Introduction to Computational Complexity

Antonis Antonopoulos

Computation and Reasoning Laboratory National Technical University of Athens

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. Turing Machines

Complexity Classes

Contents

Introduction

- Turing Machines
- Complexity Classes
- Oracles & The Polynomial Hierarchy
- Randomized Computation
- Interactive Proofs

Decision Problems

- Have answers of the form "yes" or "no"
- Encoding: each instance x of the problem is represented as a string of an alphabet Σ (|Σ| ≥ 2).
- Decision problems have the form "Is x in L?", where L is a language, $L \subseteq \Sigma^*$.
- So, for an encoding of the input, using the alphabet Σ , we associate the following language with the decision problem Π :

 $L(\Pi) = \{x \in \Sigma^* \mid x \text{ is a representation of a "yes" instance of the problem } \Pi\}$

Example

- Given a number x, is this number prime? ($x \in PRIMES$)
- Given graph G and a number k, is there a clique with k (or more) nodes in G?

Optimization Problems

- For each instance x there is a set of Feasible Solutions F(x).
- To each s ∈ F(x) we map a positive integer c(x), using the objective function c(s).
- We search for the solution $s \in F(x)$ which minimizes (or maximizes) the objective function c(s).

Example

• The Traveling Salesperson Problem (TSP): Given a finite set $C = \{c_1, \ldots, c_n\}$ of cities and a distance $d(c_i, c_j) \in \mathbb{Z}^+, \forall (c_i, c_j) \in C^2$, we ask for a permutation π of C, that minimizes this quantity:

$$\sum_{i=1}^{n-1} d(c_{\pi(i)}, c_{\pi(i+1)}) + d(c_{\pi(n)}, c_{\pi(1)})$$

Algorithms & Complexity 00• Problems.... Turing Machines

Complexity Classes

A Model Discussion

- There are many computational models (RAM, Turing Machines etc).
- The Church-Turing Thesis states that all computation models are equivalent. That is, every computation model can be simulated by a Turing Machine.
- In Complexity Theory, we consider efficiently computable the problems which are solved (aka the languages that are decided) in polynomial number of steps (*Edmonds-Cobham Thesis*).

Efficiently Computable \equiv Polynomial-Time Computable

Turing Machines

Complexity Classes

Contents

Introduction

Turing Machines

- Complexity Classes
- Oracles & The Polynomial Hierarchy
- Randomized Computation
- Interactive Proofs

Definitions

Definition

- A Turing Machine *M* is a quintuple $M = (Q, \Sigma, \delta, q_0, F)$:
 - $Q = \{q_0, q_1, q_2, q_3, \dots, q_n, q_{halt}, q_{yes}, q_{no}\}$ is a finite set of states.
 - Σ is the alphabet. The tape alphabet is $\Gamma = \Sigma \cup \{\sqcup\}$.
 - $q_0 \in Q$ is the initial state.
 - $F \subseteq Q$ is the set of final states.
 - $\delta : (Q \setminus F) \times \Gamma \rightarrow Q \times \Gamma \times \{S, L, R\}$ is the transition function.
 - A TM is a "programming language" with a single data structure (a tape), and a cursor, which moves left and right on the tape.
 - Function δ is the *program* of the machine.

Turing Machines

Complexity Classes

Definitions

Turing Machines and Languages

Definition

Let $L \subseteq \Sigma^*$ be a language and M a TM such that, for every string $x \in \Sigma^*$:

- If $x \in L$, then M(x) = "yes"
- If $x \notin L$, then M(x) = "no"

Then we say that M decides L.

- We can alternatively say that $M(x) = \chi_L(x)$, where $\chi_L(\cdot)$ is the *characteristic function* of *L* (if we consider 1 as "yes" and 0 as "no").
- If *L* is decided by some TM *M*, then *L* is called a recursive language.

Algorithms & Complexity 000 Properties of Turing Machines Turing Machines

Complexity Classes

Bounds on Turing Machines

• We will characterize the "performance" of a Turing Machine by the amount of *time* and *space* required on instances of size *n*, when these amounts are expressed as a function of *n*.

Definition

Let $T : \mathbb{N} \to \mathbb{N}$. We say that machine M operates within time T(n) if, for any input string x, the time required by M to reach a final state is at most T(|x|). Function T is a time bound for M.

