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The Problem

m Network Reliability

— Given a connected, undirected graph, with
failure probability specified for each edge,
compute the probability that the graph
becomes disconnected

m Applications
— Network Design, Systems Reliability
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Background

m Counting Problems: Counting # of solutions
— Markov chain Monte Carlo method
— Combinatorial Algorithms

m #P, #P-complete (‘Sharp’P, ‘Sharp’P-complete)

m Fully Polynomial Randomized Approximation
Scheme (FPRAS)

m Counting DNF solutions
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Definitions (1/3): of %

m #P denotes a class of counting problems.

m We use the following notations for the definition.
— L: alanguage in NP
« all instances satisfying constraints of an NP problem
* Lagar={(X;VX;VXq), (X{VXoV 7 X5) A (7 X{VX5VX3), ...}
— M: associated verifier for L
© M((x,vX;VXy),((X4, X5)=(1, 1))):
— p: polynomial bounding the length of M's Yes certificates (y).
* pisatX)=c,n=c,|x| (x: instance, n: # variables, c,, c,: constants).
— f(x): the number of strings y s.t. |y|<p(|x|) and M(x,y) accepts.

m Such f(x) constitutes the class #P.
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Definitions (2/3): of #P-complete

m #P-complete intuitively means one of the most
Intractable counting problems in NP.

o #P
m fis #P-complete if f et bglog;
_ fisin #P. Om g
g2 ©I2

.

— For any g in #P, g is reducible to f as follows:

 There are a transducer R and a function S that are
polynomial time computable.

— R(x)eL; < xeL,,.
— g(x)=S(x, fIR(X)).
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Definitions (3/3): of FPRAS

m The solution counting versions of almost all known NP-
complete problems are #P-complete.

m #P-complete problems admit only two (2) possibilities.
#P-Complet

- . )
Approximability to any Not approximability

required degree) at all

— An algorithm A is an FPRAS

« if, for any instance x,
« Aruns in poly. time in |x] and 1/g, and

PrI| A(X) - f (X) < & (X)]> %
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Issues in this chapter

m Definitions for counting # solutions

— #P, #P-complete, fully polynomial randomized
approximation scheme (FPRAS).

m Counting DNF solutions
m Network reliability
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.. counting DNF solutions
m Input:

— a formula f in disjunctive normal form (DNF) on n
Boolean variables.
* B9, fem(XA T X) V (OGN T X3 V(T X ).

m Output:

— The number of satisfying truth assignments of .
* Let #f be the number (#f. is 7).

Xl Xo | X3 f Xi| Xo| X3 f

ollof ol 1 [ 1] o o

Ol o 11 1 11 Ol 1] 1
-

ol 11 oy 1 111 11 Of 1

o 11 11 1 11 11 11 O
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Efficiently approximate #f

— The main idea

« Estimating #f by sampling a random variable X.
— X must be an unbiased estimator, i.e., E[X]=#f.

— The standard deviation of X must be within a polynomial
factor of E[X].

— A straightforward FPRAS

« Sample X a poly. number of times (in n and 1/¢).
* Output the mean.
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An unbiased estimator for ;

m Y and Y(r) are defined as follows:
— Y(1): 2" (1 satisfies f), O (otherwise).

— Pr(Y): uniform distribution on all 2" truth assignments.

E[Y (£)1=), (Pr(z)Y (r))

T

H

.‘.-

-y toy ¥ Lo
7.7 satisfies f 2 7.t does not satisfy f 2
= > 1 =#f.
7.7 satisfies f X1 | Xo | X3 Y X1 | Xo | X3 Y
= E[Y(1)] is then an unbiased 0 (1) SfL*tjopoj"s
. 0 811 1| o] 1 8
estimator
ol 11 0 8 11 11 o 8
o 1| 1 8 11 11 1 0
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Y is not efficient
SN (@)=Y Pr(r)(Y (r)—E[Y (2)])

- > Sl#tfe ¥ S(o-#tf

7.7 satisfies f 7.7 does not satisfy f
1 2n n+1 2 1 2
= Y (2 fa@f)?)+ Y S+l 1)
7.7 satisfies f 7.7 does not satisfy f

CHf

n

—"#f —(# )2

(220 —2mig 4 £))+ 2L (1)

n

Not bounded by a polynomial of n.
Not useful for constructing an FPRAS.
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Constructing a new random
variable

m X. a random variable with X(1)>0 only if T satisfies T.

m S a set of truth assignments that satisfy clause C..
— |S|=2""where r; is the number of literals in clause C..
— #f=|US||.
— ¢(T1): # clauses that T satisfies.
— M: multiset union of the sets S..
« |M|=Z|S|=22""is easy to compute.
m X(1): |[M|/c(T).
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Constructing a new random
variable

m Example:
— feF(X AT X))V (OGN T X3) V(7 Xy).
— S;: a set of truth assignments that satisfy clause C..

