Capture of an Intruder by Mobile Agents

Valia Mitsou

NTUA

Graph Searching: The Problem

It was first proposed by Breisch('67) and Parson('76).

- We are given a network whose links are all contaminated by a gas (or an invisible, arbitrarily fast fugitive)
- We are using a set of "searchers" (agents who are trying to clear the network)
- The goal is to use as few searchers as possible.

Motivation

- Maintaining security in network.
- Clearing a pipeline's network.
- Rescuing lost people in underground network.

Variants of the Problem

- Node Search (guard)
- Edge Search (sweep)
- ... (Mixed Search, t-search)

Node-Search: Legal Operations

A search step:

- Place a searcher on a node
- Remove a searcher from a node

Cleaning an edge

- To clean a contaminated edge (u, v) the two endpoints u, v must be guarded.
- To prevent recontamination of the edge we must seal endpoints incident to contaminated links.

Cleaning an edge

- To clean a contaminated edge (u, v) the two endpoints u, v must be guarded.
- To prevent recontamination of the edge we must seal endpoints incident to contaminated links.

Cleaning an edge

- To clean a contaminated edge (u, v) the two endpoints u, v must be guarded.
- To prevent recontamination of the edge we must seal endpoints incident to contaminated links.

Cleaning an edge

- To clean a contaminated edge (u, v) the two endpoints u, v must be guarded.
- To prevent recontamination of the edge we must seal endpoints incident to contaminated links.

Edge-Search: Legal Operations

A search step:

- Place a searcher on a node
- Remove a searcher from a node
- Move a searcher along a link

Cleaning an edge

- To clean a contaminated edge (u, v) a searcher must traverse the edge from the one endpoint u to the other v.
- To prevent recontamination of the edge
\checkmark Another searcher remains on u.
\checkmark All other links incident to u are clear.

Cleaning an edge

- To clean a contaminated edge (u, v) a searcher must traverse the edge from the one endpoint u to the other v.
- To prevent recontamination of the edge
\checkmark Another searcher remains on u.
\checkmark All other links incident to u are clear.

Cleaning an edge

- To clean a contaminated edge (u, v) a searcher must traverse the edge from the one endpoint u to the other v.
- To prevent recontamination of the edge
\checkmark Another searcher remains on u.
\checkmark All other links incident to u are clear.

Cleaning an edge

- To clean a contaminated edge (u, v) a searcher must traverse the edge from the one endpoint u to the other v.
- To prevent recontamination of the edge
\checkmark Another searcher remains on u.
\checkmark All other links incident to u are clear.

Search Number of a Graph

- Search number $(s(G))$ is the smallest number of searchers we can use to clear the network.
- A search strategy that uses $s(G)$ searchers is called minimal.

Example: Path

Example: Cycle

Example: Cycle

Example: Cycle

Example: Cycle

Example: Cycle

Example: Cycle

Example: Cycle

Example: Cycle

Example: Cycle

Definitions

- Weighted Search: Vertices and Edges have weights given by a function w.
\checkmark To seal a node u we need $w(u)$ searchers.
\checkmark To clean an edge e (edge-search) we need $w(e)$ searchers.
- Contiguous Search: The operation "remove a searcher" is illegal $(c s(G))$.
- Monotonicity: Once a link becomes clear, it cannot be contaminated ever again ($m s(G)$).
- Progressive Search: Exactly one edge becomes clear in every step.

Previous Work

- Megiddo, Hakimi, Garey, Johnson, Papadimitriou: \checkmark Graph Searching is NP-Complete. $\checkmark O(n)$ time algorithm for $s(T)$ (T is a tree). $\checkmark O(n \operatorname{logn})$ time to find a minimal strategy.
- Barriere, Flocchini, Fraigniaud, Santoro: $O(n)$ time to find a minimal strategy (edge-search).
- Thilikos:
$O(n)$ time to check whether a graph has $s(G) \leq 2$ (by using graph minors).
- Lapaugh: Recontamination does not help to search a graph. (For any graph $G, m s(G)=s(G)$)

Equivalent Problems

- Node Search $s(G)$
- Path Decomposition $p w(G)$
- Interval Thickness $i t(G)$
- Vertex Separation $v s(G)$
$\rightsquigarrow v s(G)=p w(G)=s(G)-1=i t(G)-1$

Path Decomposition

Definition: A path decomposition of a graph $G(V, E)$ is a pair (\mathcal{X}, P), where $P(I, F)$ is a path and \mathcal{X} is a family of "bags".
Every $i \in I$ is associated with a bag $X_{i} \in \mathcal{X}$.
Every bag contains some nodes of V s.t.:

- $\bigcup_{i \in I} X_{i}=V$
- for all edges $\{u, w\} \in E \exists i \in I$ with $u \in X_{i}$ and $w \in X_{i}$
- $\forall i, j, k \in I$: if j is on the path from i to k in P , then $X_{i} \cap X_{k} \subseteq X_{j}$

Example for path decomposition

Pathwidth

- The width of a path decomposition $\left((I, F),\left\{X_{i} \mid i \in I\right\}\right)$ is $\max _{i \in I}\left|X_{i}\right|-1$.
- The pathwidth of a graph G is the minimum width over all tree decompositions of G.