Definition

Let $S : \mathbb{N} \to \mathbb{N}$. We say that machine M operates within space S(n) if, for any input string x, M visits at most S(|x|) locations on its work tapes (excluding the input tape) during its computation. Function S is a space bound for M.

Algorithms & Complexity 000 NTMs

Nondeterministic Turing Machines

• We will now introduce an unrealistic model of computation:

Definition

- A Turing Machine *M* is a quintuple $M = (Q, \Sigma, \delta, q_0, F)$:
 - $Q = \{q_0, q_1, q_2, q_3, \dots, q_n, q_{halt}, q_{yes}, q_{no}\}$ is a finite set of states.
 - Σ is the alphabet. The tape alphabet is $\Gamma = \Sigma \cup \{\sqcup\}$.
 - $q_0 \in Q$ is the initial state.
 - $F \subseteq Q$ is the set of final states.
 - $\delta : (Q \setminus F) \times \Gamma \rightarrow Pow(Q \times \Gamma \times \{S, L, R\})$ is the transition relation.

Algorithms & Complexity 000 NTMs

Nondeterministic Turing Machines

- In this model, an input is accepted if <u>there is</u> some sequence of nondeterministic choices that results in "yes".
- An input is rejected if there is *no sequence* of choices that lead to acceptance.
- Observe the similarity with recursively enumerable languages.

Definition

We say that M operates within bound T(n), if for every input $x \in \Sigma^*$ and every sequence of nondeterministic choices, M reaches a final state within T(|x|) steps.

- The above definition requires that M does not have computation paths longer than T(n), where n = |x| the length of the input.
- The amount of time charged is the *depth* of the computation tree.

Turing Machines

Complexity Classes

Contents

- Introduction
- Turing Machines
- Complexity Classes
- Oracles & The Polynomial Hierarchy
- Randomized Computation
- Interactive Proofs

Introduction

Turing Machines

Complexity Classes

Parameters used to define complexity classes:

- Model of Computation (Turing Machine, RAM, Circuits)
- Mode of Computation (Deterministic, Nondeterministic, Probabilistic)
- Complexity Measures (*Time, Space, Circuit Size-Depth*)
- Other Parameters (Randomization, Interaction)

Turing Machines

Complexity Classes

Introduction

Our first complexity classes

Definition

Let $L \subseteq \Sigma^*$, and $T, S : \mathbb{N} \to \mathbb{N}$:

- We say that $L \in \mathbf{DTIME}[T(n)]$ if there exists a TM *M* deciding *L*, which operates within the *time* bound $\mathcal{O}(T(n))$, where n = |x|.
- We say that $L \in \mathbf{DSPACE}[S(n)]$ if there exists a TM M deciding L, which operates within *space* bound $\mathcal{O}(S(n))$, that is, for any input x, requires space at most S(|x|).
- We say that $L \in \mathbf{NTIME}[T(n)]$ if there exists a *nondeterministic* TM *M* deciding *L*, which operates within the time bound $\mathcal{O}(T(n))$.
- We say that $L \in NSPACE[S(n)]$ if there exists a *nondeterministic* TM *M* deciding *L*, which operates within space bound $\mathcal{O}(S(n))$.

Turing Machines

Complexity Classes

Introduction

Our first complexity classes

- The above are **Complexity Classes**, in the sense that they are sets of languages.
- All these classes are parameterized by a function T or S, so they are *families* of classes (for each function we obtain a complexity class).

Definition (Complement of a complexity class)

For any complexity class C, coC denotes the class: $\{\overline{L} \mid L \in C\}$, where $\overline{L} = \Sigma^* \setminus L = \{x \in \Sigma^* \mid x \notin L\}$.

• We want to define "reasonable" complexity classes, in the sense that we want to "compute more problems", given more computational resources. Algorithms & Complexity 000 Constructible Functions Turing Machines

Complexity Classes

Constructible Functions

Definition (Time-Constructible Function)

A nondecreasing function $T : \mathbb{N} \to \mathbb{N}$ is time constructible if $T(n) \ge n$ and there is a TM *M* that computes the function $x \mapsto \llcorner T(|x|) \lrcorner$ in time T(n).

Definition (Space-Constructible Function)

A nondecreasing function $S : \mathbb{N} \to \mathbb{N}$ is space-constructible if $S(n) > \log n$ and there is a TM *M* that computes S(|x|) using S(|x|) space, given *x* as input.