. S,={(1,0,0), (1,0,1)}, S,={(0,1,0), (1,1,0)}, S,={(0,0,0), (0,0,1),
(0,1,0), (0,1,1)}, |S, [7232=2, |S,|=232=2,|S,|=23"1=4.

 #f=|US], c(1): # clauses that T satisfies.

* M: multiset union of the sets S..
- Mg,~<(1,0,0), (1,0,1), (0,1,0), (1,1,0), (0,0,0), (0,0,1), (0,1,0),

(0,1,1)>.
o X(1)=|Ml|/c(T). X | Xy | X3 C | X Xy | Xo | X3 C | X
0{/0| O| O] 8/1 1101 0] 1| 8/M1
0§01 0|8/ 11 0) 1] 1| 81
Off11 0 |2 8/2 11 11 ol 11 8/1
o1 1| 1| 8/1 111111 0 0
- —
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An FPRAS
m Example

— feF(XA T X))V (A 7 x5 V(T X).
m fori=1tok
— Pick one clause C; from f with prob. [S|/|M]. ~

. C, with prob. 2/8. From lemma 28.2,
— Pick a truth assignment T, satisfying C; at random. | T is picked with
+ 1=(1,0,1). rob. c(1)/|M|.
— Find c¢(1)) and X(1,)= [M|/c(T)) . JP (/M|
. o(T)=1, X(1)=8/1=8.
= end-for

m output X, =(X(1¢)+...+ X(1,))/k

— X,=(8+4+8+8)/4=7. 1% %l 1x | [xlx]x]e X
0[)o| o] of 8/1]|[ 1 0| 1| 8/1
olfo| 1] ofl8m|] 1] oll1] 1| 81
o1 ol k| e2|[TFT 71 0] 1| 8n
ol AT 1] 1| 8 1’[1 Tl 0| O
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Overview

— Lemma 28.5, Theorem 28.6 —
There 1s an FPRAS for
counting DNF solutions.

T T

— Lemma 28.2, 28.3 — Lemma 28.4 —
X 1S an unbiased The variance of X is
estimator. sufficiently small.
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Lemma 28.2

m Random variable X can be efficiently sampled.

— Sampling X is done with picking a random element
from the multiset M.

» 1. pick a clause so that the probability of picking clause C;is |
S|/|M|.
« 2. among the truth assignments satisfying the picked clause,
pick one at random.
— The probability with which truth assignment 7 is

picked is

Z |S;] 1 _ C(T)_
i1z satisfies C; | M | | Si | | M |
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Lemma 28.3

m X is an unbiased estimator for #f.

E[X]=)_ Pr[rispicked]X ()

_ Z C(T)lMlz#.I:

7.7 satisfies f | M | C(T)
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Lemma 28.4

m a=|M|/m.

m If m denotes the number of clauses in f, then
o(X) _
E[X]

the average number of i| S, | the number of truth

' M . ignmen Isfyin
tr_uth_a53|gnments . :| |: — CE[X]=#f 4Um.S |. assignments satisfying

satisfying one clause m m \ =1 at least one clause

# clauses satisfied with T

1<c(f)<m‘|M|<x(7)<lM | X(z) - E[X]|< (M-1)a.

1 _

#clauses in f o(X)<s (M-

X ()= M1 a < X(z)<ma. < (M-1)E[X]
c(zr)
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Lemma 28.5 and Theorem 28.6

m Let k=4(m - 1)2/e2. For any £>0,
Pr[| X, —# f |< c# f]z%

2
Chebyshev’s inequality Pr[| X —E[X]]za]< (G(ax)) .

o(X,) 2 o(X) 2
Prl| X, — E[X, 1 éE[X, 1] <| A | =
r[| X, (X B eE X, 1] [EE[Xk]j (ENEE[XJ

_(1 1 a()()j2 (1 jz 1 EXJ=EIX],
- Z‘«/% E[X] g2(m— 1)( =) 4 G(XK)ZG(X)/\/E.