Interval Thickness

Given a graph $G=(V, E)$, find an interval graph $G^{\prime}=\left(V, E^{\prime}\right), E \subseteq E^{\prime}$, such that the maximum clique of G^{\prime} is minimum.

Vertex Separation

- $G=(V, E)$
- Linear layout: $L: V \rightarrow\{1,2, \ldots,|V|\}$
- $V_{L}(i)=\{u \mid L(u) \leq i, \exists w, L(w)>i,(u, w) \in E\}$
- $v s_{L}(G)=\max _{i}\left|V_{L}(i)\right|$
- $v s(G)=\min _{L} v s_{L}(G)$

Example

Pathwidth \approx Edge Search Number

- $p w(G) \leq s(G)$

Let $\left(s_{1}, s_{2}, \ldots, s_{r}\right)$ be a monotone search strategy for a graph G .
Then ($X_{1}, X_{2}, \ldots, X_{i}, \ldots, X_{r}$) is a path decomposition, where: X_{i} contains the guarded vertices, and the edge that may have been cleared at step i.

Pathwidth \approx Edge Search Number

- $s(G) \leq p w(G)+2$

Let $\left(X_{1}, X_{2}, \ldots, X_{i}, X_{i+1} \ldots, X_{r}\right)$ be a path
decomposition of a graph G with width $p w(G)$. At step i, the graph induced by $\bigcup_{k<i} X_{k}$ is cleared;

1. Place (at most) $p w(G)+1$ searchers on vertices in X_{i}.
2. One other searcher clears edges in X_{i}.
3. Remove the searchers on vertices in $X_{i} \backslash X_{i+1}$.

Barriere, Flocchini, Fraigniaud, San-

 toro- Theorem 1: For any tree T there is a monotone contiguous search strategy using $c s(T)$ searchers. Furthermore all searchers can be initially placed in the same node.
- Theorem 2: The contiguous search number and minimal monotone contiguous search for trees can be found serially in $\Theta(n)$ time and distributively with $\Theta(n)$ messages.
- Theorem 3: For every $n>1$ the largest contiguous search number of n-node trees satisfies $\left\lfloor\log _{2} n\right\rfloor-1 \leq c s(n) \leq\left\lfloor\log _{2} n\right\rfloor$ (In contrast for non-contiguous search $\sim \log _{3} n$ searchers suffice).

Theorem 2

- Suppose that the tree T is rooted with root x ($T=T_{x}$).
- It can be shown that the number of searchers needed for T_{x} is $c s\left(T_{x}\right)=\max \left\{c s\left(T_{x_{1}}\right), c s\left(T_{x_{2}}\right)+1\right\}$, where $x_{1}, x_{2}, \ldots x_{k}$ are the children of x in decreasing order of $c s\left(T_{x_{i}}\right)$.

Compute $c s\left(T_{x}\right)$

- Start from the leaves $\left(c s\left(T_{l}\right)=1\right)$
- Continue to the parents y computing $c s\left(T_{y}\right)$ with the previous type.
- Compute $\operatorname{cs}\left(T_{x}\right)$.

Compute $c s(T)$

- Compute $c s(T)=\min _{x} c s\left(T_{x}\right)$
- This requires $O\left(n^{2}\right)$ time.
- It can be shown that we can compute all $\operatorname{cs}\left(T_{x}\right)$ in $O(n)$ time.
- Just find the minimum $\operatorname{cs}\left(T_{x}\right)$ (in $O(n)$ time)

Find a Minimal Strategy

- Order the children in the way mentioned before.
- Place $c s(T)$ searchers on x.
- Traverse T_{x} in pre-order with the simple rule: When moving from a node y to one of its children z (or backwards) transfer $c s\left(T_{z}\right)$ searchers.

Distributed Search

A node can be ready, active or done.

- In the beginning every node is ready.
- Every leaf l sends $c s\left(T_{l}\right)=1$ to its neighbor and becomes active.
- Every other ready node y waits to receive $d-1$ messages. Then computes $c s^{\prime}\left(T_{y}\right)$ and sends it to its parent. Then becomes active.
- Every active node that receives the message from the last neighbor computes the final $c s\left(T_{y}\right)$ and becomes done.

Communication Complexity

- $\Theta(n)$ messages are sent to compute $c s\left(T_{x}\right)$ in every x.
- With a convergecast a middle node computes the minimum among them and sends it back to the other nodes $(\Theta(n)$ messages $)$.

THE END!!!

