Maximum Flow Algorithms Network Algorithms

Georgia Kaouri

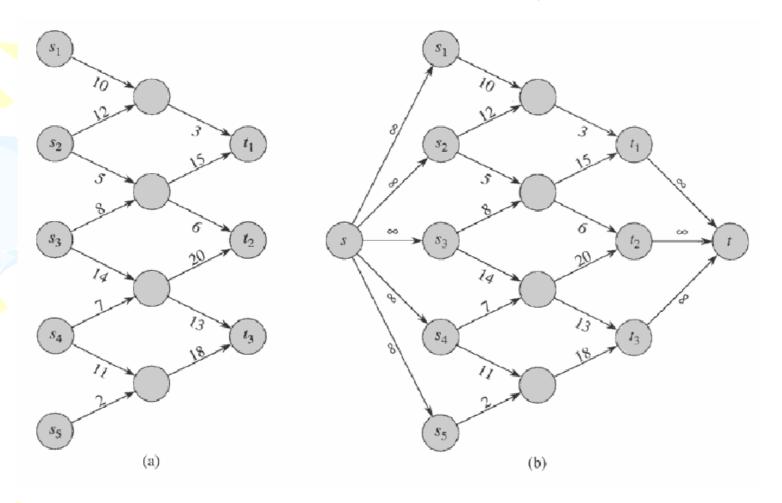
Contents

- Applications, special cases
- Flow networks
- Ford Fulkerson algorithm
- Preflow push algorithms
- Lift to front algorithm

Applications

- Material flows
- Model liquids flowing, current through electrical networks, information through communication networks, etc
- Maximum matching in bipartite graphs

Special case: multiple source, multiple sink maximum flow - problem



Problem Definition

Input: A connected, directed graph G = (V, E) in which each edge $(u, v) \in E$ has a non negative capacity $c(u, v) \ge 0$. There is a node $s \in V$ (source), s.t. for all $u_i \in V$ $c(u_i, s)=0$ and $t \in V$ (target), s.t. for all $u_i \in V c(t, u_i)=0$.

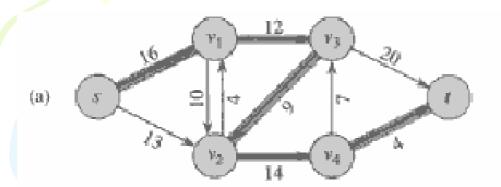
Output: A maximum flow from s to t.

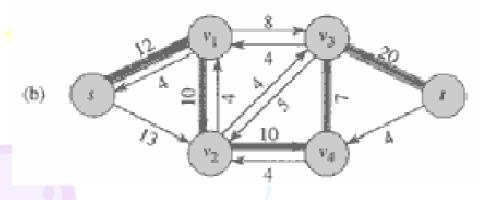
Flow

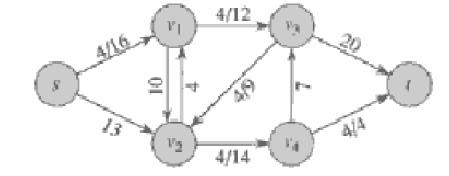
A flow in G is a real valued function f:V×V→R that satisfies the following properties:

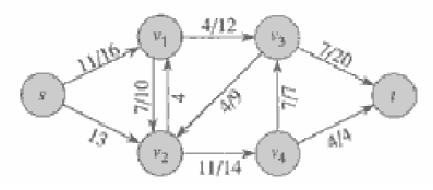
Capacity constraint: For all u, v \in V, we require f(u, v) \leq c(u, v) Skew symmetry: For all u, v \in V, we require f(u, v) = -f(v, u) Flow conservation: For all u \in V-{s, t}, we require $\sum_{u \in V} f(u, v) = 0$

Ford - Fulkerson method (G, s, t)

