Counting Problems: Network Reliability

ЕКПА

X. Kovté̀ $\lambda \lambda \eta \varsigma, ~ М О П 084 ~$

The Problem

- Network Reliability
- Given a connected, undirected graph, with failure probability specified for each edge, compute the probability that the graph becomes disconnected
- Applications
- Network Design, Systems Reliability

Background

- Counting Problems: Counting \# of solutions
- Markov chain Monte Carlo method
- Combinatorial Algorithms

■ \#P, \#P-complete ('Sharp’P, ‘Sharp’P-complete)

- Fully Polynomial Randomized Approximation Scheme (FPRAS)
■ Counting DNF solutions

Definitions (1/3): of \#P

- \#P denotes a class of counting problems.
- We use the following notations for the definition.
- L: a language in NP
- all instances satisfying constraints of an NP problem
- $L_{\text {3SAT }}=\left\{\left(x_{1} \vee x_{1} \vee x_{1}\right),\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right), \ldots\right\}$
- M : associated verifier for L
- $M\left(\left(x_{1} \vee x_{1} \vee x_{2}\right),\left(\left(x_{1}, x_{2}\right)=(1,1)\right)\right)$:
$-p$: polynomial bounding the length of M 's Yes certificates (y).
- $p_{3 S A T}(|x|) \leqq c_{1} n \leqq c_{2}|x|$ (x : instance, n : \# variables, c_{1}, c_{2} : constants).
- $f(x)$: the number of strings y s.t. $|y|<p(|x|)$ and $M(x, y)$ accepts.
- Such $f(x)$ constitutes the class \#P.

Definitions (2/3): of \#P-complete

■ \#P-complete intuitively means one of the most intractable counting problems in NP.
■ f is \#P-complete if
$-f$ is in \#P.

- For any g in \#P, g is reducible to f as follows:
- There are a transducer R and a function S that are polynomial time computable.

$$
\begin{aligned}
& -R(x) \in L_{f} \Leftrightarrow x \in L_{g} . \\
& -g(x)=S(x, f(R(x)) .
\end{aligned}
$$

Definitions (3/3): of FPRAS

- The solution counting versions of almost all known NPcomplete problems are \#P-complete.
- \#P-complete problems admit only two (2) possibilities.

Approximability to any required degree)

Not approximability
at all

- An algorithm A is an FPRAS
- if, for any instance x,
- A runs in poly. time in $|x|$ and $1 / \varepsilon$, and
$\operatorname{Pr}[|A(x)-f(x)| \leq \varepsilon f(x)] \geq \frac{3}{4}$.

Issues in this chapter

■ Definitions for counting \# solutions

- \#P, \#P-complete, fully polynomial randomized approximation scheme (FPRAS).
Counting DNF solutions
- Network reliability

■ Input:

Counting DNF solutions

- a formula f in disjunctive normal form (DNF) on n Boolean variables.
- E.g., $f_{E X}=\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{2} \wedge \neg x_{3}\right) \vee\left(\neg x_{1}\right)$.

■ Output:

- The number of satisfying truth assignments of f.
- Let $\# f$ be the number $\left(\# f_{E X}\right.$ is 7).

x_{1}	x_{2}	x_{3}	f
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1

x_{1}	x_{2}	x_{3}	f
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Efficiently approximate \#f

- The main idea
- Estimating \#f by sampling a random variable X.
$-X$ must be an unbiased estimator, i.e., $\mathrm{E}[X]=\#$.
- The standard deviation of X must be within a polynomial factor of $\mathrm{E}[X]$.
- A straightforward FPRAS
- Sample X a poly. number of times (in n and $1 / \varepsilon$).
- Output the mean.

