Counting Problems: Network Reliability

Διοίκηση & Οικονομική Τηλ/κών Δικτύων, ΕΚΠΑ

Χ. Κοντέλλης, ΜΟΠ084

The Problem

- Network Reliability
 - Given a connected, undirected graph, with failure probability specified for each edge, compute the probability that the graph becomes disconnected
- Applications
 - Network Design, Systems Reliability

Background

- Counting Problems: Counting # of solutions
 - Markov chain Monte Carlo method
 - Combinatorial Algorithms
- #P, #P-complete ('Sharp'P, 'Sharp'P-complete)
- Fully Polynomial Randomized Approximation Scheme (FPRAS)
- Counting DNF solutions

Definitions (1/3): of #P

- #P denotes a class of counting problems.
- We use the following notations for the definition.
 - L: a language in NP
 - all instances satisfying constraints of an NP problem
 - $L_{3SAT} = \{(x_1 \lor x_1 \lor x_1), (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3), \ldots\}$
 - M: associated verifier for L
 - $M((x_1 \vee x_1 \vee x_2), ((x_1, x_2) = (1, 1)))$:
 - p: polynomial bounding the length of *M*'s Yes certificates (*y*).
 - $p_{3SAT}(|x|) \leq c_1 n \leq c_2 |x|$ (x: instance, n: # variables, c_1 , c_2 : constants).
 - f(x): the number of strings y s.t. |y| < p(|x|) and M(x,y) accepts.
- Such f(x) constitutes the class #P.

Definitions (2/3): of #P-complete

- #P-complete intuitively means one of the most intractable counting problems in NP.
- f is #P-complete if
 - -f is in #P.

- For any g in #P, g is reducible to f as follows:
 - There are a transducer *R* and a function *S* that are polynomial time computable.
 - $R(x) \in L_f \Leftrightarrow x \in L_g.$
 - -g(x)=S(x,f(R(x))).

Definitions (3/3): of FPRAS

- The solution counting versions of almost all known NPcomplete problems are #P-complete.
- #P-complete problems admit only two (2) possibilities.

- An algorithm A is an FPRAS
 - if, for any instance x,
 - A runs in poly. time in |x| and $1/\varepsilon$, and

$$\Pr[|A(x) - f(x)| \le \varepsilon f(x)] \ge \frac{3}{4}.$$

Issues in this chapter

- Definitions for counting # solutions
 - #P, #P-complete, fully polynomial randomized approximation scheme (FPRAS).
- Counting DNF solutions
- Network reliability

Input: Counting DNF solutions

- a formula *f* in disjunctive normal form (DNF) on *n* Boolean variables.
 - E.g., $f_{EX} = (x_1 \land \neg x_2) \lor (x_2 \land \neg x_3) \lor (\neg x_1)$.

Output:

- The number of satisfying truth assignments of *f*.
 - Let #f be the number (# f_{EX} is 7).

X ₁	x ₂	<i>x</i> ₃	f
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	f
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Efficiently approximate #f

- The main idea
 - Estimating #f by sampling a random variable *X*.
 - X must be an unbiased estimator, i.e., **E**[X]=#f.
 - The standard deviation of X must be within a polynomial factor of E[X].
- A straightforward FPRAS
 - Sample X a poly. number of times (in *n* and $1/\epsilon$).
 - Output the mean.

An unbiased estimator for #f

- Y and $Y(\tau)$ are defined as follows:
 - Y(T): 2^n (T satisfies *f*), 0 (otherwise).
 - Pr(Y): uniform distribution on all 2^n truth assignments.

$$E[Y(\tau)] = \sum_{\tau} \left(\Pr(\tau) Y(\tau) \right)$$

= $\sum_{\tau:\tau \text{ satisfies } f} \frac{1}{2^n} 2^n + \sum_{\tau:\tau \text{ does not satisfy } f} \frac{1}{2^n} 0$
= $\sum_{\tau:\tau \text{ satisfies } f} 1_f = \# f.$

