Maximum Flow
Algorithms

Network Algorithms

Georgia Kaouri

Contents

+ Applications, special cases
* Flow networks

* Ford Fulkerson algorithm
* Preflow - push algorithms
* Lift - o - front algorithm

Applications

- Material flows

» Model liquids flowing, current through
electrical networks, information
through communication networks, etc

* Maximum matching in bipartite graphs

Special case: multiple source, multiple
sink maximum flow - problem

Problem Definition

Input: A connected, directed graph G =
(V, E) in which each edge (u, v) € E has a
non negative capacity c(u, v) 2 0. There
is a hode s € V (source), s.t. forallu, € V
c(u, s)=0and t € V (target), s.t. for all

u, € Vc(t, u)=0.

Output: A maximum flow from s to t.

Flow

A flow in G is a real valued function f:VxV—R
that satisfies the following properties:

Capacity constraint: For all u, v € V, we require
f(u, v) < c(u, v)

Skew symmetry: For all u, v € V, we require
f(u, v) = -f(v, u)

Flow conservation: For all u € V-{s, t}, we
require 2 ., f(u,v)=0

Ford - Fulkerson method (6, s, 1)

Edmonds - Karp algorithm

Modify the Ford - Fulkerson algorithm

so that the augmenting path is a
shortest path from s to t in the residual

network.

Ford - Fulkerson: O(E |f*|)
Edmonds - Karp: O(VE?)

Preflow - Push algorithm

* Preflow - push algorithms work on one vertex at a
time and its neighbors.

* Flow conservation property is not maintained.
+ A preflow is maintained.

Preflow is a function f:VxV—R that satisfies skew
symmetry, capacity constraints and the following
relaxation of flow conservation: f(V, u) 2 O for all
vertices u € V-s.

Excess flow into u is the net flow into a vertex given by
e(u) = f(u, V). If e(u) >0, vertex u is overblowing.

Intuition

Edges are like water pipes

Nodes are joints
Distance is like height from the ground.
- Destination is at the ground.

Initially source is at the highest level and sends water to all
adjacent nodes.

Whenever a node has accumulated water, it sends (pushes)
water to nodes at lower label.
So water moves towards the destination

Sometimes water gets locally trapped as all neighboring nodes
are at a greater height.

Then, the node label is raised (relabelling).

Heights

Let G = (V, E) be a flow network with source s
and target t and let f be a preflow in G. A
function h:V = N is a height function if

h(s) = |V], h(t) = 0 and h(u) < h(v) + 1 for every
residual edge (u, v) € E;.

It follows that if for two verticesu,v €V
h(u) > h(v) +1, then (u, v) is not in the residual
graph.

Basic Operations: Push

If uis overflowing (e(u) > 0), c¢(u, v) > O and
h(u) = h(v) + 1, we can PUSH

de(u, v) = min{e(u), c(u, v)} units of flow.

Then we have to update:
* f(u, v), f(v, u)
* e(u)
* e(v)

We call edge (u, v) an admissible edge.

Example

dit) =0
e(t) = 0

d(t) =0
e(t) = 1

d(b)=1, e(b)=2

Code for Push operation

PUsH(u. v)

1 = Applies when: u is overflowing, ¢ ¢(u, v) = 0, and 2[u] = h[v] + 1.

2 > Action: Push dg(u, v) = min(e[u], ¢ ¢ (u, v)) units of flow from u to v.
3 dp(u,v) < min(elu], cr(u, v))

4 flu,v] < flu,v) +dg(u,v)

5 flv,u]l <« —flu, v]

6 elu] < elu] —dg(u,v)

T e[v] < elv] +dr(u,v)

Definitions

* The operation PUSH(u, v) is called a
push from u to v.

* When we operate PUSH(u, v) and
c¢(u, v) =0 afterwards, we call edge

(u, v) a saturated edge and the push
from u to v a saturated push.

- Otherwise, it is an unsaturated push.

Basic Operation: Lift

If uis overflowing (e(u) > 0) and for all

v EV (u, v) € E; we cannot push any more
units of flow to vertices neighbor to u,
so we need to LIFT u (relabel).

As a result we have to update the
height of u.

Example

dia)=1,e(a)=4

d(s) = 4

d(b) = 1, e(b) = 1

Code for Lift (Relabel)
operation

RELABEL (i)

1 = Applies when: u is overflowing and for all v € V such that (u, v) € E,
we have hfu] < hlv].

2 > Action: Increase the height of u.

3 hlu] < 14+ min{hfv]: (u,v) e Ef}

Generic - Preflow - Push (G)

1. Initialization
1. Setf=0
2. Compute distance labels h(i) for all nodes i
3. fsi =csiforall(s,j)EE
4. Set h(s)=n

2. while there exists an applicable push or
lift operation

do select an applicable push or lift operation
and perform it

Preflow Push example:
< initialize

1. Setf=0

2. Compute distance labels
h(i) for all nodes i

Step 2: compute
distance labels

Preflow Push example:

1. Initialization

3. fsj = Csj for' all (S, J) € E

4. Set h(s) =n

initialize

h(a) = 1, e(a) = 4

h(s) = 2

Step 3:
saturate

edges from s h(b) = 1, e(b) = 2

h(a) = 1, e(a) = 4

h(s) = n

h(p) = 1, e(b) = 2

Preflow Push example: while-loop
Push-Relabel (node i)

h(a) = 1, e(a) = 4
h(t) = 0

2

Select an active
else node: h(b) = 1, e(b) = 2
h(l) =1 + min { h(J) | b is selected h(a) = 1, e(a) = 4
c(i,j) > 0} h(t) = 0
et) =1

if there is an admissible edge

(i.J)

push min(e(i), ci.j))
on edge (i,§)

edge (b,t) is
admissible: push(1) on
edge(b,t) h(b) = 1, e(b) = 1

Preflow Push example: while-loop
2. Push-Relabel(node i)

h(a) = 1, e(a) = 4

h(t) = 0
if there is an admissible edge e() = 1
(. J)
h(s) = 4
push min(e(i), c(i,j)) on
edge (i, j
g ('J) b has no
admissible edge: 22 elb) =
relabel(b) hb) =2, e(0) = 1
h(a) = 1, e(a) = 5
else h(t) = 0
h(i) = 1 + min { h(j) | e = 1
ce(i,j) > 0 }

h(s) = 4

edge (b,a) is now 2
admissible; push(1)
on edge(b,a) =2,eb)=0

Preflow Push example: while-loop

2. Push-Relabel (node
)

if there is an admissible

edge (i, }) h(s) = 4 ‘

pUSh min(e(i), Cf(i’j)) b is not active: i G .
on edge (i,j) '

h(a) = 1, e(a) = 5
h(t) = 0
S et) =1

select node a h(b) = 2, e(b) = 0

h(a) =1, e(a) = 0

h(t) = 0
else e() = 6

h(s) = 4
h(i) =1 + min { h(j) |
ci(i,j) > O } edge (a, t) is 2

admissible; push(5)
on edge (a,t) h(b) = 2, e(b) = O

Preflow Push example: while-loop

h(a) =1, e(a) = 0

There are no more active nodes; the
algorithm drops out of the while-loop

Correctness

During the execution of the Preflow Push algorithm,
height h(u) never decreases. Moreover whenever a lift
operation is applied to u, h(u) increases.

During the execution of the Preflow Push algorithm, the
attribute h is maintained as a height function.

- Induction to the number of basic operations performed: Initially
OK.

After Lift(u): For nodes v: (u, v) € E; OK. For nodes w: (w, u)€E;,
before Lift h(w) < h(u) + 1= h(w) < h{u) + 1 afterwards.

After Push(u,v): Edge (u, v)is either added to E; (h(v) = h(u)-1) or
(u, v) is removed from E; (the constraint is removed).

Correctness

When the algorithm terminates, there is no
path from s to t in the residual graph.

Assume a path ugp, uy, ..., u, from s to T with k
edges. The minimum distance between two
edges must be at least 1 and wlog the path is
simple, so k < |V|. h is a height function, so

h(u) < h(u+1) + 1 for i=0, ..., k-1

Combining the inequalities we obtain h(s) < h(t) +
k. However h(t) = 0, so h(s) < k< | V],
contradiction.

Correctness

+ If the algorithm terminates then the preflow
f is maximum blow for G.

If the algorithm terminates each vertex in
V-{s, t} has O excess, so there are no
overflowing vertices. h is a height function,
there is no path from s to t and by max flow
min cut theorem f is a maximum flow.

Termination: Bound the
operations it performs

» Lift operations: (2|V|-1)(|V[-2) < 2]V|?
+ Saturated pushes: 2|V||E]
» Unsaturated pushes: 2|V|?(|V|+|E|)

» Generic Preflow push algorithm: O(VZE)

Lift - o - front algorithm

» By choosing carefully the order of the
operations and managing the data
structure carefully we can solve the
maximum flow problem faster.

» Lift - to - front algorithm: list of
vertices, list of neighbors to a vertex,
discharging vertices (perform all
allowed push and lift operations).

Discharge(u)

DISCHARGE(u)

1 while e[u] = 0

2 do v < current|u]

3 if v = NIL

4 then RELABEL (1)

5 current[u] < head|N [u1]]

6 elseif c¢(u, v) = Oand Afu] = Alv] + 1
7 then PUSH (i, v)

8 else current[u] < next-neighbor|v]

Lift — to — front algorithm

RELABEL-TO-FRONT(G, 5. 1)

INITIALIZE-PREFLOW (G, §)
L < V[G] — {s, t}, in any order
for each vertex u € V|G| — {s, f}
do currentu] < head[N|u]]
i <« head[L]
while 1 = NIL
do old-height <— hlu]
DISCHARGE (1)
if h[u] = old-height
then move u to the front of list L
i < next{u]

—_ O ND CC =1 D n R D

—_—

Example

Ly =

I.-:.r.:

Example

Running time of Lift - to -
front algorithm: O(V3)

* There are O(V?) phases (because of the O(V?) lift
operations). Each phase has at most |V| calls of the
Discharge operation. If Discharge does not perform a
lift operation, the length of the list L is less than |V]|.
If it does, the next call of Discharge is in the next
phase. So the while loop performs at most O(V3)
operations.

- Discharge:

- Lift operations: O(V?)
- current(u) update: O(VE)

- Push operation: O(VE) saturating pushes, O(V3) unsaturating
pushes

	Maximum Flow Algorithms
	Contents
	Applications
	Special case: multiple source, multiple sink maximum flow - problem
	Problem Definition
	Flow
	Ford – Fulkerson method (G, s, t)
	Ford – Fulkerson method (G, s, t)
	Edmonds – Karp algorithm
	Preflow – Push algorithm
	Intuition
	Heights
	Basic Operations: Push
	Example
	Code for Push operation
	Definitions
	Basic Operation: Lift
	Example
	Code for Lift (Relabel) operation
	Generic – Preflow – Push (G)
	Preflow Push example: initialize
	Preflow Push example: initialize
	Preflow Push example: while-loop
	Preflow Push example: while-loop
	Preflow Push example: while-loop
	Preflow Push example: while-loop
	Correctness
	Correctness
	Correctness
	Termination: Bound the operations it performs
	Lift – to – front algorithm
	Discharge(u)
	Lift – to – front algorithm
	Example
	Example
	Running time of Lift – to – front algorithm: O(V3)