An unbiased estimator for \#f

- Y and $Y(\mathrm{~T})$ are defined as follows:
- $Y(\mathrm{~T}): 2^{n}$ (T satisfies f), 0 (otherwise).
$-\operatorname{Pr}(Y)$: uniform distribution on all 2^{n} truth assignments.

$$
E[Y(\tau)]=\sum_{\tau}(\operatorname{Pr}(\tau) Y(\tau))
$$

$$
=\sum_{\tau: \tau} \text { saisifies } f\left(\frac{1}{2^{n}} 2^{n}+\sum_{\tau: \tau \text { does not satisfy } f} \frac{1}{2^{n}} 0\right.
$$

$$
=\sum_{\tau: \tau \text { saisisies }} 1=\# f .
$$

- $\mathrm{E}[Y(\mathrm{~T})]$ is then an unbiased estimator

x_{1}	x_{2}	x_{3}	f	Y
0	0	0	1	8
0	0	1	1	8
0	1	0	1	8
0	1	1	1	8

x_{1}	x_{2}	x_{3}	f	Y
1	0	0	1	8
1	0	1	1	8
1	1	0	1	8
1	1	1	0	0

Y is not efficient

$$
\begin{aligned}
& \sigma^{2}[Y(\tau)]=\sum_{\tau} \operatorname{Pr}(\tau)(Y(\tau)-E[Y(\tau)])^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\tau=\text { sastrises } f} \frac{1}{2^{2^{2}}}\left(2^{2 n}-2^{n+1} \# f+(\# f)^{2}\right)+\sum_{\text {ritiosesmosasisty } f} \frac{1}{2^{n}}(\# f)^{2} \\
& =\frac{\# f}{2^{n}}\left(2^{2 n}-2^{n+1} \# f+(\# f)^{2}\right)+\frac{2^{n}-\# f}{2^{n}}(\# f)^{2} \\
& =2^{n} \# f-(\# f)^{2} \text {. }
\end{aligned}
$$

Not bounded by a polynomial of n. Not useful for constructing an FPRAS.

Constructing a new random variable

- X : a random variable with $X(\mathrm{~T})>0$ only if t satisfies f.
- S_{i} : a set of truth assignments that satisfy clause C_{i}.
$-\left|S_{i}\right|=2^{n-r i}$ where r_{i} is the number of literals in clause C_{i}.
- \#f=|USj|.
$-c(\mathrm{~T})$: \# clauses that t satisfies.
- M : multiset union of the sets S_{i}.
- $|M|=\Sigma\left|S_{i}\right|=\Sigma 2^{n-r i}$ is easy to compute.
- $X(\mathrm{~T}):|M| / C(\mathrm{~T})$.

Constructing a new random variable

- Example:

$-f_{E X}=\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{2} \wedge \neg x_{3}\right) \vee\left(\neg x_{1}\right)$.

- S_{i} : a set of truth assignments that satisfy clause C_{i}.
- $S_{1}=\{(1,0,0),(1,0,1)\}, S_{2}=\{(0,1,0),(1,1,0)\}, S_{3}=\{(0,0,0),(0,0,1)$, $(0,1,0),(0,1,1)\},\left|S_{1}\right|=2^{3-2}=2,\left|S_{2}\right|=2^{3-2}=2,\left|S_{3}\right|=2^{3-1}=4$.
- \#f=|US $\mid, c(\mathrm{~T})$: \# clauses that t satisfies.
- M : multiset union of the sets S_{i}.

$$
-M_{E X}=<(1,0,0),(1,0,1),(0,1,0),(1,1,0),(0,0,0),(0,0,1),(0,1,0),
$$

$$
(0,1,1)>
$$

- $X(\mathrm{~T})=|M| / C(\mathrm{~T})$.

x_{1}	x_{2}	x_{3}	c	X
1	0	0	1	$8 / 1$
1	0	1	1	$8 / 1$
1	1	0	1	$8 / 1$
1	1	1	0	0

An FPRAS

- Example
- $f_{E X}=\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{2} \wedge \neg x_{3}\right) \vee\left(\neg x_{1}\right)$.