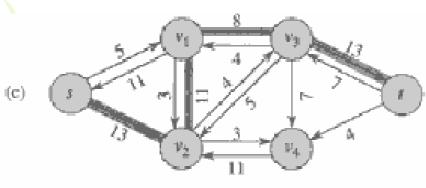


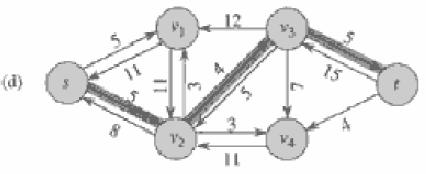


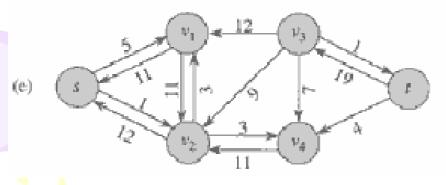


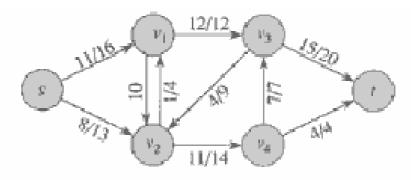


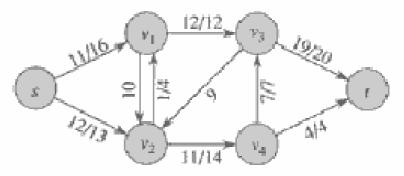
Ford - Fulkerson method (G, s, t)











Edmonds - Karp algorithm

Modify the Ford - Fulkerson algorithm so that the augmenting path is a shortest path from s to t in the residual network.

Ford - Fulkerson: O(E |f*|) Edmonds - Karp: O(VE²)

Preflow - Push algorithm

- Preflow push algorithms work on one vertex at a time and its neighbors.
- Flow conservation property is not maintained.
- A preflow is maintained.

Preflow is a function $f:V \times V \rightarrow R$ that satisfies skew symmetry, capacity constraints and the following relaxation of flow conservation: $f(V, u) \ge 0$ for all vertices $u \in V$ -s.

Excess flow into u is the net flow into a vertex given by e(u) = f(u, V). If e(u) > 0, vertex u is overblowing.

Intuition

- Edges are like water pipes
- Nodes are joints
- Distance is like height from the ground.
 - Destination is at the ground.
- Initially source is at the highest level and sends water to all adjacent nodes.
- Whenever a node has accumulated water, it sends (pushes) water to nodes at lower label.
- So water moves towards the destination
- Sometimes water gets locally trapped as all neighboring nodes are at a greater height.
- Then, the node label is raised (relabelling).

Heights

Let G = (V, E) be a flow network with source s and target t and let f be a preflow in G. A function h: $V \rightarrow N$ is a height function if h(s) = |V|, h(t) = 0 and h(u) \leq h(v) + 1 for every residual edge (u, v) $\in E_f$.

It follows that if for two vertices $u, v \in V$ h(u) > h(v) +1, then (u, v) is not in the residual graph.

Basic Operations: Push

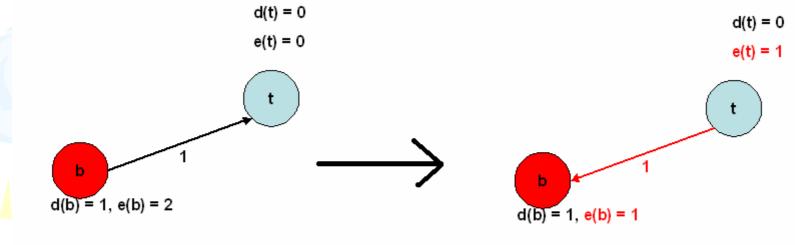
If u is overflowing (e(u) > 0), $c_f(u, v) > 0$ and h(u) = h(v) + 1, we can PUSH $d_f(u, v) = min\{e(u), c_f(u, v)\}$ units of flow.

Then we have to update:

- f(u, v), f(v, u)
- e(u)
- e(v)

We call edge (u, v) an admissible edge.

Example



Code for Push operation

PUSH(u, v)

