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The Problem

■ Network Reliability
– Given a connected, undirected graph, with 

failure probability specified for each edge, 
compute the probability that the graph 
becomes disconnected

■ Applications
– Network Design, Systems Reliability
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Background
■ Counting Problems: Counting # of solutions

– Markov chain Monte Carlo method
– Combinatorial Algorithms

■ #P, #P-complete (‘Sharp’P, ‘Sharp’P-complete)
■ Fully Polynomial Randomized Approximation 

Scheme (FPRAS)
■ Counting DNF solutions
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Definitions (1/3): of #P
■ #P denotes a class of counting problems.
■ We use the following notations for the definition.

– L: a language in NP
• all instances satisfying constraints of an NP problem
• L3SAT={(x1∨x1∨x1), (x1∨x2∨￢x3) ∧ (￢ x1∨x2∨x3), …}

– M: associated verifier for L
• M((x1∨x1∨x2),((x1, x2)=(1, 1))):

– p: polynomial bounding the length of M’s Yes certificates (y).
• p3SAT(|x|)≦c1n≦c2|x| (x: instance, n: # variables, c1, c2: constants).

– f(x): the number of strings y s.t. |y|<p(|x|) and M(x,y) accepts.

■ Such f(x) constitutes the class #P.
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Definitions (2/3): of #P-complete
■ #P-complete intuitively means one of the most 

intractable counting problems in NP.
■ f is #P-complete if 

– f is in #P.

– For any g in #P, g is reducible to f as follows:
• There are a transducer R and a function S that are 

polynomial time computable.
– R(x)∈Lf ⇔ x∈Lg.
– g(x)=S(x, f(R(x)).

#P
f g1

g2

Rg1 Sg1

Rg2 Sg2
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■ The solution counting versions of almost all known NP-
complete problems are #P-complete.

■ #P-complete problems admit only two (2) possibilities.

– An algorithm A is an FPRAS
• if, for any instance x,
• A runs in poly. time in |x| and 1/ε, and

#P-Complete
Approximability to any

required degree)
Not approximability

at all

Definitions (3/3): of FPRAS

.
4
3)]( |)()(Pr[| ≥≤− xfxfxA ε
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Issues in this chapter

■ Definitions for counting # solutions
– #P, #P-complete, fully polynomial randomized 

approximation scheme (FPRAS).
■ Counting DNF solutions
■ Network reliability
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Counting DNF solutions■ Input: 
– a formula f in disjunctive normal form (DNF) on n

Boolean variables.
• E.g., fEX=(x1∧￢x2) ∨ (x2∧￢x3 )∨(￢ x1  ).

■ Output: 
– The number of satisfying truth assignments of f.

• Let #f be the number (#fEX is 7).

x1 x2 x3 f
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1

x1 x2 x3 f
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0
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Efficiently approximate #f

– The main idea
• Estimating #f by sampling a random variable X.

– X must be an unbiased estimator, i.e., E[X]=#f.
– The standard deviation of X must be within a polynomial 

factor of E[X].

– A straightforward FPRAS
• Sample X a poly. number of times (in n and 1/ε).
• Output the mean.
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An unbiased estimator for #f
■ Y and Y(τ) are defined as follows:

– Y(τ): 2n (τ satisfies f), 0 (otherwise).
– Pr(Y): uniform distribution on all 2n truth assignments.

■ E[Y(τ)] is then an unbiased 
estimator
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Y is not efficient
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Constructing a new random 
variable

■ X: a random variable with X(τ)>0 only if τ satisfies f.
■ Si: a set of truth assignments that satisfy clause Ci.

– |Si|=2n-ri where ri is the number of literals in clause Ci.
– #f=|∪Si|. 
– c(τ): # clauses that τ satisfies.
– M: multiset union of the sets Si.

• |M|=Σ|Si|=Σ2n-ri is easy to compute.

■ X(τ): |M|/c(τ).



07/07/2006 Network Algorithms & Complexity 13

Constructing a new random 
variable

■ Example:
– fEX=(x1∧￢x2) ∨ (x2∧￢x3 ) ∨ (￢ x1) .
– Si: a set of truth assignments that satisfy clause Ci.

• S1={(1,0,0), (1,0,1)}, S2={(0,1,0), (1,1,0)}, S3={(0,0,0), (0,0,1), 
(0,1,0), (0,1,1)}, |S1 |=23-2=2, |S2|=23-2=2,|S3|=23-1=4.

