The Relative Complexity of Approximate Counting Problems

Michael Lampis

mlambis@softlab.ntua.gr

NTUA

Outline

－Definitions

」 Approximate Counting and FPRAS
」 Approximation Preserving（AP）and Parsimonious reductions
－Fundamental Problems（\＃SAT and \＃BIS）
－Classes
」 Problems that admit an FPRAS
」 Problems AP－interreducible with \＃BIS
」 Problems AP－interreducible with \＃SAT
－Problems of intermediate Complexity

Approximate Counting

- \#P: Counting versions of problems in NP
- FPRAS: A probabilistic Turing machine with input (x, ϵ) approximating a function $f(x)$ has output Y s.t. $\operatorname{Pr}\left(f(x) e^{-\epsilon} \leq Y \leq f(x) e^{\epsilon}\right) \geq \frac{3}{4}$ and running time polynomial in $|x|, \epsilon^{-1}$.

AP reductions

- Reduction of A to B : a TM with a RAS oracle for B which runs in time poly $\left(|x|, \epsilon^{-1}\right)$ and only asks for an error bound poly $\left(|x|, \epsilon^{-1}\right)$
- Parsimonious Reduction: a reduction which preserves the number of solutions
- AP-reduction are very liberal, Parsimonious reductions are very strict.

\#SAT and \#BIS

- \#SAT: Compute the number of satisfying assignments to a CNF formula
- \#BIS: Compute the number of independent sets in a bipartite graph
- \#SAT is \#P-complete with respect to AP-reducibility because Cook's theorem uses parsimonious reductions. It admits no FPRAS unless NP=RP

Counting version of NP-COMPLETE pr

- A \in NP-COMPLETE \rightarrow \#A $\#$ P-COMPLETE (AP)

- Proof:

- We need to show that \#SAT $\leq_{A P} \# \mathrm{~A}$

」 \#SAT admits an FPRAS if we have an oracle for SAT (Valiant and Vazirani)

- An oracle for SAT can be replaced by a RAS for \#A

\#LARGEIS and \#IS

- \#LARGEIS: Given an integer m and a graph whose maximum idependent sets are of size m, how many maximum independent sets are there?
- \#LARGEIS $\equiv_{A P} \#$ SAT because the decision version is NP-complete
- \#IS: Given a graph compute the number of independent sets (of any size)
- \#LARGEIS ${ }_{A P} \#$ IS

\#LARGEIS and \#IS

Proof: (boosting technique)

- Construct a new graph from $G=(V, E), V^{\prime}=V \times[r]$,

$$
E^{\prime}=\{\{(u, i),(v, j)\}:\{u, v\} \in E \wedge i, j \in[r]\}
$$

- Independent sets in G^{\prime} project naturally to independent sets in G
- $\left(2^{r}-1\right)^{m}$ different i.s. in G^{\prime} project to the same size-m i.s. in G
- Thus $\left|I\left(G^{\prime}\right)\right| \geq\left(2^{r}-1\right)^{m}\left|I_{m}(G)\right|$

D i.s. projecting to i.s. of size less than m are at most $\left(2^{r}-1\right)^{m-1} 2^{n}$, thus

$$
\begin{aligned}
& \left|I\left(G^{\prime}\right)\right| \leq\left(2^{r}-1\right)^{m}\left|I_{m}(G)\right|+\left(2^{r}-1\right)^{m-1} 2^{n} \\
๑ & \rightarrow \\
& \left|I_{m}(G)\right|=\left\lfloor\frac{|I(G)|}{\left(2^{r}-1\right)^{m}}\right\rfloor
\end{aligned}
$$

H-colorings

- An H-coloring of a graph G is a homomorphism from G to H such that adjacent vertices are mapped to adjacent vertices (H may contain self loops).
- Examples: K_{q}-colorings \equiv normal q-colorings, K_{2}^{1}-colorings \equiv independent sets
- \#Q-PARTicle-WR-Configs: The number of S_{q}^{*}-colorings of a graph G, where S_{q}^{*} is the q-leaf star with loops on every vertex

Problems interreducible with \#BIS

- \# P_{4}-COL: The number of P_{4}-colorings where P_{4} is a path of 4 nodes
- \#DOWNSETS: The number of downsets in a partial order
- \#1P1NSAT: The number of satisfying assignments of a restricted CNF formula
- \#BEACHCONFIGS: The number of P_{4}^{*}-colorings of a graph G

Easy reductions

- \#BIS $\equiv_{A P} \# P_{4}$-COL: Nodes with colors 1 and 4 form an independent set.
- \#DownseTs $\equiv_{A P} \# 1 \mathrm{P} 1$ NSAT: \#DownseTs is \#1P1NSAT without cycles and single-variable clauses