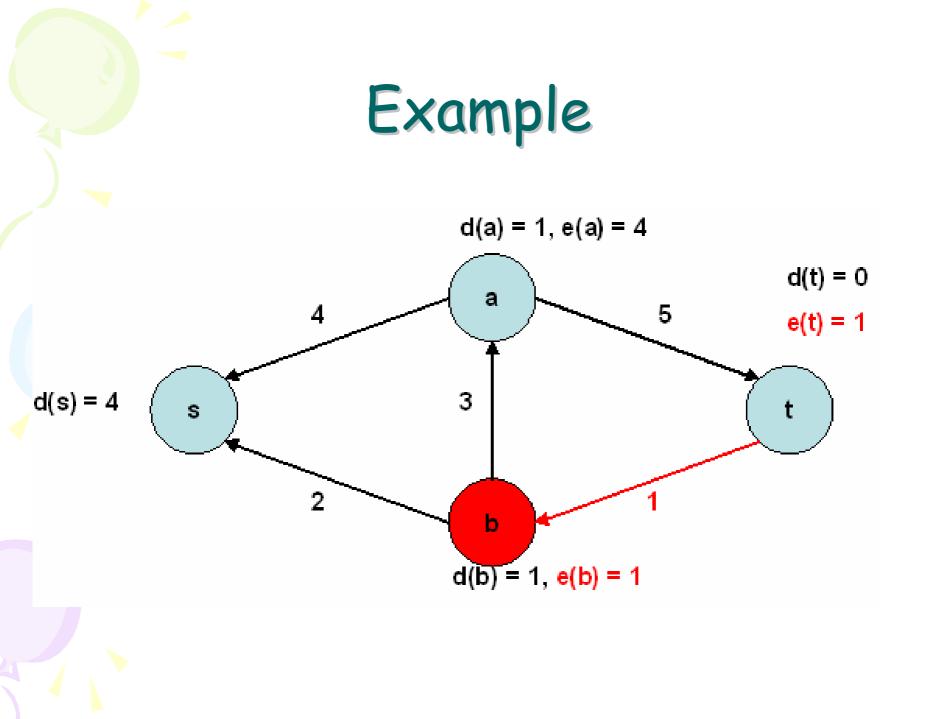
- 1 \triangleright Applies when: *u* is overflowing, $c_f(u, v) > 0$, and h[u] = h[v] + 1.
- 2 \triangleright Action: Push $d_f(u, v) = \min(e[u], c_f(u, v))$ units of flow from u to v.
- 3 $d_f(u, v) \leftarrow \min(e[u], c_f(u, v))$
- $4 \quad f[u,v] \leftarrow f[u,v] + d_f(u,v)$
- 5 $f[v, u] \leftarrow -f[u, v]$
- $6 \quad e[u] \leftarrow e[u] d_f(u, v)$
- 7 $e[v] \leftarrow e[v] + d_f(u, v)$

Definitions

- The operation PUSH(u, v) is called a push from u to v.
- When we operate PUSH(u, v) and c_f(u, v) =0 afterwards, we call edge (u, v) a saturated edge and the push from u to v a saturated push.
- Otherwise, it is an unsaturated push.

Basic Operation: Lift If u is overflowing (e(u) > 0) and for all $v \in V$ (u, v) $\in E_f$ we cannot push any more units of flow to vertices neighbor to u, so we need to LIFT u (relabel).

As a result we have to update the height of u.



Code for Lift (Relabel) operation

RELABEL(u)

- 1 ▷ Applies when: *u* is overflowing and for all $v \in V$ such that $(u, v) \in E_f$, we have $h[u] \le h[v]$.
- 2 \triangleright Action: Increase the height of *u*.
- $3 \quad h[u] \leftarrow 1 + \min \left\{ h[v] : (u, v) \in E_f \right\}$

Generic - Preflow - Push (G)

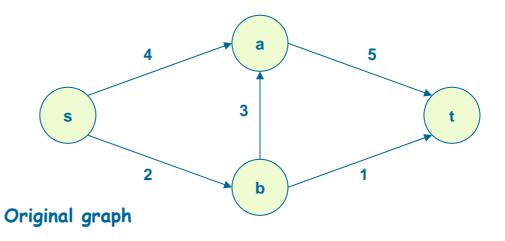
1. Initialization

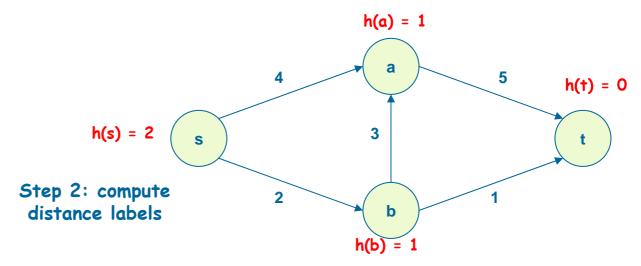
- 1. Set f = 0
- 2. Compute distance labels h(i) for all nodes i
- 3. $f_{sj} = c_{sj}$ for all $(s, j) \in E$
- 4. Set h(s) = n

 while there exists an applicable push or lift operation
 do select an applicable push or lift operation and perform it