■ for $i=1$ to k

- Pick one clause C_{j} from f with prob. $\left|S_{j}\right| /|M|$.
- C_{1} with prob. $2 / 8$.
- Pick a truth assignment T_{i} satisfying C_{i} at random.
- $\mathrm{T}_{\mathrm{i}}=(1,0,1)$.
- Find $c\left(\mathrm{~T}_{i}\right)$ and $X\left(\mathrm{~T}_{i}\right)=|M| / c\left(\mathrm{~T}_{i}\right)$.
- $c\left(\mathrm{~T}_{i}\right)=1, X\left(\mathrm{~T}_{i}\right)=8 / 1=8$.
- end-for

■ output $X_{k}=\left(X\left(\mathrm{~T}_{1}\right)+\ldots+X\left(\mathrm{~T}_{k}\right)\right) / k$
$-X_{k}=(8+4+8+8) / 4=7$.

x_{1}	x_{2}	x_{3}	c	X
0	0	0	0	$8 / 1$
0	0	1	0	$8 / 1$
0	1	0	2	$8 / 2$
0	1	1	1	$8 / 1$

Network Algorithms \& Complexity
.

From lemma 28.2, T is picked with prob. $c(\mathrm{~T}) /|M|$.

x_{1}	x_{2}	x_{3}	c	X
1	0	0	1	$8 / 1$
1	0	1	1	$8 / 1$
1	1	0	1	$8 / 1$
1	1	1	0	0

Overview

 $\left[\begin{array}{c}\text { Lemma 28.5, Theorem } 28.6 \\ \text { There is an FPRAS for } \\ \text { counting DNF solutions. }\end{array}\right]$$\left[\begin{array}{c}\text { Lemma 28.2, } 28.3 \\ X \text { is an unbiased } \\ \text { estimator. }\end{array}\right]$

Lemma 28.2

■ Random variable X can be efficiently sampled.

- Sampling X is done with picking a random element from the multiset M.
- 1. pick a clause so that the probability of picking clause C_{i} is \mid $S_{i}|/|M|$.
- 2. among the truth assignments satisfying the picked clause, pick one at random.
- The probability with which truth assignment T is picked is

$$
\sum_{i: \tau \text { satisfies } C_{i}} \frac{\left|S_{i}\right|}{|M|\left|S_{i}\right|}=\frac{c(\tau)}{|M|}
$$

Lemma 28.3

■ X is an unbiased estimator for \#f.

$$
\begin{aligned}
E[X] & =\sum_{\tau} \operatorname{Pr}[\tau \text { is picked }] X(\tau) \\
& =\sum_{\tau:: \text { satisfies } f} \frac{c(\tau)}{|M|} \frac{|M|}{c(\tau)}=\# f .
\end{aligned}
$$

Lemma 28.4

■ $\alpha=|M| / m$.

- If m denotes the number of clauses in f, then
$\frac{\sigma(X)}{E[X]} \leq m-1$.

Lemma 28.5 and Theorem 28.6

■ Let $k=4(m-1)^{2} / \varepsilon^{2}$. For any $\varepsilon>0$,

$$
\operatorname{Pr}\left[\left|X_{k}-\# f\right| \leq \varepsilon \# f\right] \geq \frac{3}{4} .
$$

Chebyshev's inequality $\operatorname{Pr}[|X-E[X]| \geq a] \leq\left(\frac{\sigma(X)}{a}\right)^{2}$.
$\operatorname{Pr}\left[\mid X_{k}-E\left[X_{k}\right] \vDash \varepsilon E\left[X_{k}\right]\right] \leq\left(\frac{\sigma\left(X_{k}\right)}{\varepsilon E\left[X_{k}\right]}\right)^{2}=\left(\frac{\sigma(X)}{\varepsilon \sqrt{k} E[X]}\right)^{2}$
$=\left(\frac{1}{\varepsilon} \frac{1}{\sqrt{k}} \frac{\sigma(X)}{E[X]}\right)^{2}=\left(\frac{1}{\varepsilon} \frac{\varepsilon}{2(m-1)}(m-1)\right)^{2}=\frac{1}{4} . \quad \because E\left[X_{k}\right]=E[X], \quad \sigma\left(X_{k}\right)=\sigma(X) / \sqrt{k}$.
There is an FPRAS for the problem of counting DNF solutions.