- The restriction $T(n) \ge n$ is to allow the machine to read its input.
- The restriction $S(n) > \log n$ is to allow the machine to "remember" the index of the cell of the input tape that it is currently reading.
- Also, if $f_1(n)$, $f_2(n)$ are time/space-constructible functions, so are $f_1 + f_2$, $f_1 \cdot f_2$ and $f_1^{f_2}$.

Complexity Classes

Turing Machines

Complexity Classes

Constructible Functions

Theorem (Hierarchy Theorems)

Let t_1 , t_2 be time-constructible functions, and s_1 , s_2 be space-constructible functions. Then:

- If $t_1(n) \log t_1(n) = o(t_2(n))$, then $\mathsf{DTIME}(t_1) \subsetneq \mathsf{DTIME}(t_2)$.
- 2 If $t_1(n+1) = o(t_2(n))$, then $\mathsf{NTIME}(t_1) \subsetneq \mathsf{NTIME}(t_2)$.
- 3 If $s_1(n) = o(s_2(n))$, then **DSPACE** $(s_1) \subsetneq$ **DSPACE** (s_2) .
- If $s_1(n) = o(s_2(n))$, then **NSPACE** $(s_1) \subsetneq$ **NSPACE** (s_2) .

• So, we have the hierachy:

$\mathsf{DTIME}[n] \subsetneq \mathsf{DTIME}[n^2] \subsetneq \mathsf{DTIME}[n^3] \subsetneq \cdots$

We will later see that the class containing the problems we can efficiently solve (recall the Edmonds-Cobham Thesis) is the class $\mathbf{P} = \bigcup_{c \in \mathbb{N}} \mathbf{DTIME}[n^c]$.

Turing Machines

Complexity Classes

- Hierarchy Theorems tell us how classes of the same kind relate to each other, when we vary the complexity bound.
- The most interesting results concern relationships between classes of different kinds:

Theorem

Suppose that T(n), S(n) are time-constructible and space-constructible functions, respectively. Then:

- **1 DTIME**[T(n)] \subseteq **NTIME**[T(n)]
- ² **DSPACE**[S(n)] \subseteq **NSPACE**[S(n)]
- 3 **NTIME** $[T(n)] \subseteq$ **DSPACE**[T(n)]
- **NSPACE**[S(n)] \subseteq **DTIME**[$k^{\log n + S(n)}$]

Corollary

$$\mathsf{NTIME}[\mathcal{T}(n)] \subseteq \bigcup_{c>1} \mathsf{DTIME}[c^{\mathcal{T}(n)}]$$

Relations among Complexity Classes

Turing Machines

Complexity Classes

The essential Complexity Hierarchy

Definition

 $\mathbf{L} = \mathbf{DSPACE}[\log n]$ NL = NSPACE[log n] $\mathbf{P} = \begin{bmatrix} \end{bmatrix} \mathbf{DTIME}[n^c]$ $c \in \mathbb{N}$ $NP = \bigcup NTIME[n^c]$ $c \in \mathbb{N}$ **PSPACE** = [] **DSPACE** $[n^c]$ $c \in \mathbb{N}$ **NPSPACE** = \bigcup **NSPACE**[n^c] $c \in \mathbb{N}$

Turing Machines

Complexity Classes

The essential Complexity Hierarchy

Definition

$$EXP = \bigcup_{c \in \mathbb{N}} DTIME[2^{n^{c}}]$$
$$NEXP = \bigcup_{c \in \mathbb{N}} NTIME[2^{n^{c}}]$$
$$EXPSPACE = \bigcup_{c \in \mathbb{N}} DSPACE[2^{n^{c}}]$$
$$NEXPSPACE = \bigcup_{c \in \mathbb{N}} NSPACE[2^{n^{c}}]$$

- 《日》《聞》《臣》《臣》 (四) ろん(

$\mathsf{L}\subseteq\mathsf{N}\mathsf{L}\subseteq\mathsf{P}\subseteq\mathsf{N}\mathsf{P}\subseteq\mathsf{P}\mathsf{SPACE}\subseteq\mathsf{N}\mathsf{P}\mathsf{SPACE}\subseteq\mathsf{E}\mathsf{X}\mathsf{P}\subseteq\mathsf{N}\mathsf{E}\mathsf{X}\mathsf{P}$

