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Problems....

Decision Problems

Have answers of the form “yes” or “no”

Encoding: each instance x of the problem is represented as a
string of an alphabet Σ (|Σ| ≥ 2).

Decision problems have the form “Is x in L?”, where L is a
language, L ⊆ Σ∗.

So, for an encoding of the input, using the alphabet Σ, we
associate the following language with the decision problem Π:

L(Π) = {x ∈ Σ∗ | x is a representation of a “yes” instance of the problem Π}

Example

Given a number x , is this number prime? (x
?
∈ PRIMES)

Given graph G and a number k , is there a clique with k (or more)
nodes in G ?
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Problems....

Optimization Problems

For each instance x there is a set of Feasible Solutions F (x).

To each s ∈ F (x) we map a positive integer c(x), using the
objective function c(s).

We search for the solution s ∈ F (x) which minimizes (or maximizes)
the objective function c(s).

Example

The Traveling Salesperson Problem (TSP):
Given a finite set C = {c1, . . . , cn} of cities and a distance
d(ci , cj) ∈ Z+,∀(ci , cj) ∈ C 2, we ask for a permutation π of
C , that minimizes this quantity:

n−1∑
i=1

d(cπ(i), cπ(i+1)) + d(cπ(n), cπ(1))
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Problems....

A Model Discussion

There are many computational models (RAM, Turing
Machines etc).

The Church-Turing Thesis states that all computation
models are equivalent. That is, every computation model can
be simulated by a Turing Machine.

In Complexity Theory, we consider efficiently computable
the problems which are solved (aka the languages that are
decided) in polynomial number of steps (Edmonds-Cobham
Thesis).

Efficiently Computable ≡ Polynomial-Time Computable
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Definitions

Definition

A Turing Machine M is a quintuple M = (Q,Σ, δ, q0,F ):

Q = {q0, q1, q2, q3, . . . , qn, qhalt, qyes, qno} is a finite set of
states.

Σ is the alphabet. The tape alphabet is Γ = Σ ∪ {t}.
q0 ∈ Q is the initial state.

F ⊆ Q is the set of final states.

δ : (Q \ F )× Γ→ Q × Γ×{S , L,R} is the transition function.

A TM is a “programming language” with a single data
structure (a tape), and a cursor, which moves left and right
on the tape.

Function δ is the program of the machine.
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Definitions

Turing Machines and Languages

Definition

Let L ⊆ Σ∗ be a language and M a TM such that, for every string
x ∈ Σ∗:

If x ∈ L, then M(x) = “yes”

If x /∈ L, then M(x) = “no”

Then we say that M decides L.

We can alternatively say that M(x) = χL(x), where χL(·) is
the characteristic function of L (if we consider 1 as “yes” and
0 as “no”).

If L is decided by some TM M, then L is called a recursive
language.
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Properties of Turing Machines

Bounds on Turing Machines

We will characterize the “performance” of a Turing Machine
by the amount of time and space required on instances of size
n, when these amounts are expressed as a function of n.

Definition

Let T : N→ N. We say that machine M operates within time
T (n) if, for any input string x , the time required by M to reach a
final state is at most T (|x |). Function T is a time bound for M.

Definition

Let S : N→ N. We say that machine M operates within space
S(n) if, for any input string x , M visits at most S(|x |) locations on
its work tapes (excluding the input tape) during its computation.
Function S is a space bound for M.
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NTMs

Nondeterministic Turing Machines

We will now introduce an unrealistic model of computation:

Definition

A Turing Machine M is a quintuple M = (Q,Σ, δ, q0,F ):

Q = {q0, q1, q2, q3, . . . , qn, qhalt, qyes, qno} is a finite set of
states.

Σ is the alphabet. The tape alphabet is Γ = Σ ∪ {t}.
q0 ∈ Q is the initial state.

F ⊆ Q is the set of final states.

δ : (Q \ F )× Γ→ Pow(Q × Γ× {S , L,R}) is the transition
relation.
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NTMs

Nondeterministic Turing Machines

In this model, an input is accepted if there is some sequence
of nondeterministic choices that results in “yes”.
An input is rejected if there is no sequence of choices that
lead to acceptance.
Observe the similarity with recursively enumerable languages.