Issues in this chapter

■ Definitions for counting \# solutions

- \#P, \#P-complete, fully polynomial randomized approximation scheme (FPRAS).
■ Counting DNF solutions
- Network reliability

Network reliability

■ Input:

- a connected undirected graph $G=(V$, E), with failure prob. for each edge e.
- Parallel edges between two nodes are allowed.
■ Output:
- The prob. that the graph becomes disconnected.
- Denote the prob. by FAIL (p).

Tractability of FAIL(p)

- Tractable if FAIL (p) is not small.
- "Small" means at least inverse polynomial.
- FAIL(p) can be estimated by sampling.
- We will explain it later (in the proof of Theorem 28.11).
- Intractable if FAIL (p) is small.
- Sampling approaches do not work.
- Many samplings are required for the estimation.
- In the following, we assume that $\operatorname{FAIL}(p) \leqq n^{-4}$.
- $\operatorname{Pr}($ cut (C, \bar{C}) gets disconnected $)=p^{c}$.
- where capacity c is the number of edges crossing the cut.
- p^{c} decreases exponentially with capacity (\# edges, c).

Ideas of the algorithm

- For any $\varepsilon>0$, we will show that only polynomially many "small" cuts (in n and $1 / \varepsilon$) are responsible for $1-\varepsilon$ fraction of the total failure probability FAIL(p). Moreover, these cuts, say $E_{1}, \ldots, E_{k}, E_{i} \subseteq E$, can be enumerated in polynomial time.
- We refrain to compute the probability that one of the above cuts fails; because of correlations, this is non trivial, instead:
- We will construct a polynomial sized DNF formula f whose probability of being satisfied is precisely the probability that at least one of these cuts fails.

Illustration of the idea (1/2)

Ratio of prob.

$$
1-\varepsilon
$$

Enumerable in polynomial time
(Exercise 28.11-13)

Illustration of the idea (2/2)

One-to-one correspondence \downarrow

$$
D_{1}=x_{e_{1}} \wedge x_{e_{2}}, \quad D_{2}=x_{e_{1}} \wedge x_{e_{2}} \wedge X_{e_{3}}, \quad D_{k}=x_{e_{2}} \wedge X_{e_{3}} \wedge X_{e_{4}}
$$

$x_{e i}$ is true with probability $p_{e i}$.

$$
f=D_{1} \vee \cdots \vee D_{k}
$$

Lemma 28.8 (1/3)

- The number of minimum cuts in $G=(V, E)$ is bounded by $n(n-1) / 2$.
- Contractions of an edge.

Cut $\left(\left\{v_{1}, \ldots, v_{6}\right\},\left\{v_{7}\right\}\right)$ survives.

Lemma 28.8 (2/3)

- Let M be the number of minimum cuts in G.
$-M$ is bounded by $n(n-1) / 2$ if
$\operatorname{Pr}[(C, \bar{C})$ survives $] \geq \frac{2}{n(n-1)}$.
$1=\sum_{(C, C)} \operatorname{Pr}[(C, \bar{C})$ survives $]$.
$1 \geq \sum_{\substack{(C, \bar{C} \cdot: S . t .(C, \bar{C} \text { is } \\ \text { a in }}} \operatorname{Pr}[(C, \bar{C})$ survives $] \geq \frac{2 M}{n(n-1)}$.

$$
\frac{n(n-1)}{2} \geq M .
$$

Lemma 28.8 (3/3)

- H : a graph at the beginning of contraction process.
- Contractions never decrease the capacity of the minimum cut.
- The degree of each node in H is at least c.
- m is the number of nodes in H.
- Hence, H must have at least $c m / 2$ edges.

- The minimum cut survives with the probability (1c/\#edges).

$$
\left(1-\frac{c}{\# e d g e s}\right) \geq\left(1-\frac{c}{c m / 2}\right)=\left(1-\frac{2}{m}\right) .
$$

$\operatorname{Pr}[(C, \bar{C})$ survives $] \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right) \cdots\left(1-\frac{2}{3}\right)=\frac{2}{n(n-1)}$.

Lemma 28.9 (1/3)

■ For any $\alpha \geqq 1$, the number of α-min cuts in G is at most $n^{2 a}$.