$EXP = \bigcup_{c \in \mathbb{N}} DTIME[2^{n^{c}}]$ $NEXP = \bigcup_{c \in \mathbb{N}} NTIME[2^{n^{c}}]$ $EXPSPACE = \bigcup_{c \in \mathbb{N}} DSPACE[2^{n^{c}}]$ $NEXPSPACE = \bigcup_{c \in \mathbb{N}} NSPACE[2^{n^{c}}]$

The essential Complexity Hierarchy

Definition

Relations among Complexity Classes

Turing Machines

Complexity Classes

Turing Machines

Complexity Classes

Can creativity be automated?

As we saw:

- Class P: Efficient Computation
- Class NP: Efficient Verification
- So, if we can efficiently verify a mathematical proof, can we create it efficiently?

If P = NP...

- For every mathematical statement, and given a page limit, we would (quickly) generate a proof, if one exists.
- Given detailed constraints on an engineering task, we would (quickly) generate a design which meets the given criteria, if one exists.
- Given data on some phenomenon and modeling restrictions, we would (quickly) generate a theory to explain the date, if one exists.

Turing Machines

Complexity Classes

Complements of complexity classes

- Deterministic complexity classes are in general closed under complement (*coL* = L, *coP* = P, *coPSPACE* = PSPACE).
- Complements of non-deterministic complexity classes are very interesting:
- The class *co***NP** contains all the languages that have succinct disqualifications (the analogue of *succinct certificate* for the class **NP**). The "no" instance of a problem in *co***NP** has a short proof of its being a "no" instance.
- o So:

$$\mathsf{P}\subseteq\mathsf{NP}\cap\mathit{co}\mathsf{NP}$$

• Note the *similarity* and the *difference* with $\mathbf{R} = \mathbf{RE} \cap co\mathbf{RE}$.

Turing Machines

Complexity Classes

Quantifier Characterization of Complexity Classes

Definition

We denote as $C = (Q_1/Q_2)$, where $Q_1, Q_2 \in \{\exists, \forall\}$, the class C of languages L satisfying:

• $x \in L \Rightarrow Q_1 y R(x, y)$

$$x \notin L \Rightarrow Q_2 y \neg R(x, y)$$

•
$$\mathbf{P} = (\forall / \forall)$$

•
$$NP = (\exists / \forall)$$

•
$$coNP = (\forall / \exists)$$

Space Computation

Savitch's Theorem

Turing Machines

Complexity Classes

Theorem (Savitch's Theorem)

PSPACE = NPSPACE

(ロ) 〈 母 〉 〈 臣 〉 〈 臣 〉 〈 臣 〉 への

Space Computation

Turing Machines

Complexity Classes

The Immerman-Szelepscényi Theorem

Theorem

For every space constructible $S(n) > \log n$:

NSPACE[S(n)] = coNSPACE[S(n)]

Corollary

NL = coNL

Turing Machines

Complexity Classes

Space Computation

Our Complexity Hierarchy Landscape

Randomized Computation

Interactive Proofs

Contents

- Introduction
- Turing Machines
- Complexity Classes
- Oracles & The Polynomial Hierarchy
- Randomized Computation
- Interactive Proofs

Oracles & Optimization Problems • 0 0 0 Oracle Classes

Randomized Computation

Interactive Proofs

Oracle TMs and Oracle Classes

Definition

A Turing Machine M? with oracle is a multi-string deterministic TM that has a special string, called **query string**, and three special states: $q_{?}$ (query state), and q_{YES} , q_{NO} (answer states). Let $A \subseteq \Sigma^*$ be an arbitrary language. The computation of oracle machine M^A proceeds like an ordinary TM except for transitions from the query state:

From the $q_?$ moves to either q_{YES} , q_{NO} , depending on whether the current query string is in A or not.

- The answer states allow the machine to use this answer to its further computation.
- The computation of $M^{?}$ with oracle A on iput x is denoted as $M^{A}(x)$.

Oracles & Optimization Problems •••• Oracle Classes

Randomized Computation

Interactive Proofs

Oracle TMs and Oracle Classes

Definition

Let C be a time complexity class (deterministic or nondeterministic). Define C^A to be the <u>class</u> of all languages decided by machines of the same sort and time bound as in C, only that the machines have now oracle A. Also, we define: $C_1^{C_2} = \bigcup_{L \in C_2} C_1^L$.