Preflow Push example: initialize

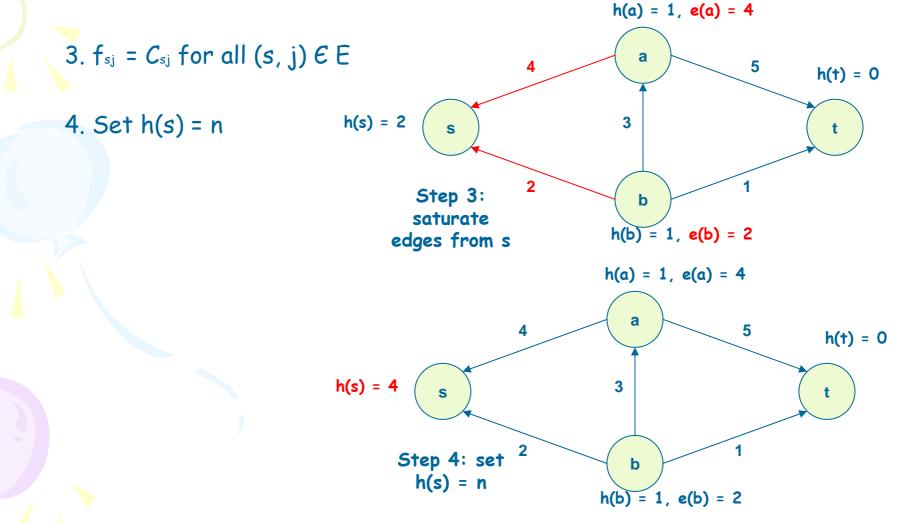
- 1. Initialization
 - 1. Set f = 0
 - Compute distance labels h(i) for all nodes i