There i1s an FPRAS for the problem
of counting DNF solutions.
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Issues in this chapter

m Definitions for counting # solutions

— #P, #P-complete, fully polynomial randomized
approximation scheme (FPRAS).

m Counting DNF solutions
= Network reliability

07/07/2006 Network Algorithms & Complexity
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m Input:

— a connected
undirected graph G=(V,
E), with failure prob.
for each edge e.

» Parallel edges between
two nodes are allowed.

m Output:

— The prob. that the
graph becomes
disconnected.

« Denote the prob. by
FAIL(p).

disconnected still connected
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Tractability of FAIL(p)

m Tractable if FAIL(p) is not small.
— “Small” means at least inverse polynomial.
— FAIL(p) can be estimated by sampling.
« We will explain it later (in the proof of Theorem 28.11).
m Intractable if FAIL(p) is small.

— Sampling approaches do not work.
* Many samplings are required for the estimation.

— In the following, we assume that FAIL(p) £ n-4.

m Pr(cut (C,C) gets disconnected)=p°.
— where capacity c is the number of edges crossing the cut.
— p° decreases exponentially with capacity (# edges, c).

07/07/2006 Network Algorithms & Complexity
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ldeas of the algorithm

For any €>0, we will show that only polynomially many
“small” cuts (in n and 1/¢) are responsible for 1 - €
fraction of the total failure probability FAIL(p). Moreover,
these cuts, say E,,...,.E,, E;S E, can be enumerated in

polynomial time.

We refrain to compute the probability that one of the
above cuts fails; because of correlations, this is non
trivial, instead:

We will construct a polynomial sized DNF formula f

whose probability of being satisfied is precisely the
probability that at least one of these cuts fails.
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lllustration of the idea (1/2)

(O7 Ve Vy
V5 V-
Prob. I p’ I p?
Ratio of prob. -

—
Enumerable in polynomial time

(Exercise 28.11-13)

07/07/2006 Network Algorithms & Complexity
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lllustration of the idea (2/2)

cut E; cut E, cut E,
@ @ ....... /?X 64
O7 %,
One-to-one I
correspondence
D, =X, A X, D2_Xe1/\xe2/\xe3’ Dy =X, AXo, AX, s

X, IS true with probability p,;.
f=D,v:---vD,.
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Lemma 28.8 (1/3)

m The number of minimum cuts in G=(V,E) is
bounded by n(n-1)/2.

— Contractions of an edge.

@ S )
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Lemma 28.8 (2/3)

m Let M be the number of minimum cuts in G.
— M is bounded by n(n-1)/2 if

Pr[(C,C) survives] >

n(n-1)

1= > Pr[(C,C)survives].

(C.C)

1> > Pr[(C,C)survives]> M
(C.C)st(C.C)is n(n-1)

a minimum cut

n(n-1)
2

> M.

07/07/2006 Network Algorithms & Complexity
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Lemma 28.8 (3/3)

m H: a graph at the beginning of contraction process.

— Contractions never decrease the capacity of the minimum
cut.

» The degree of each node in H is at least c.
* mis the number of nodes in H.
* Hence, H must have at least cm/2 edges.

— The minimum cut survives with the probability (1-
c/ttedges).

abesia

#edges cm/ 2 m

Pr[(C,(T)survives]2(1—Ej(1_ij..(1_gj: 2 |
N n-1 3) n(n-1
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Lemma 28.9 (1/3)

m For any a21, the number of a-min cuts in G is at
most n4e.
— A cut is an a-min cut if its capacity is at most ac.

— We assume a is a half-integer. Let k=2aq.

« (for arbitrary a can be proved by applying same ideas to
generalized binomial coefficients - left as an exercise)

— Consider the two-phase process.