For example,
$$\mathsf{P}^{\mathsf{NP}} = igcup_{L \in \mathsf{NP}} \mathsf{P}^{L}$$
. Note that $\mathsf{P}^{\mathtt{SAT}} = \mathsf{P}^{\mathsf{NP}}$

Theorem

There exists an oracle A for which $\mathbf{P}^{A} = \mathbf{N}\mathbf{P}^{A}$

Theorem

There exists an oracle *B* for which $\mathbf{P}^B \neq \mathbf{NP}^B$

Oracles & Optimization Problems 0000 The Polynomial Hierarchy

Randomized Computation

The Polynomial Hierarchy

Polynomial Hierarchy Definition

$$\circ \ \Delta_0^p = \Sigma_0^p = \Pi_0^p = \mathbf{P}$$

$$\Delta_{i+1}^p = \mathbf{P}^{\Sigma_i^p}$$

$$\circ \ \Sigma_{i+1}^{p} = \mathbf{N} \mathbf{P}^{\Sigma_{i}^{p}}$$

•
$$\Pi_{i+1}^p = co \mathbf{NP}^{\Sigma_i^p}$$

$$\mathsf{PH} \equiv \bigcup_{i \geqslant 0} \Sigma_i^p$$

$$\Sigma_0^p = \mathbf{P}$$

$$\Delta^p - \mathbf{P} \ \Sigma^p - \mathbf{N} \mathbf{P} \ \Box^p$$

$$\Delta_1^{P} = \mathbf{P}, \ \Sigma_1^{P} = \mathbf{NP}, \ \Pi_1^{P} = co\mathbf{NP}$$

•
$$\Delta_2^p = \mathbf{P}^{\mathbf{NP}}, \ \Sigma_2^p = \mathbf{NP}^{\mathbf{NP}}, \ \Pi_2^p = co\mathbf{NP}^{\mathbf{NP}}$$

Randomized Computation

Randomized Computation

Interactive Proofs

Contents

- Introduction
- Turing Machines
- Complexity Classes
- Oracles & The Polynomial Hierarchy
- Randomized Computation
- Interactive Proofs

Computational Model

Randomized Computation

Interactive Proofs

Probabilistic Turing Machines

- A Probabilistic Turing Machine is a TM as we know it, but with access to a "random source", that is an extra (read-only) tape containing *random-bits*!
- Randomization on:
 - Output (one or two-sided)
 - Running Time

Definition (Probabilistic Turing Machines)

A Probabilistic Turing Machine is a TM with two transition functions δ_0, δ_1 . On input *x*, we choose in each step with probability 1/2 to apply the transition function δ_0 or δ_1 , independently of all previous choices.

- We denote by M(x) the *random variable* corresponding to the output of M at the end of the process.
- For a function $T : \mathbb{N} \to \mathbb{N}$, we say that M runs in T(|x|)-time if it halts on x within T(|x|) steps (regardless of the random choices it makes).

Complexity Classes

BPP Class

Randomized Computation

Definition (BPP Class)

For $T : \mathbb{N} \to \mathbb{N}$, let **BPTIME**[T(n)] the class of languages L such that there exists a PTM which halts in $\mathcal{O}(T(|x|))$ time on input x, and $\Pr[M(x) = L(x)] \ge 2/3$. We define:

$$\mathsf{BPP} = \bigcup_{c \in \mathbb{N}} \mathsf{BPTIME}[n^c]$$

- The class BPP represents our notion of <u>efficient</u> (randomized) computation!
- We can also define **BPP** using certificates:

Complexity Classes

BPP Class

Randomized Computation

Interactive Proofs

Definition (Alternative Definition of BPP)

A language $L \in \mathbf{BPP}$ if there exists a poly-time TM M and a polynomial $p \in poly(n)$, such that for every $x \in \{0, 1\}^*$:

$$\mathbf{Pr}_{r\in\{0,1\}^{p(n)}}[M(x,r)=L(x)]\geq\frac{2}{3}$$

- $\mathbf{P} \subseteq \mathbf{BPP}$
- \circ BPP \subseteq EXP
- The "P vs BPP" question.
Quantifier Characterizations

Randomized Computation

Interactive Proofs

Quantifier Characterizations

• Proper formalism (*Zachos et al.*):

Definition (Majority Quantifier)

Let $R : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ be a predicate, and ε a rational number, such that $\varepsilon \in (0,\frac{1}{2})$. We denote by $(\exists^+ y, |y| = k)R(x, y)$ the following predicate:

"There exist at least $(\frac{1}{2} + \varepsilon) \cdot 2^k$ strings y of length m for which R(x, y) holds."