- A cut is an α-min cut if its capacity is at most αc.
- We assume α is a half-integer. Let $k=2 \alpha$.
- (for arbitrary a can be proved by applying same ideas to generalized binomial coefficients - left as an exercise)
- Consider the two-phase process.
- 1. Contract edges at random until there remain k nodes in the graph.
-2. Pick up a cut from all $2^{k-1}-1$ at random.

Lemma 28.9 (2/3)

■ Example

- $k=4$.
- Phase 1.

$\operatorname{Pr}[(C, \bar{C})$ survives $]$

$$
\geq\left(1-\frac{k}{n}\right)\left(1-\frac{k}{n-1}\right) \cdots\left(1-\frac{k}{k+1}\right)=\frac{k(k-1) \cdots 1}{n(n-1) \cdots(n-k+1)} .
$$

Network Algorithms \& Complexity

Lemma 28.9 (3/3)

$\operatorname{Pr}[(C, \bar{C})$ survives through the two phases $]$
$\geq \frac{k(k-1) \cdots 1}{n(n-1) \cdots(n-k+1)} \frac{1}{2^{k-1}}$
$=\frac{k}{2 n} \frac{k-1}{2(n-1)} \cdots \frac{2}{2(n-k+2)} \frac{1}{n-k+1}$
$\geq \frac{1}{n^{k}}=\frac{1}{n^{2 \alpha}}$.

FAIL(p): Analysis

- In case that $\operatorname{FAIL}(p) \leqq n^{-4}$.
- The failure probability of a minimum cut is $p^{c} \leqq$ FAIL $(p) \leqq n^{-4}$.
■ Let $p^{c}=n^{-(2+\delta)}, \delta \geq 2$
■ From lemma 28.9, for any $\alpha \geqq 1$, the total failure probability of all cuts of capacity αc is at most $p^{c \alpha} n^{2 \alpha}=n^{-\alpha \delta}$.

Lemma 28.10 (1/3)

- For any α,
$-Z=\operatorname{Pr}[$ some cut of capacity $>\alpha c$ fails $] \leq n^{-\alpha \delta}\left(1+\frac{2}{\delta}\right)$.
- For bounding the total failure prob. of "large" capacity cuts.
- Number all cuts in G by increasing capacity.
- c_{k} : the capacity of the k-th cut in this numbering.
- p_{k} : the failure probability of the k-th cut.
- a : the number of the first cut of capacity greater than αc.
- It suffices to show that
$Z=\sum_{k \geq a} p_{k}=\sum_{k=a}^{a+n^{2 \alpha}} p_{k}+\sum_{k>a+n^{2 \alpha}} p_{k} \leq n^{-\alpha \delta}\left(1+\frac{2}{\delta}\right)\left(\sum_{k=a}^{a+n^{2 \alpha}} p_{k} \leq n^{-\alpha \delta}, \sum_{k>a+n^{2 \alpha}} p_{k} \leq n^{-\alpha \delta} \frac{2}{\delta}\right)$.

Lemma 28.10 (2/3)

- Illustration of the idea of lemma 28.10
- Number all cuts in G by increasing capacity.

$$
\operatorname{sum}: S_{1} \leq n^{-\alpha \delta} . \quad \text { sum }: S_{2} \leq n^{-\alpha \delta} \frac{2}{\delta}
$$

$$
Z \leq n^{-\alpha \delta}\left(1+\frac{2}{\delta}\right)
$$

Lemma 28.10 (3/3)

\square For $c_{k}\left(a \leqq k \leqq a+n^{2 \alpha}\right)$,
$-c_{k}>\alpha c \rightarrow p_{k}<p^{\alpha c}=n^{-\alpha(2+\delta)}$.

$$
\sum_{k=a}^{a+n^{2 \alpha}} p_{k} \leq \sum_{k=a}^{a+n^{2 \alpha}} n^{-\alpha(2+\delta)}=n^{2 \alpha} n^{-\alpha(2+\delta)}=n^{-\alpha \delta} .
$$