» 1. Contract edges at random until there remain k nodes in the
graph.
« 2. Pick up a cut from all 2k-1 - 1 at random.
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Lemma 28.9 (2/3)

m Example | Pr[(C,C)survives]

— k=4. 2(1_5j(1__ 1 _ k(k-1)---1 |
— Phase 1. n(n-1)---(n—k +1)

v: X NREE
Ente

{ "
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Lemma 28.9 (3/3)

Pr[(C,C) survives through the two phases]
o k=Dl 1
n(n-1)---(n—-k+1) 2**

_k k-1 2 1
2n 2(n-1) 2(n-k+2)n-k+1
1 1

an:nZa
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FAIL(p): Analysis

m In case that FAIL(p) = n-4.

m The failure probability of a minimum cut is p¢ =
FAIL(p) = n-~4.

mletpc=n-2) §=2

m From lemma 28.9, for any a21, the total failure

probability of all cuts of capacity ac is at most
pcanZ(J = n-ao
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Lemma 28.10 (1/3)

m Foranyaq, )
_ Z =Pr[some cut of capacity > ac fails] < n“5(1+g .

— For bounding the total failure prob. of “large” capacity
cuts.

— Number all cuts in G by increasing capacity.
* c,. the capacity of the k-th cut in this numbering.
* p,: the failure probability of the k-th cut.
 a: the number of the first cut of capacity greater than ac.

— |t suffices to show that

Z=) P = Zpk Zpkén‘“(H j(zpkén“ 2 Pesn j

k>a k>a+n3? k>a-+n3®
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Lemma 28.10 (2/3)

m lllustration of the idea of lemma 28.10
— Number all cuts in G by increasing capacity.

07/07/2006 Network Algorithms & Complexity
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Lemma 28.10 (3/3)

m For ¢, (a=k=a+n9),
— Ck>aC ﬁ‘l)k<pCYC =N -G(2+6) ]

a+n%“ a+n%“

Z pk < Zn—a(2+5) _ n2an—a(2+§) _ n—aél
k=a k=a

m For ¢, (k2a+n?9),

— at most n?® cuts with the capacity less than ac exist.
— from lemma 28.9.
« Then, for any B, ¢,?f2fc.
« Replacing n%fby k, we obtain B=log k/(2 log n), and

Ink
 Therefore, 0. <(p )zmn k_(1+5,2)
:2 ao

(1+5/2) N <<n
Zpk—Zpk—jk o 1+5/2 =5

k>a+n2“ k>n%“

07/07/2006 Network Algorithms & Complexity 35



Theorem 28.11 (1/4)

m There is an FPRAS for estimating network reliability.

— In case that FAIL(p)>n - 4.
— The network is connected/disconnected: binomial

distribution.
« Sampling and Chernoff bound are used to estimate FAIL(p)=p.

PI[X > (1—g)u] <e™ 2 PrIX > L+ &) u]<e "
k=12logn/(s’u) <12n*logn/&?,
Pr[X >(1-¢&)u] <™ =n"® Pr{X > U+ &)u]<e™ 9" =n™",

, 1/n° ., , 1/n* The light blue areas are

I ~ less than 1/4 if n>2.
1-&)u p A+e)u
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Theorem 28.11 (2/4)

= In case that FAIL(p)=n - 4.

m a must be determined for enumerating graphs with high
probabilities such that

Pr[some cut of capacity > ac fails] < n™* (1+ éj < ¢ FAIL(p) < en” ",

By lemma 28.10 1

This inequality is given in the textbook,
but this seems to contradict with

—ad < —(2+9) B .
n =" <é&n n~(2+9) — p° < FAIL(p) inp. 300.
4 4

?

one failure total failure

a£1+g— loge/2 <o Iogglzl
ologn 2logn
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Theorem 28.11 (3/4)

= Bylemma28.9, C,. > 0L
m Prone of the first n%@ fails] 2(1 - €)FAIL(p).

m The first n?@ =0(n*/¢) cuts are enumerable in polynomial
time (Exercise 28.11-13).

p? p° p°
(. 1'8 _ 8
D, =X, AX,» Dow=X AX, AX, . — T=Dv---vD,,.
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Theorem 28.11 (4/4)

m To reduce the case of arbitrary edge failure
probabilities, parallel edges are used.

failure Q parallel
probability —(In p.)/6 edges
P, fatlure
probability 6

all edges are disconnected
with prob. (L— ) ")

1 —(Inp )@ _ Alnpe _
IImG—)O(l_e) =€ - pe'
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m Probabi
m Probabi
m Probabi

07/07/2006

ity t
ity t
ity t

Open Issues

nat s-t fails
nat s-t remains connected

ne graph remains connected

Network Algorithms & Complexity
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