We call \exists^+ the *overwhelming majority* quantifier.

• \exists_r^+ means that the fraction r of the possible certificates of a certain length satisfy the predicate for the certain input.

Quantifier Characterizations

Randomized Computation

Quantifier Characterizations

Definition

We denote as $C = (Q_1/Q_2)$, where $Q_1, Q_2 \in \{\exists, \forall, \exists^+\}$, the class C of languages L satisfying:

- $x \in L \Rightarrow Q_1 y R(x, y)$
- $x \notin L \Rightarrow Q_2 y \neg R(x, y)$
- $\mathbf{P} = (\forall / \forall)$
- $NP = (\exists / \forall)$
- $coNP = (\forall / \exists)$
- $\mathsf{BPP} = (\exists^+/\exists^+) = co\mathsf{BPP}$

Oracles & Optimization Problems 0000 Quantifier Characterizations

RP Class

Randomized Computation

Interactive Proofs

• In the same way, we can define classes that contain problems with one-sided error:

Definition

The class **RTIME**[T(n)] contains every language *L* for which there exists a PTM *M* running in O(T(|x|)) time such that:

•
$$x \in L \Rightarrow \Pr[M(x) = 1] \ge \frac{2}{3}$$

•
$$x \notin L \Rightarrow \Pr[M(x) = 0] = 1$$

We define

$$\mathsf{RP} = \bigcup_{c \in \mathbb{N}} \mathsf{RTIME}[n^c]$$

• Similarly we define the class *co***RP**.

Quantifier Characterizations

Randomized Computation

Interactive Proofs

Quantifier Characterizations

- $\mathbf{RP} \subseteq \mathbf{NP}$, since every accepting "branch" is a certificate!
- $\mathsf{RP} \subseteq \mathsf{BPP}$, $\mathit{co}\mathsf{RP} \subseteq \mathsf{BPP}$

•
$$\mathbf{RP} = (\exists^+/\forall)$$

Quantifier Characterizations

Randomized Computation

Interactive Proofs

Quantifier Characterizations

- $\mathbf{RP} \subseteq \mathbf{NP}$, since every accepting "branch" is a certificate!
- $\mathsf{RP} \subseteq \mathsf{BPP}$, $\mathit{co}\mathsf{RP} \subseteq \mathsf{BPP}$

•
$$\mathsf{RP} = (\exists^+/\forall) \subseteq (\exists/\forall) = \mathsf{NP}$$

Quantifier Characterizations

Randomized Computation

Interactive Proofs

Quantifier Characterizations

- $\mathbf{RP} \subseteq \mathbf{NP}$, since every accepting "branch" is a certificate!
- $\mathsf{RP} \subseteq \mathsf{BPP}$, $\mathit{co}\mathsf{RP} \subseteq \mathsf{BPP}$

•
$$\mathsf{RP} = (\exists^+/\forall) \subseteq (\exists/\forall) = \mathsf{NP}$$

•
$$co\mathsf{RP} = (\forall/\exists^+) \subseteq (\forall/\exists) = co\mathsf{NP}$$

Quantifier Characterizations

Randomized Computation

Interactive Proofs

Quantifier Characterizations

- $\mathbf{RP} \subseteq \mathbf{NP}$, since every accepting "branch" is a certificate!
- $\mathsf{RP} \subseteq \mathsf{BPP}$, $\mathit{co}\mathsf{RP} \subseteq \mathsf{BPP}$

•
$$\mathsf{RP} = (\exists^+/\forall) \subseteq (\exists/\forall) = \mathsf{NP}$$

•
$$co\mathsf{RP} = (\forall/\exists^+) \subseteq (\forall/\exists) = co\mathsf{NP}$$

Theorem (Decisive Characterization of BPP)

$$\mathbf{BPP} = (\exists^+/\exists^+) = (\exists^+\forall/\forall\exists^+) = (\forall\exists^+/\exists^+\forall)$$

Quantifier Characterizations

ZPP Class

Randomized Computation

Interactive Proofs

- And now something completely different:
- What is the random variable was the running time and not the output?

