
Capture of an Intruder by Mobile Agents

Valia Mitsou

NTUA

Graph Searching – p. 1/30

Graph Searching: The Problem

It was first proposed by Breisch(’67) and Parson(’76).
• We are given a network whose links are all

contaminated by a gas (or an invisible, arbitrarily
fast fugitive)

• We are using a set of "searchers" (agents who are
trying to clear the network)

• The goal is to use as few searchers as possible.

Graph Searching – p. 2/30

Motivation

• Maintaining security in network.
• Clearing a pipeline’s network.
• Rescuing lost people in underground network.

Graph Searching – p. 3/30

Variants of the Problem

• Node Search (guard)
• Edge Search (sweep)
• . . . (Mixed Search, t-search)

Graph Searching – p. 4/30

Node-Search: Legal Operations

A search step:
• Place a searcher on a node
• Remove a searcher from a node

Graph Searching – p. 5/30

Cleaning an edge

• To clean a contaminated edge (u, v) the two
endpoints u, v must be guarded.

• To prevent recontamination of the edge we must
seal endpoints incident to contaminated links.

Graph Searching – p. 6/30

Cleaning an edge

• To clean a contaminated edge (u, v) the two
endpoints u, v must be guarded.

• To prevent recontamination of the edge we must
seal endpoints incident to contaminated links.

Graph Searching – p. 6/30

Cleaning an edge

• To clean a contaminated edge (u, v) the two
endpoints u, v must be guarded.

• To prevent recontamination of the edge we must
seal endpoints incident to contaminated links.

Graph Searching – p. 6/30

Cleaning an edge

• To clean a contaminated edge (u, v) the two
endpoints u, v must be guarded.

• To prevent recontamination of the edge we must
seal endpoints incident to contaminated links.

Graph Searching – p. 6/30

Edge-Search: Legal Operations

A search step:
• Place a searcher on a node
• Remove a searcher from a node
• Move a searcher along a link

Graph Searching – p. 7/30

Cleaning an edge

• To clean a contaminated edge (u, v) a searcher
must traverse the edge from the one endpoint u to
the other v.

• To prevent recontamination of the edge
X Another searcher remains on u.
X All other links incident to u are clear.

Graph Searching – p. 8/30

Cleaning an edge

• To clean a contaminated edge (u, v) a searcher
must traverse the edge from the one endpoint u to
the other v.

• To prevent recontamination of the edge
X Another searcher remains on u.
X All other links incident to u are clear.

Graph Searching – p. 8/30

Cleaning an edge

• To clean a contaminated edge (u, v) a searcher
must traverse the edge from the one endpoint u to
the other v.

• To prevent recontamination of the edge
X Another searcher remains on u.
X All other links incident to u are clear.

Graph Searching – p. 8/30

Cleaning an edge

• To clean a contaminated edge (u, v) a searcher
must traverse the edge from the one endpoint u to
the other v.

• To prevent recontamination of the edge
X Another searcher remains on u.
X All other links incident to u are clear.

Graph Searching – p. 8/30

Search Number of a Graph

• Search number (s(G)) is the smallest number of
searchers we can use to clear the network.

• A search strategy that uses s(G) searchers is
called minimal.

Graph Searching – p. 9/30

Example: Path

Graph Searching – p. 10/30

Example: Path

Graph Searching – p. 10/30

Example: Path

Graph Searching – p. 10/30

Example: Path

Graph Searching – p. 10/30

Example: Path

Graph Searching – p. 10/30

Example: Path

Graph Searching – p. 10/30

Example: Cycle

Graph Searching – p. 11/30

Example: Cycle

Graph Searching – p. 11/30

Example: Cycle

Graph Searching – p. 11/30

Example: Cycle

Graph Searching – p. 11/30

Example: Cycle

Graph Searching – p. 11/30

Example: Cycle

Graph Searching – p. 11/30

Example: Cycle

Graph Searching – p. 11/30

Example: Cycle

Graph Searching – p. 11/30

Example: Cycle

Graph Searching – p. 11/30

Definitions

• Weighted Search: Vertices and Edges have
weights given by a function w.
X To seal a node u we need w(u) searchers.
X To clean an edge e (edge-search) we need w(e)

searchers.
• Contiguous Search: The operation "remove a

searcher" is illegal (cs(G)).
• Monotonicity: Once a link becomes clear, it cannot

be contaminated ever again (ms(G)).
• Progressive Search: Exactly one edge becomes

clear in every step.

Graph Searching – p. 12/30

Previous Work

• Megiddo, Hakimi, Garey, Johnson, Papadimitriou:
X Graph Searching is NP-Complete.
X O(n) time algorithm for s(T) (T is a tree).
X O(nlogn) time to find a minimal strategy.

• Barriere, Flocchini, Fraigniaud, Santoro:
O(n) time to find a minimal strategy (edge-search).

• Thilikos:
O(n) time to check whether a graph has s(G) ≤ 2
(by using graph minors).

• Lapaugh: Recontamination does not help to
search a graph. (For any graph G, ms(G) = s(G))

Graph Searching – p. 13/30

Equivalent Problems

• Node Search s(G)

• Path Decomposition pw(G)

• Interval Thickness it(G)

• Vertex Separation vs(G)

 vs(G) = pw(G) = s(G) − 1 = it(G) − 1

Graph Searching – p. 14/30

Path Decomposition

Definition: A path decomposition of a graph G(V, E) is
a pair (X , P), where P (I, F) is a path and X is a family
of “bags”.
Every i ∈ I is associated with a bag Xi ∈ X .
Every bag contains some nodes of V s.t.:

•
⋃

i∈I Xi = V

• for all edges {u, w} ∈ E ∃i ∈ I with u ∈ Xi and
w ∈ Xi

• ∀i, j, k ∈ I : if j is on the path from i to k in P, then
Xi ∩ Xk ⊆ Xj

Graph Searching – p. 15/30

Example for path decomposition

Graph Searching – p. 16/30

Pathwidth

• The width of a path decomposition
((I, F), {Xi|i ∈ I}) is maxi∈I |Xi| − 1.