Definition

We say that M operates within bound T (n), if for every input
x ∈ Σ∗ and every sequence of nondeterministic choices, M reaches
a final state within T (|x |) steps.

The above definition requires that M does not have
computation paths longer than T (n), where n = |x | the
length of the input.
The amount of time charged is the depth of the computation
tree.
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Introduction

Parameters used to define complexity classes:

Model of Computation (Turing Machine, RAM, Circuits)

Mode of Computation (Deterministic, Nondeterministic,
Probabilistic)

Complexity Measures (Time, Space, Circuit Size-Depth)

Other Parameters (Randomization, Interaction)
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Introduction

Our first complexity classes

Definition

Let L ⊆ Σ∗, and T , S : N→ N:

We say that L ∈ DTIME[T (n)] if there exists a TM M
deciding L, which operates within the time bound O (T (n)),
where n = |x |.
We say that L ∈ DSPACE[S(n)] if there exists a TM M
deciding L, which operates within space bound O (S(n)), that
is, for any input x , requires space at most S(|x |).

We say that L ∈ NTIME[T (n)] if there exists a
nondeterministic TM M deciding L, which operates within the
time bound O (T (n)).

We say that L ∈ NSPACE[S(n)] if there exists a
nondeterministic TM M deciding L, which operates within
space bound O (S(n)).
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Introduction

Our first complexity classes

The above are Complexity Classes, in the sense that they
are sets of languages.

All these classes are parameterized by a function T or S , so
they are families of classes (for each function we obtain a
complexity class).

Definition (Complement of a complexity class)

For any complexity class C, coC denotes the class: {L | L ∈ C},
where L = Σ∗ \ L = {x ∈ Σ∗ | x /∈ L}.

We want to define “reasonable” complexity classes, in the
sense that we want to “compute more problems”, given more
computational resources.
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Constructible Functions

Constructible Functions

Definition (Time-Constructible Function)

A nondecreasing function T : N→ N is time constructible if
T (n) ≥ n and there is a TM M that computes the function
x 7→ xT (|x |)y in time T (n).

Definition (Space-Constructible Function)

A nondecreasing function S : N→ N is space-constructible if
S(n) > log n and there is a TM M that computes S(|x |) using
S(|x |) space, given x as input.

The restriction T (n) ≥ n is to allow the machine to read its input.

The restriction S(n) > log n is to allow the machine to “remember”
the index of the cell of the input tape that it is currently reading.

Also, if f1(n), f2(n) are time/space-constructible functions, so are
f1 + f2, f1 · f2 and f f2

1 .
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Complexity Classes

Constructible Functions

Theorem (Hierarchy Theorems)

Let t1, t2 be time-constructible functions, and s1, s2 be
space-constructible functions. Then:

1 If t1(n) log t1(n) = o(t2(n)), then DTIME(t1) ( DTIME(t2).

2 If t1(n + 1) = o(t2(n)), then NTIME(t1) ( NTIME(t2).

3 If s1(n) = o(s2(n)), then DSPACE(s1) ( DSPACE(s2).

4 If s1(n) = o(s2(n)), then NSPACE(s1) ( NSPACE(s2).

So, we have the hierachy:

DTIME[n] ( DTIME[n2] ( DTIME[n3] ( · · ·

We will later see that the class containing the problems we
can efficiently solve (recall the Edmonds-Cobham Thesis) is
the class P =

⋃
c∈N DTIME[nc ].
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Relations among Complexity Classes

Hierarchy Theorems tell us how classes of the same kind
relate to each other, when we vary the complexity bound.

The most interesting results concern relationships between
classes of different kinds:

Theorem

Suppose that T (n), S(n) are time-constructible and
space-constructible functions, respectively.Then:

1 DTIME[T (n)] ⊆ NTIME[T (n)]

2 DSPACE[S(n)] ⊆ NSPACE[S(n)]

3 NTIME[T (n)] ⊆ DSPACE[T (n)]

4 NSPACE[S(n)] ⊆ DTIME[k log n+S(n)]

Corollary

NTIME[T (n)] ⊆
⋃
c>1

DTIME[cT (n)]
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Relations among Complexity Classes

The essential Complexity Hierarchy

Definition

L = DSPACE[log n]

NL = NSPACE[log n]

P =
⋃
c∈N

DTIME[nc ]