Quantifier Characterizations

ZPP Class

Randomized Computation

Interactive Proofs

- And now something completely different:
- What is the random variable was the running time and not the output?
- We say that *M* has expected running time T(n) if the expectation $\mathbf{E}[T_{M(x)}]$ is at most T(|x|) for every $x \in \{0,1\}^*$. $(T_{M(x)}$ is the running time of *M* on input *x*, and it is a random variable!)

Definition

The class **ZTIME**[T(n)] contains all languages L for which there exists a machine M that runs in an expected time $\mathcal{O}(T(|x|))$ such that for every input $x \in \{0,1\}^*$, whenever M halts on x, the output M(x) it produces is exactly L(x). We define:

$$\mathsf{ZPP} = \bigcup_{c \in \mathbb{N}} \mathsf{ZTIME}[n^c]$$

Quantifier Characterizations

ZPP Class

Randomized Computation

Interactive Proofs

- The output of a **ZPP** machine is always correct!
- The problem is that we aren't sure about the running time.
- We can easily see that $ZPP = RP \cap coRP$.
- The next Hasse diagram summarizes the previous inclusions: (Recall that $\Delta \Sigma_2^p = \Sigma_2^p \cap \Pi_2^p = \mathbf{NP^{NP}} \cap co\mathbf{NP^{NP}}$)

Quantifier Characterizations

Randomized Computation

Quantifier Characterizations

Interactive Proofs

Error Reduction

Randomized Computation

Interactive Proofs

Error Reduction for BPP

Theorem (Error Reduction for BPP)

Let $L \subseteq \{0,1\}^*$ be a language and suppose that there exists a poly-time PTM M such that for every $x \in \{0,1\}^*$:

$$\Pr[M(x) = L(x)] \ge \frac{1}{2} + |x|^{-c}$$

Then, for every constant d > 0, \exists poly-time PTM M' such that for every $x \in \{0,1\}^*$:

$$\Pr[M'(x) = L(x)] \ge 1 - 2^{-|x|^d}$$

Randomized Computation

Interactive Proofs

Contents

- Introduction
- Turing Machines
- Complexity Classes
- Oracles & The Polynomial Hierarchy
- Randomized Computation
- Interactive Proofs

Introduction

Introduction

"Maybe Fermat had a proof! But an important party was certainly missing to make the proof complete: the verifier. Each time rumor gets around that a student somewhere proved $\mathbf{P} = \mathbf{NP}$, people ask "Has Karp seen the proof?" (they hardly even ask the student's name). Perhaps the verifier is most important that the prover." (from [BM88])

- The notion of a mathematical proof is related to the certificate definition of **NP**.
- We enrich this scenario by introducing **interaction** in the basic scheme:

The person (or TM) who verifies the proof asks the person who provides the proof a series of "queries", before he is convinced, and if he is, he provide the certificate.

Introduction

Introduction

Randomized Computation

- The first person will be called **Verifier**, and the second **Prover**.
- In our model of computation, Prover and Verifier are interacting Turing Machines.
- We will categorize the various proof systems created by using:
 - various TMs (nondeterministic, probabilistic etc)
 - the information exchanged (private/public coins etc)
 - the number of TMs (IPs, MIPs,...)

The class IP

Randomized Computation

Interactive Proofs

Probabilistic Verifier: The Class IP

• Now, we let the *verifier* be probabilistic, i.e. the verifier's queries will be computed using a probabilistic TM:

Definition (Goldwasser-Micali-Rackoff)

For an integer $k \ge 1$ (that may depend on the input length), a language *L* is in **IP**[*k*] if there is a probabilistic polynomial-time T.M. *V* that can have a *k*-round interaction with a T.M. *P* such that:

$$x \in L \Rightarrow \exists P : Pr[\langle V, P
angle(x) = 1] \geq rac{2}{3} \ (Completeness)$$

•
$$x \notin L \Rightarrow \forall P : Pr[\langle V, P \rangle(x) = 1] \le \frac{1}{3}$$
 (Soundness)