• #f=|∪Si|, c(τ): # clauses that τ satisfies.
• M: multiset union of the sets Si.

– MEX=< (1,0,0), (1,0,1), (0,1,0), (1,1,0), (0,0,0), (0,0,1), (0,1,0),
(0,1,1)>.

• X(τ)=|M|/c(τ). x1 x2 x3 c X
0 0 0 0 8/1
0 0 1 0 8/1

0 1 0 2 8/2

0 1 1 1 8/1

x1 x2 x3 c X
1 0 0 1 8/1

1 0 1 1 8/1

1 1 0 1 8/1

1 1 1 0 0
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An FPRAS
■ Example

– fEX=(x1∧￢x2) ∨ (x2∧￢x3 )∨(￢ x1).
■ for i=1 to k

– Pick one clause Cj from f with prob. |Sj|/|M|.
• C1 with prob. 2/8.

– Pick a truth assignment τi satisfying Ci at random.
• τi= (1,0,1).

– Find c(τi) and X(τi)= |M|/c(τi) .
• c(τi)=1, X(τi)=8/1=8.

■ end-for
■ output Xk=(X (τ1)+…+ X(τk))/k

– Xk=(8+4+8+8)/4=7. x1 x2 x3 c X
0 0 0 0 8/1
0 0 1 0 8/1

0 1 0 2 8/2

0 1 1 1 8/1

x1 x2 x3 c X
1 0 0 1 8/1

1 0 1 1 8/1

1 1 0 1 8/1

1 1 1 0 0

From lemma 28.2,
τ is picked with 
prob. c(τ)/|M|.
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Overview
Lemma 28.5, Theorem 28.6

There is an FPRAS for 
counting DNF solutions.

Lemma 28.2, 28.3
X is an unbiased

estimator.

Lemma 28.4
The variance of X is
sufficiently small.



07/07/2006 Network Algorithms & Complexity 16

Lemma 28.2
■ Random variable X can be efficiently sampled.

– Sampling X is done with picking a random element 
from the multiset M.

• 1. pick a clause so that the probability of picking clause Ci is | 
Si|/|M|.

• 2. among the truth assignments satisfying the picked clause, 
pick one at random.

– The probability with which truth assignment τ is 
picked is
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Lemma 28.3
■ X is an unbiased estimator for #f.
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Lemma 28.4
■ α=|M|/m.
■ If m denotes the number of clauses in f, then
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Lemma 28.5 and Theorem 28.6
■ Let k=4(m－1)2/ε2. For any ε>0, 
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of counting DNF solutions.
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Issues in this chapter

■ Definitions for counting # solutions
– #P, #P-complete, fully polynomial randomized 

approximation scheme (FPRAS).
■ Counting DNF solutions
■ Network reliability
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Network reliability
■ Input: 

– a connected 
undirected graph G=(V, 
E), with failure prob. 
for each edge e.

• Parallel edges between 
two nodes are allowed.

■ Output:
– The prob. that the 

graph becomes 
disconnected.

• Denote the prob. by 
FAIL(p).

v1

v2 v3

v4
v5 v6

v7

v1

v2

v3

v4

v5

v6
v7

v1

v2

v3

v4

v5 v6

v7
disconnected still connected
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Tractability of FAIL(p)
■ Tractable if FAIL(p) is not small.

– “Small” means at least inverse polynomial.
– FAIL(p) can be estimated by sampling.

• We will explain it later (in the proof of Theorem 28.11).

■ Intractable if FAIL(p) is small.
– Sampling approaches do not work.

• Many samplings are required for the estimation.
– In the following, we assume that FAIL(p) ≦ n－4.

■ Pr(cut (C,C) gets disconnected)=pc.
– where capacity c is the number of edges crossing the cut.
– pc decreases exponentially with capacity (# edges, c).
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Ideas of the algorithm
■ For any ε>0, we will show that only polynomially many 

“small’’ cuts (in n and 1/ε) are responsible for 1－ε
fraction of the total failure probability FAIL(p). Moreover, 
these cuts, say E1,…,Ek, Ei⊆ E, can be enumerated in 
polynomial time. 