NP =
⋃
c∈N

NTIME[nc ]

PSPACE =
⋃
c∈N

DSPACE[nc ]

NPSPACE =
⋃
c∈N

NSPACE[nc ]
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Relations among Complexity Classes

The essential Complexity Hierarchy

Definition

EXP =
⋃
c∈N

DTIME[2n
c
]

NEXP =
⋃
c∈N

NTIME[2n
c
]

EXPSPACE =
⋃
c∈N

DSPACE[2n
c
]

NEXPSPACE =
⋃
c∈N

NSPACE[2n
c
]

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP
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Relations among Complexity Classes

The essential Complexity Hierarchy

Definition

EXP =
⋃
c∈N

DTIME[2n
c
]

NEXP =
⋃
c∈N

NTIME[2n
c
]

EXPSPACE =
⋃
c∈N

DSPACE[2n
c
]

NEXPSPACE =
⋃
c∈N

NSPACE[2n
c
]

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP
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Relations among Complexity Classes

Can creativity be automated?

As we saw:

Class P: Efficient Computation

Class NP: Efficient Verification

So, if we can efficiently verify a mathematical proof, can we
create it efficiently?

If P = NP...

For every mathematical statement, and given a page limit, we would
(quickly) generate a proof, if one exists.

Given detailed constraints on an engineering task, we would
(quickly) generate a design which meets the given criteria, if one
exists.

Given data on some phenomenon and modeling restrictions, we
would (quickly) generate a theory to explain the date, if one exists.

See “A. Wigderson: Knowledge, Creativity and P versus NP”

http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/AW09/AW09.pdf
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Relations among Complexity Classes

Complements of complexity classes

Deterministic complexity classes are in general closed under
complement (coL = L, coP = P, coPSPACE = PSPACE).

Complements of non-deterministic complexity classes are very
interesting:

The class coNP contains all the languages that have succinct
disqualifications (the analogue of succinct certificate for the
class NP). The “no” instance of a problem in coNP has a
short proof of its being a “no” instance.

So:

P ⊆ NP ∩ coNP

Note the similarity and the difference with R = RE ∩ coRE.
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Relations among Complexity Classes

Quantifier Characterization of Complexity Classes

Definition

We denote as C = (Q1/Q2), where Q1,Q2 ∈ {∃,∀}, the class C of
languages L satisfying:

x ∈ L⇒ Q1y R(x , y)

x /∈ L⇒ Q2y ¬R(x , y)

P = (∀/∀)

NP = (∃/∀)

coNP = (∀/∃)
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Space Computation

Savitch’s Theorem

Theorem (Savitch’s Theorem)

PSPACE = NPSPACE
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Space Computation

The Immerman-Szelepscényi Theorem

Theorem

For every space constructible S(n) > log n:

NSPACE[S(n)] = coNSPACE[S(n)]

Corollary

NL = coNL
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Space Computation

Our Complexity Hierarchy Landscape

L

NL

= coNL

P N
P

NPC

co
N

P

PSPACE

= NPSPACE

EXP

NEXP
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Oracle Classes

Oracle TMs and Oracle Classes

Definition

A Turing Machine M? with oracle is a multi-string deterministic
TM that has a special string, called query string, and three
special states: q? (query state), and qYES , qNO (answer states).
Let A ⊆ Σ∗ be an arbitrary language. The computation of oracle
machine MA proceeds like an ordinary TM except for transitions
from the query state:
From the q? moves to either qYES , qNO , depending on
whether the current query string is in A or not.

The answer states allow the machine to use this answer to its
further computation.

The computation of M? with oracle A on iput x is denoted as
MA(x).
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Oracle Classes

Oracle TMs and Oracle Classes

Definition

Let C be a time complexity class (deterministic or
nondeterministic).
Define CA to be the class of all languages decided by machines of
the same sort and time bound as in C, only that the machines have
now oracle A. Also, we define: CC2

1 =
⋃

L∈C2
CL1 .

For example, PNP =
⋃

L∈NP PL. Note that PSAT = PNP.