E[Y(T)] is then an unbiased
 estimator

<i>x</i> ₁	<i>x</i> ₂	x ₃	f	Y	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	f
0	0	0	1	8	1	0	0	1
0	0	1	1	8	1	0	1	1
0	1	0	1	8	1	1	0	1
0	1	1	1	8	1	1	1	0

Y

8

8

8

Y is not efficient

$$\sigma^{2}[Y(\tau)] = \sum_{\tau} \Pr(\tau) (Y(\tau) - E[Y(\tau)])^{2}$$

$$= \sum_{\tau:\tau \text{ satisfies } f} \frac{1}{2^{n}} (2^{n} - \# f)^{2} + \sum_{\tau:\tau \text{ does not satisfy } f} \frac{1}{2^{n}} (0 - \# f)^{2}$$

$$= \sum_{\tau:\tau \text{ satisfies } f} \frac{1}{2^{n}} (2^{2n} - 2^{n+1} \# f + (\# f)^{2}) + \sum_{\tau:\tau \text{ does not satisfy } f} \frac{1}{2^{n}} (\# f)^{2}$$

$$= \frac{\# f}{2^{n}} (2^{2n} - 2^{n+1} \# f + (\# f)^{2}) + \frac{2^{n} - \# f}{2^{n}} (\# f)^{2}$$

$$= 2^{n} \# f - (\# f)^{2}.$$

Not bounded by a polynomial of *n*. Not useful for constructing an FPRAS.

Constructing a new random variable

- X: a random variable with $X(\tau) > 0$ only if τ satisfies f.
- S_i : a set of truth assignments that satisfy clause C_i .
 - $|S_i| = 2^{n-ri}$ where r_i is the number of literals in clause C_i .
 - #f=|∪S_i|.
 - $c(\tau)$: # clauses that τ satisfies.
 - *M*: multiset union of the sets S_i .
 - $|M| = \sum |S_i| = \sum 2^{n-ri}$ is easy to compute.
- X(T): |M|/C(T).

Constructing a new random variable

Example:

- $-f_{EX}=(x_1\wedge\neg x_2)\vee(x_2\wedge\neg x_3)\vee(\neg x_1).$
- $-S_i$: a set of truth assignments that satisfy clause C_i .
 - $S_1 = \{(1,0,0), (1,0,1)\}, S_2 = \{(0,1,0), (1,1,0)\}, S_3 = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1)\}, |S_1| = 2^{3-2} = 2, |S_2| = 2^{3-2} = 2, |S_3| = 2^{3-1} = 4.$
 - $#f=|\cup S_i|$, $c(\tau)$: # clauses that τ satisfies.
 - *M*: multiset union of the sets S_i.
 - $M_{EX} = < (1,0,0), (1,0,1), (0,1,0), (1,1,0), (0,0,0), (0,0,1), (0,1,0), (0,1,1) > .$
 - X(T) = |M|/C(T).

An FPRAS

Example

 $- f_{EX} = (x_1 \wedge \neg x_2) \vee (x_2 \wedge \neg x_3) \vee (\neg x_1).$

for *i*=1 to *k*

- Pick one clause C_j from f with prob. $|S_j|/|M|$.
 - C_1 with prob. 2/8.
- Pick a truth assignment τ_i satisfying C_i at random.
 - $T_i = (1,0,1).$
- Find $c(T_i)$ and $X(T_i) = |M|/c(T_i)$.
 - $c(\tau_i)=1, X(\tau_i)=8/1=8.$
- end-for
- output $X_k = (X(\tau_1) + ... + X(\tau_k))/k$ - $X_k = (8+4+8+8)/4=7$.

X С **X**₁ X_2 X_3 8/1 0 0 1 8/1 1 0 1 8/1 1 0 1 0 0

07/07/2006

Network Algorithms & Complexity

14

From lemma 28.2, T is picked with prob. c(T)/|M|.

Lemma 28.2

Random variable X can be efficiently sampled.