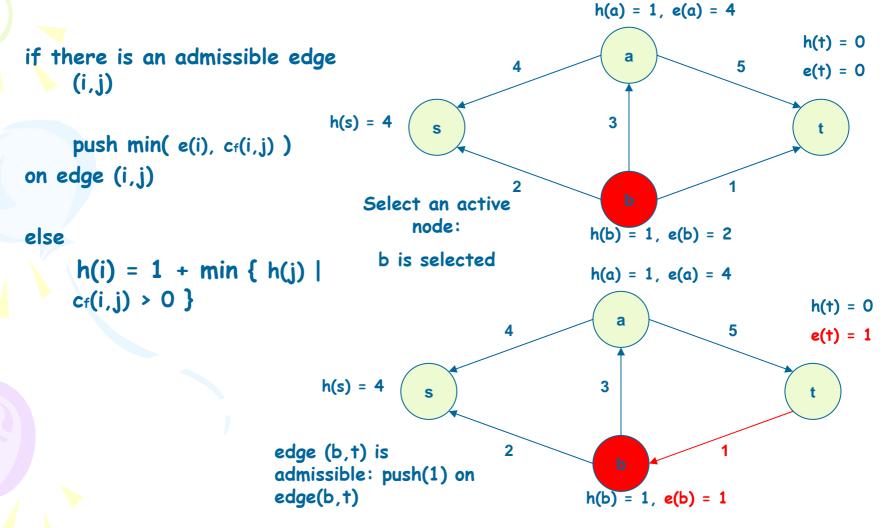
Preflow Push example: initialize

1. Initialization



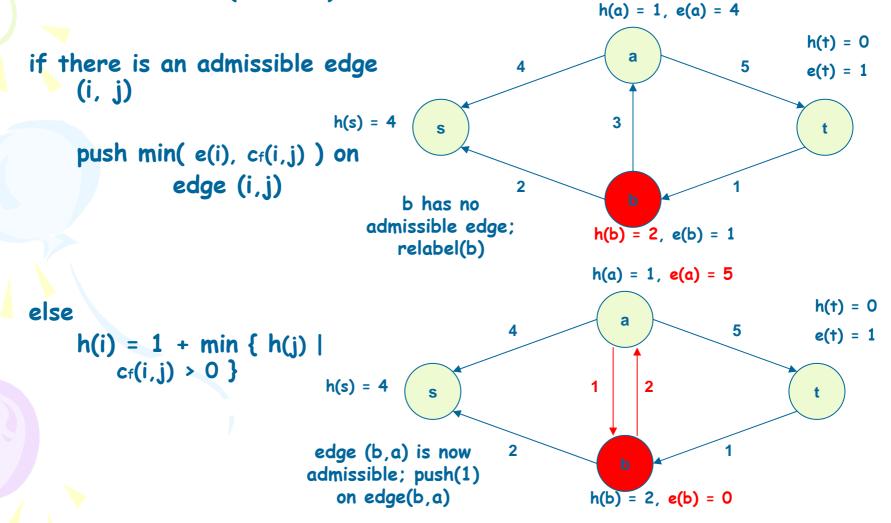
Preflow Push example: while-loop

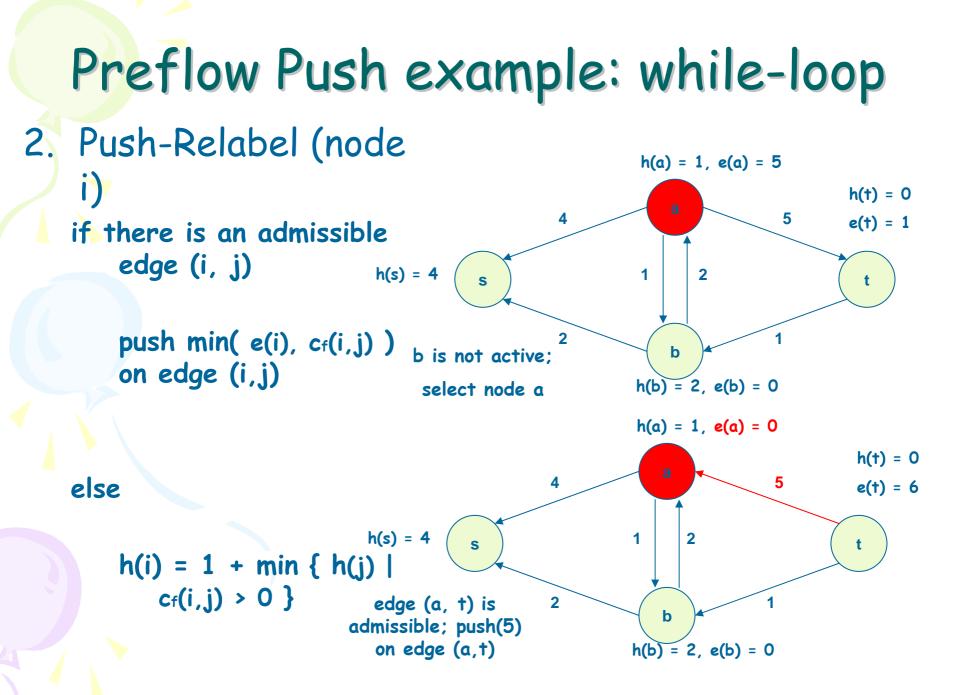
2. Push-Relabel (node i)



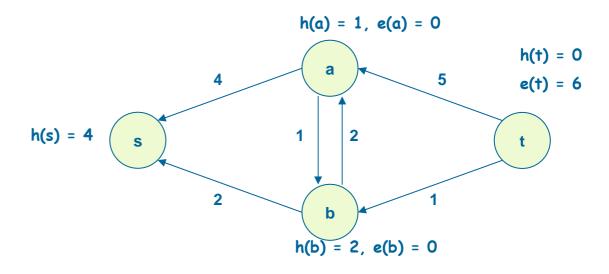
Preflow Push example: while-loop

2. Push-Relabel(node i)





Preflow Push example: while-loop



There are no more active nodes; the algorithm drops out of the while-loop

Correctness

- During the execution of the Preflow Push algorithm, height h(u) never decreases. Moreover whenever a lift operation is applied to u, h(u) increases.
- During the execution of the Preflow Push algorithm, the attribute h is maintained as a height function.
 - Induction to the number of basic operations performed: Initially OK.

After Lift(u): For nodes v: (u, v) $\in E_f OK$. For nodes w: (w, u) $\in E_f$, before Lift h(w) \leq h(u) + 1 \rightarrow h(w) < h(u) + 1 afterwards.

After Push(u,v): Edge (u, v) is either added to E_f (h(v) = h(u)-1) or (u, v) is removed from E_f (the constraint is removed).

Correctness

- When the algorithm terminates, there is no path from s to t in the residual graph.
 - Assume a path u_0 , u_1 , ..., u_k from s to t with k edges. The minimum distance between two edges must be at least 1 and wlog the path is simple, so k < |V|. h is a height function, so $h(u_i) \le h(u_i+1) + 1$ for i=0, ..., k-1 Combining the inequalities we obtain $h(s) \le h(t) +$ k. However h(t) = 0, so $h(s) \le k < |V|$, contradiction.