Theorem

There exists an oracle A for which PA = NPA

Theorem

There exists an oracle B for which PB 6= NPB
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The Polynomial Hierarchy

The Polynomial Hierarchy

Polynomial Hierarchy Definition

∆p
0 = Σp

0 = Πp
0 = P

∆p
i+1 = PΣp

i

Σp
i+1 = NPΣp

i

Πp
i+1 = coNPΣp

i

PH ≡
⋃
i>0

Σp
i

Σp
0 = P

∆p
1 = P, Σp

1 = NP, Πp
1 = coNP

∆p
2 = PNP, Σp

2 = NPNP, Πp
2 = coNPNP
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The Polynomial Hierarchy

...
...

∆p
3 = PNPNP

kk 44

Πp
2 = coNPNP

44

Σp
2 = NPNP

ii

∆p
2 = PNP

jj 55

Πp
1 = coNP

44

Σp
1 = NP

ii

∆p
0 = Σp

0 =

jj 44

= Πp
0 = ∆p

1 = P
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Computational Model

Probabilistic Turing Machines

A Probabilistic Turing Machine is a TM as we know it, but
with access to a “random source”, that is an extra (read-only)
tape containing random-bits!
Randomization on:

Output (one or two-sided)
Running Time

Definition (Probabilistic Turing Machines)

A Probabilistic Turing Machine is a TM with two transition functions
δ0, δ1. On input x , we choose in each step with probability 1/2 to apply
the transition function δ0 or δ1, indepedently of all previous choices.

We denote by M(x) the random variable corresponding to the
output of M at the end of the process.

For a function T : N→ N, we say that M runs in T (|x |)-time if it
halts on x within T (|x |) steps (regardless of the random choices it
makes).
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Complexity Classes

BPP Class

Definition (BPP Class)

For T : N→ N, let BPTIME[T (n)] the class of languages L such
that there exists a PTM which halts in O (T (|x |)) time on input x ,
and Pr[M(x) = L(x)] ≥ 2/3.
We define:

BPP =
⋃
c∈N

BPTIME[nc ]

The class BPP represents our notion of efficient (randomized)
computation!

We can also define BPP using certificates:
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Complexity Classes

BPP Class

Definition (Alternative Definition of BPP)

A language L ∈ BPP if there exists a poly-time TM M and a
polynomial p ∈ poly(n), such that for every x ∈ {0, 1}∗:

Prr∈{0,1}p(n) [M(x , r) = L(x)] ≥ 2

3

P ⊆ BPP

BPP ⊆ EXP

The “P vs BPP” question.
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Quantifier Characterizations

Quantifier Characterizations

Proper formalism (Zachos et al.):

Definition (Majority Quantifier)

Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be a predicate, and ε a rational
number, such that ε ∈

(
0, 1

2

)
. We denote by (∃+y , |y | = k)R(x , y)

the following predicate:

“There exist at least
(

1
2 + ε

)
· 2k strings y of length m

for which R(x , y) holds.”

We call ∃+ the overwhelming majority quantifier.

∃+
r means that the fraction r of the possible certificates of a

certain length satisfy the predicate for the certain input.
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Quantifier Characterizations

Quantifier Characterizations

Definition

We denote as C = (Q1/Q2), where Q1,Q2 ∈ {∃,∀,∃+}, the class
C of languages L satisfying:

x ∈ L⇒ Q1y R(x , y)

x /∈ L⇒ Q2y ¬R(x , y)

P = (∀/∀)

NP = (∃/∀)

coNP = (∀/∃)

BPP = (∃+/∃+) = coBPP
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Quantifier Characterizations

RP Class

In the same way, we can define classes that contain problems
with one-sided error:

Definition

The class RTIME[T (n)] contains every language L for which there
exists a PTM M running in O (T (|x |)) time such that:

x ∈ L⇒ Pr[M(x) = 1] ≥ 2
3

x /∈ L⇒ Pr[M(x) = 0] = 1

We define
RP =

⋃
c∈N

RTIME[nc ]

Similarly we define the class coRP.
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Quantifier Characterizations

Quantifier Characterizations

RP ⊆ NP, since every accepting “branch” is a certificate!

RP ⊆ BPP, coRP ⊆ BPP

RP = (∃+/∀)

⊆ (∃/∀) = NP

coRP = (∀/∃+) ⊆ (∀/∃) = coNP

Theorem (Decisive Characterization of BPP)

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀)
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Quantifier Characterizations

Quantifier Characterizations

RP ⊆ NP, since every accepting “branch” is a certificate!