- Sampling X is done with picking a random element from the multiset M.
 - 1. pick a clause so that the probability of picking clause C_i is $S_i | / |M|$.
 - 2. among the truth assignments satisfying the picked clause, pick one at random.
- The probability with which truth assignment τ is picked is

$$\sum_{i:\tau \text{ satisfies } C_i} \frac{|S_i|}{|M|} \frac{1}{|S_i|} = \frac{c(\tau)}{|M|}.$$

Lemma 28.3

X is an unbiased estimator for #f.

$$E[X] = \sum_{\tau} \Pr[\tau \text{ is picked}]X(\tau)$$
$$= \sum_{\tau:\tau \text{ satisfies } f} \frac{c(\tau)}{|M|} \frac{|M|}{c(\tau)} = \# f.$$

Lemma 28.4

- $\bullet \quad \alpha = |M|/m.$
- If m denotes the number of clauses in f, then

$$\frac{\sigma(X)}{E[X]} \le m - 1.$$

Lemma 28.5 and Theorem 28.6

• Let
$$k=4(m-1)^2/\varepsilon^2$$
. For any $\varepsilon > 0$,
 $\Pr[|X_k - \# f| \le \varepsilon \# f] \ge \frac{3}{4}$.
Chebyshev's inequality $\Pr[|X - E[X]| \ge a] \le \left(\frac{\sigma(X)}{a}\right)^2$.
 $\Pr[|X_k - E[X_k]| \ge \varepsilon E[X_k]] \le \left(\frac{\sigma(X_k)}{\varepsilon E[X_k]}\right)^2 = \left(\frac{\sigma(X)}{\varepsilon \sqrt{k}E[X]}\right)^2$
 $= \left(\frac{1}{\varepsilon} \frac{1}{\sqrt{k}} \frac{\sigma(X)}{E[X]}\right)^2 = \left(\frac{1}{\varepsilon} \frac{\varepsilon}{2(m-1)}(m-1)\right)^2 = \frac{1}{4}$. $\therefore E[X_k] = E[X],$
 $\sigma(X_k) = \sigma(X)/\sqrt{k}$.
There is an FPRAS for the problem
of counting DNF solutions.

Issues in this chapter

- Definitions for counting # solutions
 - #P, #P-complete, fully polynomial randomized approximation scheme (FPRAS).
- Counting DNF solutions
- Network reliability

Network reliability

Input:

- a connected
 undirected graph G=(V,
 E), with failure prob.
 for each edge e.
 - Parallel edges between two nodes are allowed.
- Output:
 - The prob. that the graph becomes disconnected.
 - Denote the prob. by FAIL(p).

Tractability of FAIL(p)

- Tractable if FAIL(p) is not small.
 - "Small" means at least inverse polynomial.
 - FAIL(p) can be estimated by sampling.
 - We will explain it later (in the proof of Theorem 28.11).
- Intractable if FAIL(p) is small.
 - Sampling approaches do not work.
 - Many samplings are required for the estimation.
 - In the following, we assume that $FAIL(p) \leq n^{-4}$.
- Pr(cut (C,\overline{C}) gets disconnected)= p^c .
 - where capacity *c* is the number of edges crossing the cut.
 - p^c decreases exponentially with capacity (# edges, c).

Ideas of the algorithm

- For any $\varepsilon > 0$, we will show that only polynomially many "small" cuts (in *n* and $1/\varepsilon$) are responsible for 1ε fraction of the total failure probability FAIL(*p*). Moreover, these cuts, say $E_1, \ldots, E_k, E_i \subseteq E$, can be enumerated in polynomial time.
- We refrain to compute the probability that one of the above cuts fails; because of correlations, this is non trivial, instead:
- We will construct a polynomial sized DNF formula f whose probability of being satisfied is precisely the probability that at least one of these cuts fails.

