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Approximate Counting

#P: Counting versions of problems in NP

FPRAS: A probabilistic Turing machine with
input (x, ε) approximating a function f(x) has
output Y s.t. Pr(f(x)e−ε ≤ Y ≤ f(x)eε) ≥ 3

4

and running time polynomial in |x|,ε−1.
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AP reductions

Reduction of A to B: a TM with a RAS oracle
for B which runs in time poly(|x|, ε−1) and only
asks for an error bound poly(|x|, ε−1)

Parsimonious Reduction: a reduction which
preserves the number of solutions

AP-reduction are very liberal, Parsimonious
reductions are very strict.
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#SAT and #BIS

#SAT: Compute the number of satisfying
assignments to a CNF formula

#BIS: Compute the number of independent
sets in a bipartite graph

#SAT is #P-complete with respect to
AP-reducibility because Cook’s theorem uses
parsimonious reductions. It admits no FPRAS
unless NP=RP
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Counting version of NP-COMPLETE problems

A∈NP-COMPLETE → #A∈#P-COMPLETE
(AP)

Proof:
We need to show that #SAT≤AP #A

#SAT admits an FPRAS if we have an oracle for SAT (Valiant and Vazirani)

An oracle for SAT can be replaced by a RAS for #A
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#LARGEIS and #IS (i)

#LARGEIS: Given an integer m and a graph
whose maximum idependent sets are of size
m, how many maximum independent sets are
there?

#LARGEIS≡AP #SAT because the decision
version is NP-COMPLETE

#IS: Given a graph compute the number of
independent sets (of any size)

#LARGEIS≡AP #IS
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#LARGEIS and #IS (ii)

Proof: (boosting technique)
Construct a new graph from G = (V, E), V ′ = V × [r],
E′ = {{(u, i), (v, j)} : {u, v} ∈ E ∧ i, j ∈ [r]}

Independent sets in G′ project naturally to independent sets in G

(2r − 1)m different i.s. in G′ project to the same size-m i.s. in G

Thus |I(G′)| ≥ (2r − 1)m|Im(G)|

i.s. projecting to i.s. of size less than m are at most (2r − 1)m−12n, thus

|I(G′)| ≤ (2r − 1)m|Im(G)| + (2r − 1)m−12n

→ |Im(G)| = b |I(G)|
(2r−1)m

c
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H-colorings

An H-coloring of a graph G is a
homomorphism from G to H such that
adjacent vertices are mapped to adjacent
vertices (H may contain self loops).

Examples: Kq-colorings ≡ normal
q-colorings, K1

2 -colorings ≡ independent sets

#Q-PARTICLE-WR-CONFIGS: The number of
S∗

q -colorings of a graph G, where S∗
q is the

q-leaf star with loops on every vertex
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Problems interreducible with #BIS

#P4-COL: The number of P4-colorings where
P4 is a path of 4 nodes

#DOWNSETS: The number of downsets in a
partial order

#1P1NSAT: The number of satisfying
assignments of a restricted CNF formula

#BEACHCONFIGS: The number of
P ∗

4 -colorings of a graph G
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Easy reductions

#BIS≡AP #P4-COL: Nodes with colors 1 and 4
form an independent set.

#DOWNSETS≡AP #1P1NSAT: #DOWNSETS is
#1P1NSAT without cycles and
single-variable clauses
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#BIS≤AP #2-PARTICLE-WR-CONFIGS

Given B = (X, Y, A), let Ui, 0 ≤ i ≤ n − 1, K be disjoint sets of size 3n.

V ′ =
⋃

i∈[n] Ui ∪ {v0, . . . , vn−1} ∪ K,

E′ =
⋃

i∈[n] U
(2)
i ∪ (v0, . . . , vn−1 × K) ∪ K(2) ∪

⋃
{Ui × {vj} : (xi, yj) ∈ A}

full WR configuration: all cliques are bichromatic

Colors: red,green, white. Suppose C(K) = (r, w). Project colorings to
independent sets: I = {xi : g ∈ C(Ui)} ∪ {yj : C(vj) = r}

2(23n − 2)n+1 ways

non-full configurations ≤ 3(n + 1)(2 · 23n)n3n

|I(B)| = b |W (G)|
2(23n−2)n+1c
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#2-P-WR-C ≤AP #BEACHCONFIGS

V ′ = V ∪ {s} ∪ [r],
E ′ = E ∪ (V × {s}) ∪ ({s} × [r])

|B(G′)| = 2 · 3r · |W (G)| + 2 · 2n+r

Thus |W (G) = b |B(G′)|
2·3r

c
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#BEACHCONFIGS ≤AP #DOWNSETS

Construct a partial order on the 3n elements
of V × [3].

For each vertex v, (v, 0) ≺ (v, 1) ≺ (v, 2).

For each edge (u, v), (u, 0) ≺ (v, 1),
(u, 1) ≺ (v, 2), (v, 0) ≺ (u, 1), (v, 1) ≺ (u, 2)

Given a downset D color vertex v with the
size of D ∩ {(v, 0), (v, 1), (v, 2)}
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#DOWNSETS ≤AP #BIS

Let (X,�) be an instance of #DOWNSETS.
Define a bipartite graph B(U, V, E).
U =

⋃
i∈X Ui, V =

⋃
i∈X Vi, where

|Ui| = |Vi| = 2n.
E = {(u, v) : u ∈ Ui ∧ v ∈ Vj ∧ i � j}

full independet set I : ∀i, I ∩ (Ui ∪ Vi) 6= ∅

Projection to downsets
D = {i ∈ X : I ∩ Vi 6= ∅}. (22n − 1)n ways.

Non-full i.s. ≤ 3n(22n − 1)n−1
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Synopsis for #BIS

#BIS ≤AP #2-P-WR-C
≤AP #BEACHCONFIGS

≤AP #DOWNSETS ≡AP 1P1NSAT
≤AP #BIS

#Pq-COL ≡AP #BIS
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Intermediate problems

#BIPARTITEMAXIS: The number of maximum
independent sets in a bipartite graph

#3-P-WR-C: 3 particle WR configurations

#BIPARTITE Q-COL: Number of q-colorings of
a bipartite graph
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#BIS ≤AP #BIPARTITEMAXIS

Add to the graph for every vertex v a vertex v ′

and an edge (v, v′). Now every i.s. in the original

graph leads to a maximum i.s. in the new graph.
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#BIPARTITEMAXIS ≤AP #3-P-WR-C

If B = (X, Y, A) is an instance and M is the
size of the maximum i.s. construct G = (V, E)
with Ui, 0 ≤ i ≤ n − 1, Vi, 0 ≤ i ≤ n − 1 disjoint
sets of size s and k a set of size t,
V = K

⋃
i∈[n] Ui

⋃
j∈[n] Vj,

E = K(2) ∪
⋃

j∈[n](Vj × K) ∪
⋃
{Ui × Vj :

(xi, yj ∈ A)}

K is a clique. full coloring: K is bichromatic.
In a full coloring select yj iff Vj has the same
second color as K, select xi iff Ui has
different colors from K.
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#BIPARTITEMAXIS ≤AP #3-P-WR-C

3(2t − 2)(4s − 2s)k(2s)n−k(2s − 1)l

combinations for k ui’s and l vj ’s.

Non full colorings and colorings which point to
non-maximum independent sets are once
again much fewer, and therefore the reduction
is complete.
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