RP ⊆ BPP, coRP ⊆ BPP

RP = (∃+/∀) ⊆ (∃/∀) = NP

coRP = (∀/∃+) ⊆ (∀/∃) = coNP

Theorem (Decisive Characterization of BPP)

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀)
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Quantifier Characterizations

Quantifier Characterizations

RP ⊆ NP, since every accepting “branch” is a certificate!

RP ⊆ BPP, coRP ⊆ BPP

RP = (∃+/∀) ⊆ (∃/∀) = NP

coRP = (∀/∃+) ⊆ (∀/∃) = coNP

Theorem (Decisive Characterization of BPP)

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀)
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Quantifier Characterizations

Quantifier Characterizations

RP ⊆ NP, since every accepting “branch” is a certificate!

RP ⊆ BPP, coRP ⊆ BPP

RP = (∃+/∀) ⊆ (∃/∀) = NP

coRP = (∀/∃+) ⊆ (∀/∃) = coNP

Theorem (Decisive Characterization of BPP)

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀)
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Quantifier Characterizations

ZPP Class

And now something completely different:
What is the random variable was the running time and not
the output?

We say that M has expected running time T (n) if the
expectation E[TM(x)] is at most T (|x |) for every x ∈ {0, 1}∗.
(TM(x) is the running time of M on input x , and it is a random

variable!)

Definition

The class ZTIME[T (n)] contains all languages L for which there
exists a machine M that runs in an expected time O (T (|x |)) such
that for every input x ∈ {0, 1}∗, whenever M halts on x , the
output M(x) it produces is exactly L(x). We define:

ZPP =
⋃
c∈N

ZTIME[nc ]
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Quantifier Characterizations

ZPP Class

And now something completely different:
What is the random variable was the running time and not
the output?
We say that M has expected running time T (n) if the
expectation E[TM(x)] is at most T (|x |) for every x ∈ {0, 1}∗.
(TM(x) is the running time of M on input x , and it is a random

variable!)

Definition

The class ZTIME[T (n)] contains all languages L for which there
exists a machine M that runs in an expected time O (T (|x |)) such
that for every input x ∈ {0, 1}∗, whenever M halts on x , the
output M(x) it produces is exactly L(x). We define:

ZPP =
⋃
c∈N

ZTIME[nc ]
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Quantifier Characterizations

ZPP Class

The output of a ZPP machine is always correct!

The problem is that we aren’t sure about the running time.

We can easily see that ZPP = RP ∩ coRP.

The next Hasse diagram summarizes the previous inclusions:
(Recall that ∆Σp

2 = Σp
2 ∩ Πp

2 = NPNP ∩ coNPNP)
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Quantifier Characterizations

PSPACE

∆Σp
2

OO

coNP

88

NP

ee

BPP

OO

coRP

77

OO

RP

ff

OO

ZPP

gg 88

P

OO
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Quantifier Characterizations

PSPACE

(∃∀/∀∃) ∩ (∀∃/∃∀)

OO

(∀/∃)

66

(∃/∀)

hh

(∃+/∃+)

OO

(∀/∃+)

66

OO

(∃+/∀)

hh

OO

(∀/∀)

hh 66
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Error Reduction

Error Reduction for BPP

Theorem (Error Reduction for BPP)

Let L ⊆ {0, 1}∗ be a language and suppose that there exists a
poly-time PTM M such that for every x ∈ {0, 1}∗:

Pr[M(x) = L(x)] ≥ 1

2
+ |x |−c

Then, for every constant d > 0, ∃ poly-time PTM M ′ such that for
every x ∈ {0, 1}∗:

Pr[M ′(x) = L(x)] ≥ 1− 2−|x |
d
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Introduction

Introduction

“Maybe Fermat had a proof! But an important party was
certainly missing to make the proof complete: the
verifier. Each time rumor gets around that a student
somewhere proved P = NP, people ask “Has Karp seen
the proof?” (they hardly even ask the student’s name).
Perhaps the verifier is most important that the prover.”
(from [BM88])

The notion of a mathematical proof is related to the
certificate definition of NP.

We enrich this scenario by introducing interaction in the
basic scheme:
The person (or TM) who verifies the proof asks the person
who provides the proof a series of ”queries”, before he is
convinced, and if he is, he provide the certificate.
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Introduction

Introduction

The first person will be called Verifier, and the second
Prover.