• The pathwidth of a graph G is the minimum width
over all tree decompositions of G.

Graph Searching – p. 17/30

Interval Thickness

Given a graph G = (V, E), find an interval graph
G′ = (V, E ′), E ⊆ E′, such that the maximum clique of
G′ is minimum.

Graph Searching – p. 18/30

Vertex Separation

• G = (V, E)

• Linear layout: L : V → {1, 2, . . . , |V |}

• VL(i) = {u|L(u) ≤ i, ∃w, L(w) > i, (u, w) ∈ E}

• vsL(G) = maxi|VL(i)|

• vs(G) = minLvsL(G)

Graph Searching – p. 19/30

Example

• V (1) = {a}

• V (2) = {d}

• V (3) = {d, e}

• V (4) = {e, f}

• V (5) = {f}

• V (6) = ∅

Graph Searching – p. 20/30

Pathwidth ≈ Edge Search Number

• pw(G) ≤ s(G)

Let (s1, s2, . . . , sr) be a monotone search strategy for a
graph G.
Then (X1, X2, . . . , Xi, . . . , Xr) is a path decomposition,
where: Xi contains the guarded vertices, and the edge
that may have been cleared at step i.

Graph Searching – p. 21/30

Pathwidth ≈ Edge Search Number

• s(G) ≤ pw(G) + 2

Let (X1, X2, . . . , Xi, Xi+1 . . . , Xr) be a path
decomposition of a graph G with width pw(G). At step
i, the graph induced by

⋃
k<i Xk is cleared;

1. Place (at most) pw(G) + 1 searchers on vertices in
Xi.

2. One other searcher clears edges in Xi.

3. Remove the searchers on vertices in Xi \ Xi+1.

Graph Searching – p. 22/30

Barriere, Flocchini, Fraigniaud, San-
toro

• Theorem 1: For any tree T there is a monotone
contiguous search strategy using cs(T) searchers.
Furthermore all searchers can be initially placed in
the same node.

• Theorem 2: The contiguous search number and
minimal monotone contiguous search for trees can
be found serially in Θ(n) time and distributively with
Θ(n) messages.

• Theorem 3: For every n > 1 the largest contiguous
search number of n-node trees satisfies
blog2 nc − 1 ≤ cs(n) ≤ blog2 nc (In contrast for
non-contiguous search ∼ log3 n searchers suffice).

Graph Searching – p. 23/30

Theorem 2

• Suppose that the tree T is rooted with root x

(T = Tx).
• It can be shown that the number of searchers

needed for Tx is cs(Tx) = max{cs(Tx1
), cs(Tx2

) + 1},
where x1, x2, . . . xk are the children of x in
decreasing order of cs(Txi

).

Graph Searching – p. 24/30

Compute cs(Tx)

• Start from the leaves (cs(Tl) = 1)
• Continue to the parents y computing cs(Ty) with the

previous type.
• Compute cs(Tx).

Graph Searching – p. 25/30

Compute cs(T)

• Compute cs(T) = minx cs(Tx)

• This requires O(n2) time.
• It can be shown that we can compute all cs(Tx) in

O(n) time.
• Just find the minimum cs(Tx) (in O(n) time)

Graph Searching – p. 26/30

Find a Minimal Strategy

• Order the children in the way mentioned before.
• Place cs(T) searchers on x.
• Traverse Tx in pre-order with the simple rule:

When moving from a node y to one of its children z

(or backwards) transfer cs(Tz) searchers.

Graph Searching – p. 27/30

Distributed Search

A node can be ready, active or done.
• In the beginning every node is ready.
• Every leaf l sends cs(Tl) = 1 to its neighbor and

becomes active.
• Every other ready node y waits to receive d − 1

messages. Then computes cs′(Ty) and sends it to
its parent. Then becomes active.

• Every active node that receives the message from
the last neighbor computes the final cs(Ty) and
becomes done.

Graph Searching – p. 28/30

Communication Complexity

• Θ(n) messages are sent to compute cs(Tx) in every
x.

• With a convergecast a middle node computes the
minimum among them and sends it back to the
other nodes (Θ(n) messages).

Graph Searching – p. 29/30

THE END!!!

Graph Searching – p. 30/30

	Graph Searching: The Problem
	Motivation
	Variants of the Problem
	Node-Search: Legal Operations
	Cleaning an edge
	Cleaning an edge
	Cleaning an edge
	Cleaning an edge

	Edge-Search: Legal Operations
	Cleaning an edge
	Cleaning an edge
	Cleaning an edge
	Cleaning an edge

	Search Number of a Graph
	Example: Path
	Example: Path
	Example: Path
	Example: Path
	Example: Path
	Example: Path

	Example: Cycle
	Example: Cycle
	Example: Cycle
	Example: Cycle
	Example: Cycle
	Example: Cycle
	Example: Cycle
	Example: Cycle
	Example: Cycle

	Definitions
	Previous Work
	Equivalent Problems
	Path Decomposition
	Example for path decomposition
	Pathwidth
	Interval Thickness
	Vertex Separation
	Example
	Pathwidth $approx $ Edge Search Number
	Pathwidth $approx $ Edge Search Number
	Barriere, Flocchini, Fraigniaud, Santoro
	Theorem 2
	Compute $cs(T_x)$
	Compute $cs(T)$
	Find a Minimal Strategy
	Distributed Search
	Communication Complexity