Illustration of the idea (1/2)

Illustration of the idea (2/2)

 x_{ei} is true with probability p_{ei} .

$$f=D_1\vee\cdots\vee D_k.$$

07/07/2006

Lemma 28.8 (1/3)

- The number of minimum cuts in G=(V,E) is bounded by n(n-1)/2.
 - Contractions of an edge.

Lemma 28.8 (2/3)

Let *M* be the number of minimum cuts in *G*.

 $\Pr[(C,\overline{C}) \text{ survives}] \ge \frac{2}{n(n-1)}.$

$$1 = \sum_{(C,\overline{C})} \Pr[(C,\overline{C}) \text{ survives}].$$

$$1 \ge \sum_{\substack{(C,\overline{C}):s.t.(C,\overline{C}) \text{ is } \\ a \text{ minimum cut}}} \Pr[(C,\overline{C}) \text{ survives}] \ge \frac{2M}{n(n-1)}.$$

$$\frac{n(n-1)}{2} \ge M.$$

Lemma 28.8 (3/3)

• *H*: a graph at the beginning of contraction process.

- Contractions never decrease the capacity of the minimum cut.
 - The degree of each node in *H* is at least *c*.
 - *m* is the number of nodes in *H*.
 - Hence, *H* must have at least *cm*/2 edges.
- The minimum cut survives with the probability (1c/#edges).

$$\left(1 - \frac{c}{\#edges}\right) \ge \left(1 - \frac{c}{cm/2}\right) = \left(1 - \frac{2}{m}\right).$$

Pr[(C, \overline{C}) survives] $\ge \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \cdots \left(1 - \frac{2}{3}\right) = \frac{2}{n(n-1)}.$

Lemma 28.9 (1/3)

- For any α≧1, the number of α-min cuts in G is at most n^{2α}.
 - A cut is an α -min cut if its capacity is at most αc .
 - We assume α is a half-integer. Let $k=2\alpha$.
 - (for arbitrary α can be proved by applying same ideas to generalized binomial coefficients - left as an exercise)
 - Consider the two-phase process.
 - 1. Contract edges at random until there remain *k* nodes in the graph.
 - 2. Pick up a cut from all 2^{k-1} 1 at random.

Lemma 28.9 (2/3)

Lemma 28.9 (3/3)

 $\Pr[(C, \overline{C}) \text{ survives through the two phases}]$

$$\geq \frac{k(k-1)\cdots 1}{n(n-1)\cdots(n-k+1)} \frac{1}{2^{k-1}} \\ = \frac{k}{2n} \frac{k-1}{2(n-1)} \cdots \frac{2}{2(n-k+2)} \frac{1}{n-k+1} \\ \geq \frac{1}{n^{k}} = \frac{1}{n^{2\alpha}}.$$

FAIL(p): Analysis

- In case that $FAIL(p) \leq n^{-4}$.
- The failure probability of a minimum cut is $p^c \leq FAIL(p) \leq n^{-4}$.
- Let $p^c = n^{-(2+\delta)}, \delta \ge 2$
- From lemma 28.9, for any $\alpha \ge 1$, the total failure probability of all cuts of capacity αc is at most $p^{c\alpha}n^{2\alpha} = n^{-\alpha\delta}$.

Lemma 28.10 (1/3)

For any α ,

- $-Z = \Pr[\text{some cut of capacity} > \alpha c \text{ fails}] \le n^{-\alpha\delta} \left(1 + \frac{2}{\delta}\right).$ For bounding the total failure prob. of "large" capacity cuts.
- Number all cuts in G by increasing capacity.
 - c_k : the capacity of the *k*-th cut in this numbering.
 - p_k : the failure probability of the k-th cut.
 - a: the number of the first cut of capacity greater than αc .
- It suffices to show that

$$Z = \sum_{k \ge a} p_k = \sum_{k=a}^{a+n^{2\alpha}} p_k + \sum_{k>a+n^{2\alpha}} p_k \le n^{-\alpha\delta} \left(1 + \frac{2}{\delta}\right) \left(\sum_{k=a}^{a+n^{2\alpha}} p_k \le n^{-\alpha\delta}, \sum_{k>a+n^{2\alpha}} p_k \le n^{-\alpha\delta} \frac{2}{\delta}\right).$$