■ We refrain to compute the probability that one of the 
above cuts fails; because of correlations, this is non 
trivial, instead: 

■ We will construct a polynomial sized DNF formula f
whose probability of being satisfied is precisely the 
probability that at least one of these cuts fails.
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Illustration of the idea (1/2)

v1 v3

v4
v5

v6
v7

v1
v3

v4

v5 v6

v7

v1
v3

v4

v5 v6

v7

Prob. p2 p3 p5

Ratio of prob. 1－ε ε

Enumerable in polynomial time
(Exercise 28.11-13)



07/07/2006 Network Algorithms & Complexity 25

Illustration of the idea (2/2)

e1

e2

,
211 ee xxD ∧
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e3 e4
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cut E1 cut Ek

.1 kDDf ∨∨= L
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,
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cut E2
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One-to-one
correspondence

xei is true with probability pei.
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Lemma 28.8 (1/3)
■ The number of minimum cuts in G=(V,E) is 

bounded by n(n-1)/2.
– Contractions of an edge.

v1
v2

v7

v1 v3
v1

v1

v7

v2,….,v6      

{v1,….,v6} {v7}
Cut ({v1,….,v6}, {v7}) survives.
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Lemma 28.8 (2/3)
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Lemma 28.8 (3/3)
■ H: a graph at the beginning of contraction process.

– Contractions never decrease the capacity of the minimum 
cut.

• The degree of each node in H is at least c.
• m is the number of nodes in H.
• Hence, H must have at least cm/2 edges.

– The minimum cut survives with the probability (1-
c/#edges).
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Lemma 28.9 (1/3)
■ For any α≧1, the number of α-min cuts in G is at 

most n2α.
– A cut is an α-min cut if its capacity is at most αc.
– We assume α is a half-integer. Let k=2α.

• (for arbitrary α can be proved by applying same ideas to 
generalized binomial coefficients - left as an exercise)

– Consider the two-phase process.
• 1. Contract edges at random until there remain k nodes in the 

graph.
• 2. Pick up a cut from all 2k－1－1 at random.
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Lemma 28.9 (2/3)
■ Example

– k=4.
– Phase 1.

– Phase 2.
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Lemma 28.9 (3/3)
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FAIL(p): Analysis
■ In case that FAIL(p) ≦ n－4.
■ The failure probability of a minimum cut is pc ≦

FAIL(p) ≦ n－4.
■ Let pc = n－(2+δ), δ ≥ 2
■ From lemma 28.9, for any α≧1, the total failure 

probability of all cuts of capacity αc is at most 
pcαn2α = n－αδ.
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Lemma 28.10 (1/3)
■ For any α,

–
– For bounding the total failure prob. of “large” capacity 

cuts.
– Number all cuts in G by increasing capacity.

• ck: the capacity of the k-th cut in this numbering.
• pk: the failure probability of the k-th cut.
• a: the number of the first cut of capacity greater than αc.

– It suffices to show that
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Lemma 28.10 (2/3)
■ Illustration of the idea of lemma 28.10

– Number all cuts in G by increasing capacity.

.:sum 1
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Lemma 28.10 (3/3)
■ For ck (a≦k≦a+n2α), 

– ck>αc → pk<pαc = n－α(2+δ) .

■ For ck (k≧a+n2α), 
– at most n2α cuts with the capacity less than αc exist.

– from lemma 28.9.
• Then, for any β, cn

2β≧βc.
• Replacing n2βby k, we obtain β=log k/(2 log n), and
• Therefore, 
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Theorem 28.11 (1/4)
■ There is an FPRAS for estimating network reliability.

– In case that FAIL(p)>n－4.
– The network is connected/disconnected: binomial 

distribution.
• Sampling and Chernoff bound are used to estimate FAIL(p)=μ.
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Theorem 28.11 (2/4)
■ In case that FAIL(p)≦n－4.
■ α must be determined for enumerating graphs with high 

probabilities such that
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Theorem 28.11 (3/4)
■ By lemma 28.9, 
■ Pr[one of the first n2α fails] ≧(1－ε)FAIL(p).
■ The first n2α =O(n4/ε) cuts are enumerable in polynomial 

time (Exercise 28.11-13).
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Theorem 28.11 (4/4)
■ To reduce the case of arbitrary edge failure 

probabilities, parallel edges are used.

failure
probability

pe

parallel 
–(ln pe)/θ edges

failure
probability θ

all edges are disconnected
with prob. θθ /)(ln)1( ep−−

.)1(lim ln/)(ln
0 e
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Open Issues

■ Probability that s-t fails
■ Probability that s-t remains connected
■ Probability the graph remains connected
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Thank you
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