In our model of computation, Prover and Verifier are
interacting Turing Machines.

We will categorize the various proof systems created by using:

various TMs (nondeterministic, probabilistic etc)
the information exchanged (private/public coins etc)
the number of TMs (IPs, MIPs,...)
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Probabilistic Verifier: The Class IP

Now, we let the verifier be probabilistic, i.e. the verifier’s
queries will be computed using a probabilistic TM:

Definition (Goldwasser-Micali-Rackoff)

For an integer k ≥ 1 (that may depend on the input length), a
language L is in IP[k] if there is a probabilistic polynomial-time
T.M. V that can have a k-round interaction with a T.M. P such
that:

x ∈ L⇒ ∃P : Pr [〈V ,P〉(x) = 1] ≥ 2
3 (Completeness)

x /∈ L⇒ ∀P : Pr [〈V ,P〉(x) = 1] ≤ 1
3 (Soundness)
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Probabilistic Verifier: The Class IP

Definition

We also define:
IP =

⋃
c∈N

IP[nc ]

The “output” 〈V ,P〉(x) is a random variable.

We’ll see that IP is a very large class! (⊇ PH)

As usual, we can replace the completeness parameter 2/3 with
1− 2−n

s
and the soundness parameter 1/3 by 2−n

s
, without

changing the class for any fixed constant s > 0.

We can also replace the completeness constant 2/3 with 1
(perfect completeness), without changing the class, but
replacing the soundness constant 1/3 with 0, is equivalent
with a deterministic verifier, so class IP collapses to NP.
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The class IP

Interactive Proof for Graph Non-Isomorphism

Definition

Two graphs G1 and G2 are isomorphic, if there exists a
permutation π of the labels of the nodes of G1, such that
π(G1) = G2. If G1 and G2 are isomorphic, we write G1

∼= G2.

GI: Given two graphs G1,G2, decide if they are isomorphic.

GNI: Given two graphs G1,G2, decide if they are not
isomorphic.

Obviously, GI ∈ NP and GNI ∈ coNP.

This proof system relies on the Verifier’s access to a private
random source which cannot be seen by the Prover, so we
confirm the crucial role the private coins play.
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The class IP

Interactive Proof for Graph Non-Isomorphism

Verifier: Picks i ∈ {1, 2} uniformly at random.
Then, it permutes randomly the vertices of Gi to get a
new graph H. Is sends H to the Prover.
Prover: Identifies which of G1, G2 was used to produce H.
Let Gj be the graph. Sends j to V .
Verifier: Accept if i = j . Reject otherwise.

If G1 � G2, then the powerfull prover can (nondeterministivally)
guess which one of the two graphs is isomprphic to H, and so the
Verifier accepts with probability 1.

If G1
∼= G2, the prover can’t distinguish the two graphs, since a

random permutation of G1 looks exactly like a random permutation

of G2. So, the best he can do is guess randomly one, and the

Verifier accepts with probability (at most) 1/2, which can be

reduced by additional repetitions.
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Definitions

So, with respect to the previous IP definition:

Definition

For every k , the complexity class AM[k] is defined as a subset to
IP[k] obtained when we restrict the verifier’s messages to be
random bits, and not allowing it to use any other random bits that
are not contained in these messages.
We denote AM ≡ AM[2].

Merlin → Prover

Arthur → Verifier
Also, the class MA consists of all languages L, where there’s an
interactive proof for L in which the prover first sending a message,
and then the verifier is ”tossing coins” and computing its decision
by doing a deterministic polynomial-time computation involving the
input, the message and the random output.
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Public vs. Private Coins

Theorem

GNI ∈ AM[2]

Theorem

For every p ∈ poly(n):

IP (p(n)) = AM(p(n) + 2)

So,
IP[poly ] = AM[poly ]
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Properties of Arthur-Merlin Games

NP //MA //

$$

Σp
2

AM

��

P //

EE

��

BPP

CC

��

coAM

HH

coNP // coMA //

::

Πp
2
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Properties of Arthur-Merlin Games

Proper formalism (Zachos et al.):

Definition (Majority Quantifier)

Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be a predicate, and ε a rational
number, such that ε ∈

(
0, 1

2

)
. We denote by (∃+y , |y | = k)R(x , y)

the following predicate:

“There exist at least
(

1
2 + ε

)
· 2k strings y of length m

for which R(x , y) holds.”