■ For $c_{k}\left(k \geqq a+n^{2 \alpha}\right)$,

- at most $n^{2 \alpha}$ cuts with the capacity less than ac exist.
- from lemma 28.9.
- Then, for any $\beta, c_{n}^{2 \beta} \supseteq \beta c$.
- Replacing $n^{2 \beta}$ by k, we obtain $\beta=\log k /(2 \log n)$, and
- Therefore,

$$
p_{k} \leq\left(p^{c}\right)^{\frac{\ln k}{2 \ln n}}=k^{-(1+\delta / 2)}
$$

$$
\sum_{k>a+n^{2 \alpha}} p_{k} \leq \sum_{k>n^{2 \alpha}} p_{k} \leq \int_{n^{2 \alpha}}^{\infty} k^{-(1+\delta / 2)} d k=\frac{1}{1+\delta / 2} n^{-\alpha \delta} \leq \frac{2}{\delta} n^{-\alpha \delta}
$$

Theorem 28.11 (1/4)

■ There is an FPRAS for estimating network reliability.

- In case that $\operatorname{FAIL}(p)>n^{-4}$.
- The network is connected/disconnected: binomial distribution.
- Sampling and Chernoff bound are used to estimate $\operatorname{FAIL}(p)=\mu$.

$$
\begin{aligned}
& \operatorname{Pr}[X>(1-\varepsilon) \mu] \leq e^{-k \mu \varepsilon^{2} / 2}, \operatorname{Pr}[X>(1+\varepsilon) \mu] \leq e^{-k \mu \varepsilon^{2} / 3} \\
& k=12 \log n /\left(\varepsilon^{2} \mu\right)<12 n^{4} \log n / \varepsilon^{2} \\
& \operatorname{Pr}[X>(1-\varepsilon) \mu] \leq e^{-12 \log n / 2}=n^{-6}, \operatorname{Pr}[X>(1+\varepsilon) \mu] \leq e^{-12 \log n / 3}=n^{-4} .
\end{aligned}
$$

Theorem 28.11 (2/4)

- In case that $\operatorname{FAIL}(p) \leqq n^{-4}$.
- a must be determined for enumerating graphs with high probabilities such that

$$
\begin{gathered}
\operatorname{Pr}\left[\text { some cut of capacity }>\alpha c \text { fails] } \leq n^{-\alpha \delta}\left(1+\frac{2}{\delta}\right) \leq \frac{\varepsilon \operatorname{FAIL}(p) \leq \varepsilon n^{-(2+\delta)}}{\text { By lemma } 28.10}\right. \\
\begin{array}{c}
n^{-\alpha \delta} \leq \varepsilon n^{-(2+\delta)} \\
?
\end{array} \\
\alpha \leq 1+\frac{2}{\delta}-\frac{\log \varepsilon / 2}{\delta \log n} \leq 2-\frac{\log \varepsilon / 2}{2 \log n} .
\end{gathered}
$$

Theorem 28.11 (3/4)

- By lemma 28.9, $\quad c_{n^{2 \alpha}}>\alpha C$.
- $\operatorname{Pr}\left[\right.$ one of the first $n^{2 \alpha}$ fails $\geqq(1-\varepsilon) \operatorname{FAIL}(p)$.
- The first $n^{2 \alpha}=O\left(n^{4} / \varepsilon\right)$ cuts are enumerable in polynomial time (Exercise 28.11-13).

Theorem 28.11 (4/4)

- To reduce the case of arbitrary edge failure probabilities, parallel edges are used.

parallel -($\left.\ln p_{e}\right) / \theta$ edges failure probability θ
all edges are disconnected with prob. $(1-\theta)^{-\left(\ln p_{e}\right) / \theta}$

$$
\lim _{\theta \rightarrow 0}(1-\theta)^{-\left(\ln p_{e}\right) / \theta}=e^{\ln p_{e}}=p_{e} .
$$

Open Issues

- Probability that s-t fails

■ Probability that s-t remains connected
■ Probability the graph remains connected

References

■ Vazirani - Approximation Algorithms (ch28)

- Karge - Using randomized sparsification to approximate minimum cuts
■ San Diego University, Theory of Parallel Algorithms, Chernoff Bounds
■ Kumar, Randomized min cut
■ Vempala, minimum cuts

Thank you