Lemma 28.10 (2/3)

Lemma 28.10 (3/3)

For
$$c_k (a \leq k \leq a + n^{2\alpha})$$
,
 $- c_k > \alpha c \rightarrow p_k < p^{\alpha c} = n^{-\alpha(2+\delta)}$.
 $\sum_{k=a}^{a+n^{2\alpha}} p_k \leq \sum_{k=a}^{a+n^{2\alpha}} n^{-\alpha(2+\delta)} = n^{2\alpha} n^{-\alpha(2+\delta)} = n^{-\alpha\delta}$

For
$$c_k (k \ge a + n^{2\alpha})$$
,

– at most $n^{2\alpha}$ cuts with the capacity less than αc exist.

- from lemma 28.9.
- Then, for any β , $c_n^{2\beta} \ge \beta c$.
- Replacing $n^{2\beta}$ by k, we obtain $\beta = \log k/(2 \log n)$, and

• Therefore,

$$p_k \leq (p^c)^{\frac{\ln k}{2\ln n}} = k^{-(1+\delta/2)}.$$

$$\sum_{k>a+n^{2\alpha}} p_k \leq \sum_{k>n^{2\alpha}} p_k \leq \int_{n^{2\alpha}}^{\infty} k^{-(1+\delta/2)} dk = \frac{1}{1+\delta/2} n^{-\alpha\delta} \leq \frac{2}{\delta} n^{-\alpha\delta}.$$

Theorem 28.11 (1/4)

There is an FPRAS for estimating network reliability.

- In case that $FAIL(p) > n^{-4}$.
- The network is connected/disconnected: binomial distribution.
 - Sampling and Chernoff bound are used to estimate FAIL(p)=µ.

$$\Pr[X > (1 - \varepsilon)\mu] \le e^{-k\mu\varepsilon^2/2}, \Pr[X > (1 + \varepsilon)\mu] \le e^{-k\mu\varepsilon^2/3}.$$

$$k = 12\log n/(\varepsilon^2\mu) < 12n^4 \log n/\varepsilon^2,$$

$$\Pr[X > (1 - \varepsilon)\mu] \le e^{-12\log n/2} = n^{-6}, \Pr[X > (1 + \varepsilon)\mu] \le e^{-12\log n/3} = n^{-4}.$$

$$\frac{1/n^6}{(1 - \varepsilon)\mu} \frac{1/n^4}{\mu} \text{ The light blue areas are less than 1/4 if } n > 2.$$

Theorem 28.11 (2/4)

- In case that $FAIL(p) \leq n^{-4}$.
- α must be determined for enumerating graphs with high probabilities such that

Theorem 28.11 (3/4)

- By lemma 28.9, $C_{n^{2\alpha}} > \alpha C$.
- Pr[one of the first $n^{2\alpha}$ fails] ≥(1 ε)FAIL(*p*).
- The first $n^{2\alpha} = O(n^4/\epsilon)$ cuts are enumerable in polynomial time (Exercise 28.11-13).

Theorem 28.11 (4/4)

To reduce the case of arbitrary edge failure probabilities, parallel edges are used.

all edges are disconnected with prob. $(1-\theta)^{-(\ln p_e)/\theta}$

$$\lim_{\theta\to 0} (1-\theta)^{-(\ln p_e)/\theta} = e^{\ln p_e} = p_e.$$

Open Issues

- Probability that s-t fails
- Probability that s-t remains connected
- Probability the graph remains connected

References

- Vazirani Approximation Algorithms (ch28)
- Karge Using randomized sparsification to approximate minimum cuts
- San Diego University, Theory of Parallel Algorithms, Chernoff Bounds
- Kumar, Randomized min cut
- Vempala, minimum cuts

Thank you