We call ∃+ the overwhelming majority quantifier.

∃+
r means that the fraction r of the possible certificates of a

certain length satisfy the predicate for the certain input.

Obviously, ∃+ = ∃+
1/2+ε = ∃+

2/3 = ∃+
3/4 = ∃+

0.99 = ∃+
1−2−p(|x|)
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Properties of Arthur-Merlin Games

Definition

We denote as C = (Q1/Q2), where Q1,Q2 ∈ {∃,∀,∃+}, the class
C of languages L satisfying:

x ∈ L⇒ Q1y R(x , y)

x /∈ L⇒ Q2y ¬R(x , y)

So: P = (∀/∀), NP = (∃/∀), coNP = (∀/∃)
BPP = (∃+/∃+), RP = (∃+/∀), coRP = (∀/∃+)

Arthur-Merlin Games

AM = BP ·NP = (∃+∃/∃+∀)

MA = N · BPP = (∃∃+/∀∃+)

Similarly: AMA = (∃+∃∃+/∃+∀∃+) etc.
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Arithmetization

The power of Interactive Proofs

As we saw, Interaction alone does not gives us computational
capabilities beyond NP.

Also, Randomization alone does not give us significant power
(we know that BPP ⊆ Σp

2 , and many researchers believe that
P = BPP, which holds under some plausible assumptions).

How much power could we get by their combination?

We know that for fixed k ∈ N, IP[k] collapses to

IP[k] = AM = BP ·NP

a class that is “close” to NP (under similar assumptions, the

non-deterministic analogue of P vs. BPP is NP vs. AM.)

If we let k be a polynomial in the size of the input, how much
more power could we get?
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Shamir’s Theorem

The power of Interactive Proofs

Surprisingly:

Theorem (L.F.K.N. & Shamir)

IP = PSPACE
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PCPs

Epilogue: Probabilistically Checkable Proofs

But if we put a proof instead of a Prover?

The alleged proof is a string, and the (probabilistic)
verification procedure is given direct (oracle) access to the
proof.

The verification procedure can access only few locations in the
proof!

We parameterize these Interactive Proof Systems by two
complexity measures:

Query Complexity
Randomness Complexity

The effective proof length of a PCP system is upper-bounded
by q(n) · 2r(n) (in the non-adaptive case).
(How long can be in the adaptive case?)
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PCP Definitions

Definition

PCP Verifiers Let L be a language and q, r : N→ N. We say that
L has an (r(n), q(n))-PCP verifier if there is a probabilistic
polynomial-time algorithm V (the verifier) satisfying:

Efficiency: On input x ∈ {0, 1}∗ and given random oracle access to
a string π ∈ {0, 1}∗ of length at most q(n) · 2r(n) (which we call the
proof), V uses at most r(n) random coins and makes at most q(n)
non-adaptive queries to locations of π. Then, it accepts or rejects.
Let V π(x) denote the random variable representing V ’s output on
input x and with random access to π.

Completeness: If x ∈ L, then ∃π ∈ {0, 1}∗ : Pr [V π(x) = 1] = 1

Soundness: If x /∈ L, then ∀π ∈ {0, 1}∗ : Pr [V π(x) = 1] ≤ 1
2

We say that a language L is in PCP[r(n), q(n)] if L has a
(O(r(n)),O(q(n)))-PCP verifier.
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PCPs

Main Results

Obviously:

PCP[0, 0] = ?
PCP[0, poly ] = ?
PCP[poly , 0] = ?

A suprising result from Arora, Lund, Motwani, Safra, Sudan,
Szegedy states that:

The PCP Theorem

NP = PCP[log n, 1]
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PCPs

Main Results

The restriction that the proof length is at most q2r is
inconsequential, since such a verifier can look on at most this
number of locations.

We have that PCP[r(n), q(n)] ⊆ NTIME[2O(r(n))q(n)], since
a NTM could guess the proof in 2O(r(n))q(n) time, and verify
it deterministically by running the verifier for all 2O(r(n))

possible choices of its random coin tosses. If the verifier
accepts for all these possible tosses, then the NTM accepts.
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