Correctness

 If the algorithm terminates then the preflow f is maximum blow for G.

If the algorithm terminates each vertex in V-{s, t} has 0 excess, so there are no overflowing vertices. h is a height function, there is no path from s to t and by max flow min cut theorem f is a maximum flow. Termination: Bound the operations it performs

- Lift operations: $(2|V|-1)(|V|-2) < 2|V|^2$
- Saturated pushes: 2|V||E|
- Unsaturated pushes: 2|V|²(|V|+|E|)

Generic Preflow push algorithm: O(V²E)

Lift - to - front algorithm

- By choosing carefully the order of the operations and managing the data structure carefully we can solve the maximum flow problem faster.
- Lift to front algorithm: list of vertices, list of neighbors to a vertex, discharging vertices (perform all allowed push and lift operations).

Discharge(u)

```
DISCHARGE(u)
    while e[u] > 0
1
2
         do v \leftarrow current[u]
3
            if v = NIL
4
               then RELABEL(u)
5
                    current[u] \leftarrow head[N[u]]
6
            elseif c_f(u, v) > 0 and h[u] = h[v] + 1
               then PUSH(u, v)
8
            else current[u] \leftarrow next-neighbor[v]
```

Lift – to – front algorithm

RELABEL-TO-FRONT(G, s, t)

- 1 INITIALIZE-PREFLOW (G, s)2 $L \leftarrow V[G] - \{s, t\}$, in any order 3 for each vertex $u \in V[G] - \{s, t\}$
 - **do** current[u] \leftarrow head[N[u]]

5
$$u \leftarrow head[L]$$

4

7

8

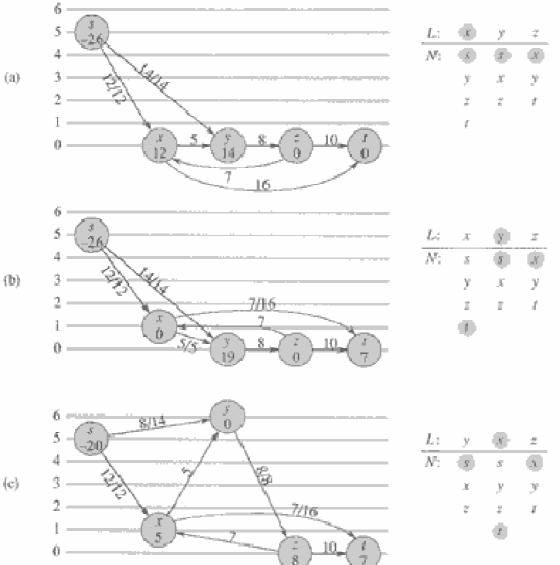
10

11

6 while $u \neq \text{NIL}$

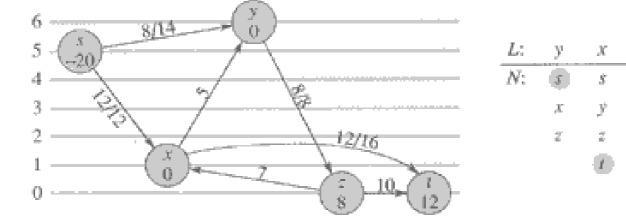
- **do** old-height \leftarrow h[u]
- DISCHARGE(u)
- 9 **if** h[u] > old-height
 - then move u to the front of list L $u \leftarrow next[u]$

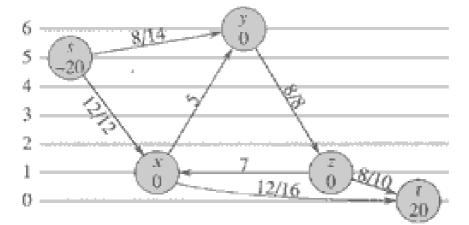
Example



 $\{c\}$

Example





V

Running time of Lift - to front algorithm: O(V³)

- There are $O(V^2)$ phases (because of the $O(V^2)$ lift operations). Each phase has at most |V| calls of the Discharge operation. If Discharge does not perform a lift operation, the length of the list L is less than |V|. If it does, the next call of Discharge is in the next phase. So the while loop performs at most $O(V^3)$ operations.
- Discharge:
 - Lift operations: O(V²)
 - current(u) update: O(VE)
 - Push operation: O(VE) saturating pushes, O(V³) unsaturating pushes