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Graph Searching: The Problem

It was first proposed by Breisch('67) and Parson('76).

* We are given a network whose links are all
contaminated by a gas (or an invisible, arbitrarily
fast fugitive)

* We are using a set of "searchers" (agents who are
trying to clear the network)

* The goal is to use as few searchers as possible.
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Motivation

* Maintaining security in network.
* Clearing a pipeline’s network.
* Rescuing lost people in underground network.
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Variants of the Problem

* Node Search (guard)
* Edge Search (sweep)
* ...(Mixed Search, t-search)
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Node-Search: Legal Operations
GGG,

search step:
* Place a searcher on a node
* Remove a searcher from a node
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Cleaning an edge
GG,

* To clean a contaminated edge (u,v) the two
endpoints u, v must be guarded.

* To prevent recontamination of the edge we must
seal endpoints incident to contaminated links.

O—O0
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Edge-Search: Legal Operations
S

A search step:
* Place a searcher on a node
* Remove a searcher from a node
* Move a searcher along a link
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Cleaning an edge
o ——_

* To clean a contaminated edge (u,v) a searcher
must traverse the edge from the one endpoint « to
the other v.

» To prevent recontamination of the edge
v Another searcher remains on w.

v All other links incident to « are clear.

O—O0
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Search Number of a Graph
O ——a—_

» Search number (s(G)) is the smallest number of
searchers we can use to clear the network.

* A search strategy that uses s(G) searchers is
called minimal.
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Example: Path
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Example: Cycle
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Definitions

Welighted Search: Vertices and Edges have
weights given by a function w.

v To seal a node « we need w(u) searchers.

v To clean an edge ¢ (edge-search) we need w(e)
searchers.

Contiguous Search: The operation "remove a
searcher" is illegal (cs(G)).

Monotonicity: Once a link becomes clear, it cannot
be contaminated ever again (ms(G)).

Progressive Search: Exactly one edge becomes
clear in every step.
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Previous Work

Megiddo, Hakimi, Garey, Johnson, Papadimitriou:
v Graph Searching is NP-Complete.

v O(n) time algorithm for s(T") (T Is a tree).

v O(nlogn) time to find a minimal strategy.

Barriere, Flocchini, Fraigniaud, Santoro:
O(n) time to find a minimal strategy (edge-search).

Thilikos:
O(n) time to check whether a graph has s(G) < 2

(by using graph minors).

Lapaugh: Recontamination does not help to
search a graph. (For any graph G, ms(G) = s(G))
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Equivalent Problems
G,

* Node Search s(G)

* Path Decomposition pw(G)
¢ Interval Thickness it(G)

* Vertex Separation vs(G)

vs$(G) = pw(G) =s(G) — 1 =1t(G) — 1
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Path Decomposition
o —

Definition: A path decomposition of a graph G(V, E) Is
a pair (X, P), where P(I, F) Is a path and X Is a family
of “bags”.

Every i € I Is associated with a bag X, € X.

Every bag contains some nodes of V' s.t.:

’ Uie[ X; =V
» for all edges {u,w} € E 3i € I with v € X; and
w € X;

* Vi, 5,k eI:if]is onthe path fromito k£ in P, then
X; N X € X,
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Example for path decomposition

Q
@]
o
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Pathwidth

* The width of a path decomposition
(I, F),{X;|i € I}) IS max;er | X;| — 1.

* The pathwidth of a graph G Is the minimum width
over all tree decompositions of G.
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Interval Thickness

Given a graph G = (V, E), find an interval graph
G' = (V,E"), E C E’, such that the maximum clique of
G’ IS minimum.

O ™™ T 0O Ao Q
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Vertex Separation

* G =(V,E)

* Linear layout: L :V — {1,2,...,|V]}

o V(i) = {u|L(v) <4, 3w, L(w) > i, (u,w) € E}
* vsp(G) = max;|VL(2)]

* vs$(G) = minpvsy(G)
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Pathwidth ~ Edge Search Number

* pw(G) < s(G)

Let (s1, s0,...,s,) be a monotone search strategy for a
graph G.

Then (X1, Xs,...,X;,...,X,) Is a path decomposition,
here: X; contains the guarded vertices, and the edge
hat may have been cleared at step .
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Pathwidth ~ Edge Search Number
o —

* 5(G) < pw(G) + 2

Let (X1, Xo,...,X;, X;11...,X,) be apath
decomposition of a graph G with width pw(G). At step
, the graph induced by |J,._, X} Is cleared;

1. Place (at most) pw(G) + 1 searchers on vertices in
X;.

2. One other searcher clears edges in X;.

3. Remove the searchers on vertices in X; \ X;1.
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Barriere, Flocchini, Fraigniaud, San-

toro
I S—SSS—————

Theorem 1: For any tree T there is a monotone
contiguous search strategy using cs(7') searchers.
Furthermore all searchers can be Initially placed In
the same node.

Theorem 2: The contiguous search number and
minimal monotone contiguous search for trees can

be found serially in ©(n) time and distributively with
©(n) messages.

Theorem 3: For every n > 1 the largest contiguous
search number of n-node trees satisfies

[logon| — 1 < es(n) < |logsn] (IN contrast for
non-contiguous search ~ logs n searchers suffice).
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Theorem 2

* Suppose that the tree T is rooted with root x
(T — Ta:)-

* |t can be shown that the number of searchers
needed for T, IS cs(T,,) = max{cs(Ty, ), cs(Ty,) + 1},
where z1, 9, ...z, are the children of z In
decreasing order of cs(7y,).
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Compute cs(T)
I —"_ 5

 Start from the leaves (cs(T;) = 1)

» Continue to the parents y computing cs(7;) with the
previous type.

* Compute cs(Ty).
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Compute cs(T)
I ——_

* Compute cs(T') = ming cs(1%)
* This requires O(n?) time.

* |t can be shown that we can compute all cs(7),) In
O(n) time.

 Just find the minimum ¢s(7;) (in O(n) time)
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Find a Minimal Strategy

* QOrder the children in the way mentioned before.
» Place cs(T') searchers on z.

* Traverse T, In pre-order with the simple rule:
When moving from a node y to one of its children =
(or backwards) transfer cs(T,) searchers.
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Distributed Search

A node can be ready, active or done.

In the beginning every node is ready.

Every leaf [ sends c¢s(7;) = 1 to its neighbor and
becomes active.

Every other ready node y waits to receive d — 1
messages. Then computes cs’'(7,) and sends it to

its parent. Then becomes active.

Every active node that receives the message from
the last neighbor computes the final ¢s(7,) and
becomes done.
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Communication Complexity
o —

* O(n) messages are sent to compute cs(7,.) In every
X.

» With a convergecast a middle node computes the
minimum among them and sends it back to the
other nodes (©(n) messages).
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THE END!!
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