\#BIS $\leq_{A P} \# 2$-PARTICLE-WR-CONFIG

- Given $B=(X, Y, A)$, let $U_{i}, 0 \leq i \leq n-1, K$ be disjoint sets of size $3 n$.
- $V^{\prime}=\bigcup_{i \in[n]} U_{i} \cup\left\{v_{0}, \ldots, v_{n-1}\right\} \cup K$,
$E^{\prime}=\bigcup_{i \in[n]} U_{i}^{(2)} \cup\left(v_{0}, \ldots, v_{n-1} \times K\right) \cup K^{(2)} \cup \bigcup\left\{U_{i} \times\left\{v_{j}\right\}:\left(x_{i}, y_{j}\right) \in A\right\}$
- full WR configuration: all cliques are bichromatic
- Colors: red, green, white. Suppose $C(K)=(r, w)$. Project colorings to independent sets: $I=\left\{x_{i}: g \in C\left(U_{i}\right)\right\} \cup\left\{y_{j}: C\left(v_{j}\right)=r\right\}$
- $2\left(2^{3 n}-2\right)^{n+1}$ ways
- non-full configurations $\leq 3(n+1)\left(2 \cdot 2^{3 n}\right)^{n} 3^{n}$
- $|I(B)|=\left\lfloor\frac{|W(G)|}{2\left(2^{3 n}-2\right)^{n+1}}\right\rfloor$

\#2-P-WR-C $\leq_{A P}$ \#BEACHCONFIGS

- $V^{\prime}=V \cup\{s\} \cup[r]$,
$E^{\prime}=E \cup(V \times\{s\}) \cup(\{s\} \times[r])$
- $\left|B\left(G^{\prime}\right)\right|=2 \cdot 3^{r} \cdot|W(G)|+2 \cdot 2^{n+r}$
- Thus $\left\lvert\, W(G)=\left\lfloor\frac{\left\lfloor B\left(G^{\prime}\right)\right\rfloor}{2 \cdot 3^{r}}\right\rfloor\right.$

\#BEACHCONFIGS $\leq_{A P}$ \#DOWNSETS

- Construct a partial order on the $3 n$ elements of $V \times[3]$.
- For each vertex $v,(v, 0) \prec(v, 1) \prec(v, 2)$.
- For each edge $(u, v),(u, 0) \prec(v, 1)$,
$(u, 1) \prec(v, 2),(v, 0) \prec(u, 1),(v, 1) \prec(u, 2)$
- Given a downset D color vertex v with the size of $D \cap\{(v, 0),(v, 1),(v, 2)\}$

\#DOWNSETS $\leq_{A P}$ \#BIS

- Let (X, \preceq) be an instance of \#DownseTs. Define a bipartite graph $B(U, V, E)$. $U=\bigcup_{i \in X} U_{i}, V=\bigcup_{i \in X} V_{i}$, where $\left|U_{i}\right|=\left|V_{i}\right|=2 n$.
$E=\left\{(u, v): u \in U_{i} \wedge v \in V_{j} \wedge i \preceq j\right\}$
- full independet set I : $\forall i, I \cap\left(U_{i} \cup V_{i}\right) \neq \emptyset$
- Projection to downsets
$D=\left\{i \in X: I \cap V_{i} \neq \emptyset\right\} .\left(2^{2 n}-1\right)^{n}$ ways.
- Non-full i.s. $\leq 3^{n}\left(2^{2 n}-1\right)^{n-1}$

Synopsis for \#BIS

\#BIS $\leq_{A P}$ \#2-P-WR-C
 $\leq_{A P}$ \#BEACHCONFIGS
 $\leq_{A P}$ \#DOWNSETS $\equiv_{A P}$ 1P1NSAT
 $\leq_{A P}$ \#BIS
 - \# $P_{q}-\mathrm{COL} \equiv{ }_{A P}$ \#BIS

Intermediate problems

- \#Bipartitemaxis: The number of maximum independent sets in a bipartite graph
- \#3-P-WR-C: 3 particle WR configurations
- \#Bipartite Q-Col: Number of q-colorings of a bipartite graph

\#BIS $\leq_{\text {AP }}$ \#BIPARTITEMAXIS

Add to the graph for every vertex v a vertex v^{\prime} and an edge $\left(v, v^{\prime}\right)$. Now every i.s. in the original graph leads to a maximum i.s. in the new graph.

\#BIPARTITEMAXIS $\leq_{A P}$ \#3-P-WR-C

- If $B=(X, Y, A)$ is an instance and M is the size of the maximum i.s. construct $G=(V, E)$ with $U_{i}, 0 \leq i \leq n-1, V_{i}, 0 \leq i \leq n-1$ disjoint sets of size s and k a set of size t,
$V=K \bigcup_{i \in[n]} U_{i} \bigcup_{j \in[n]} V_{j}$,
$E=K^{(2)} \cup \bigcup_{j \in[n]}\left(V_{j} \times K\right) \cup \bigcup\left\{U_{i} \times V_{j}:\right.$
$\left.\left(x_{i}, y_{j} \in A\right)\right\}$
- K is a clique. full coloring: K is bichromatic. In a full coloring select y_{j} iff V_{j} has the same second color as K, select x_{i} iff U_{i} has different colors from K.

\#BIPARTITEMAXIS $\leq_{A P} \# 3-\mathrm{P}-\mathrm{WR}-\mathrm{C}$

- $3\left(2^{t}-2\right)\left(4^{s}-2^{s}\right)^{k}\left(2^{s}\right)^{n-k}\left(2^{s}-1\right)^{l}$
combinations for $k u_{i}$'s and $l v_{j}$'s.
- Non full colorings and colorings which point to non-maximum independent sets are once again much fewer, and therefore the reduction is complete.

