g^{-} \geq f_{k-1}{ }^{+}$ and $g^{-} \leq f_{k}^{+}$
Moreover k-1>L/2.

- Proof:
- If $\mathrm{k}=1$, then g overlaps with $\left\{f_{1}, \ldots, f_{L}\right\}$, which implies a load of $\mathrm{L}+1$
- If $k>L$, then by a similar argument as before we are lead to a load of $L+1$
- The lemma 1 holds for g . In addition the arcs in $\left\{g, f_{k}, \ldots, f_{L}\right\}$ contain g^{-}. By counting we have the above result.

Lemma 3

If after step 4, g in G, s.t. $g^{-} \geq f_{k-1}{ }^{+}$and $g^{-} \leq f_{k}^{+}$then for each $h \in\left(\cup_{i * k}{ }^{L} B\right) \backslash\left\{f_{k}, \ldots, f_{L}\right\}, h \leq g^{+}$.

Proof: Suppose there is an h , take the closest to g . We are going to find a point with load $L+1$

- For $1 \leq i \leq k-1$
- An analogous to lemma 1 holds, thus define the sets
$U=\left\{b_{i} \in B_{i}: g^{+} \in b_{i} \wedge h^{-} \in b_{i}, 1 \leq i \leq k-1\right\}$ and $V=\left\{b_{i} \in B_{i}: g^{+} \in b_{i} \wedge h^{-} \notin b_{i}, 1 \leq i \leq k-1\right\} \cup\{g$
- Observe that $\mathrm{k}-1+\mathrm{L} / 2-\mathrm{L}<|\mathrm{U}| \leq \mathrm{L} / 2$
- For $\mathrm{k} \leq i \leq L$
- Define the sets
$I=\left\{i\right.$: thereis $b_{i} \in B_{1}$ s.t. $\left.h^{-} \in b_{i}, k \leq i \leq L\right\}$ and $J=\left\{i\right.$: there is no $b_{i} \in B_{1}$ s.t. $\left.h^{-} \in b_{i}, k \leq i \leq L\right\}$
- We can prove that $|J| \geq L-(k-1)-L / 2+|\mathrm{U}|$
- Let j in J be the smallest, s.t. none of the arcs in Bj contain g^{+}(there is one..) and $\mathrm{J}^{\prime}=\mathrm{J} \mid i \mathrm{i} j$
- Observe that each element of (Vu\{b:i: in J'\}) must intersect with f_{j} and hence with the rest through fl.

...Proof

- Let q be the intersection beginning point of (Vu\{bi:i in J’\})
- Lemma 1 holds for this point
- Therefore the load at q is
$\mid\left(\mathrm{Vu}\left\{\mathrm{bi:i}\right.\right.$ in $\left.\left.\mathrm{J}^{\prime}\right\}\right)|+|\{\mathrm{fj}, \ldots, \mathrm{fL}\}|+\mathrm{L} / 2 \geq|\mathrm{V}|+|\mathrm{J}|+\mathrm{L} / 2$
$\geq \ldots \geq \mathrm{L}+1$
...Contradiction...

...Proof of theorem

- Assume that the set G is not empty (there is a g in G) after step 4.
- We are going to construct a set of $L+1$, pair wise intersecting arcs, which is a contradiction.
- Let the sets $\mathrm{H}_{\mathrm{k}-1, \ldots,}, \mathrm{H}_{\mathrm{L}}$ be defined as follows:
- $\mathrm{H}_{\mathrm{k}-1}=\{g\} \cup\left\{b_{i} \in B_{i}: g^{+} \in b_{i}, 1 \leq i \leq k-1\right\}$
- $\mathrm{H}_{\mathrm{i}+1}=\left\{\begin{array}{l}\left.\mathrm{HiU}^{\mathrm{L}} \mathrm{f}+1\right\}, \text { if } \mathrm{fi}_{\mathrm{i}} \text { in } \\ \mathrm{HiU}^{\mathrm{S}} \mathrm{si+1} \mathrm{\}}, \text { else }\end{array}\right.$
where si the second arc added in Counter-Clockwise Sweep

...Proof of theorem

- Suppose that j is the smallest index, s.t. the arcs of H_{j} are not mutually intersecting.
- Clearly $\mathrm{H}_{\mathrm{j}}=\mathrm{H}_{\mathrm{j}-1} \mathrm{U}\{\mathrm{s} \mathrm{j}\}$ and there is an h in $\mathrm{H}_{\mathrm{j}-1}$ which does not intersect with sj .
o Either
$\triangleright h \in\left(H_{j-1} \cap\left\{\left\{_{\left.s_{k}, \ldots, S_{j-1}\right\}}\right\}\right) \cup H_{k-1}\right.$ Or
${ }^{-} h \in H_{j-1} \cap\left\{f_{k}, \ldots, f_{j-1}\right\}$.
- However, the arcs in the first set are all overlapping and the second case leads us to a contradiction.

...first case

- All arcs in $\mathrm{H}_{\mathrm{k}-1}$ contain g^{+}
- The same holds for $H=H_{j} \cap\left\{s_{k}, \ldots, s_{j}\right\}=\left\{s_{i}, \ldots, s_{l}\right\}$
- By induction. Suppose it holds for $\{\mathrm{si}, \ldots, \mathrm{Sm}-1\}$. We will see, that it holds for Sm also.
- Because Sm in Hj_{j} there is a u which does not intersect f_{m} but contains g^{+}(induction hypoth.)
o Since u was not selected in $\mathrm{Bm}, u^{+} \leq s_{m}{ }^{+}$
- Because o lemma 3, we have the inclusion of g^{+}

...second case

- Namely, $h \in H_{j-1} \cap\left\{f_{k}, \ldots, f_{j-1}\right\}$
o Since, $\mathrm{H}_{\mathrm{j}}=\mathrm{H}_{\mathrm{j}-1} \mathrm{U}\{\mathrm{sj}\}$ there is an arc $v \in H_{j-1} \backslash\left\{f_{k}, \ldots, f_{j-1}\right\}$ which does not intersect with f_{j}.
o Since v was not selected in Bj_{j}, we have $v^{+} \leq s_{j}{ }^{+}$
o Observe that v does not intersect with h.
- Contradiction due to the definition of j.

○ G is empty. The proof is complete.