Randomized Computation

Interactive Proofs

The class IP

Probabilistic Verifier: The Class IP

Definition We also define:

$$\mathsf{IP} = \bigcup_{c \in \mathbb{N}} \mathsf{IP}[n^c]$$

- The "output" $\langle V, P \rangle(x)$ is a random variable.
- We'll see that IP is a very large class! $(\supseteq PH)$
- As usual, we can replace the completeness parameter 2/3 with $1 2^{-n^s}$ and the soundness parameter 1/3 by 2^{-n^s} , without changing the class for any fixed constant s > 0.
- We can also replace the completeness constant 2/3 with 1 (perfect completeness), without changing the class, but replacing the soundness constant 1/3 with 0, is equivalent with a *deterministic verifier*, so class **IP** collapses to **NP**.

The class IP

Randomized Computation

Interactive Proofs

Interactive Proof for Graph Non-Isomorphism

Definition

Two graphs G_1 and G_2 are *isomorphic*, if there exists a permutation π of the labels of the nodes of G_1 , such that $\pi(G_1) = G_2$. If G_1 and G_2 are isomorphic, we write $G_1 \cong G_2$.

- GI: Given two graphs G_1 , G_2 , decide if they are isomorphic.
- GNI: Given two graphs G_1 , G_2 , decide if they are *not* isomorphic.
- Obviously, $GI \in NP$ and $GNI \in coNP$.
- This proof system relies on the Verifier's access to a *private* random source which cannot be seen by the Prover, so we confirm the crucial role the private coins play.

The class IP

Randomized Computation

Interactive Proofs

Interactive Proof for Graph Non-Isomorphism

<u>Verifier</u>: Picks $i \in \{1, 2\}$ uniformly at random. Then, it permutes randomly the vertices of G_i to get a new graph H. Is sends H to the Prover. <u>Prover</u>: Identifies which of G_1 , G_2 was used to produce H. Let G_j be the graph. Sends j to V. <u>Verifier</u>: Accept if i = j. Reject otherwise.

Randomized Computation

Interactive Proofs

The class IP

Interactive Proof for Graph Non-Isomorphism

<u>Verifier</u>: Picks $i \in \{1, 2\}$ uniformly at random. Then, it permutes randomly the vertices of G_i to get a new graph H. Is sends H to the Prover. <u>Prover</u>: Identifies which of G_1 , G_2 was used to produce H. Let G_j be the graph. Sends j to V. <u>Verifier</u>: Accept if i = j. Reject otherwise.

- If $G_1 \ncong G_2$, then the powerfull prover can (nondeterministivally) guess which one of the two graphs is isomprphic to H, and so the Verifier accepts with probability 1.
- If $G_1 \cong G_2$, the prover can't distinguish the two graphs, since a random permutation of G_1 looks exactly like a random permutation of G_2 . So, the best he can do is guess randomly one, and the Verifier accepts with probability (at most) 1/2, which can be reduced by additional repetitions.

Oracles & Optimization Problems 0000 Arthur-Merlin Games

Definitions

Randomized Computation

Interactive Proofs

• So, with respect to the previous IP definition:

Definition

For every k, the complexity class AM[k] is defined as a subset to IP[k] obtained when we restrict the verifier's messages to be random bits, and not allowing it to use any other random bits that are not contained in these messages. We denote $AM \equiv AM[2]$.

Oracles & Optimization Problems 0000 Arthur-Merlin Games

Definitions

Randomized Computation

Interactive Proofs

• So, with respect to the previous IP definition:

Definition

For every k, the complexity class AM[k] is defined as a subset to IP[k] obtained when we restrict the verifier's messages to be random bits, and not allowing it to use any other random bits that are not contained in these messages. We denote $AM \equiv AM[2]$.

- Merlin \rightarrow Prover
- Arthur \rightarrow Verifier

Oracles & Optimization Problems 0000 Arthur-Merlin Games

Definitions

Randomized Computation

Interactive Proofs

• So, with respect to the previous IP definition:

Definition

For every k, the complexity class AM[k] is defined as a subset to IP[k] obtained when we restrict the verifier's messages to be *random bits*, and not allowing it to use any other random bits that are not contained in these messages.

We denote $\mathbf{AM} \equiv \mathbf{AM}[2]$.

• Merlin \rightarrow Prover

- Arthur \rightarrow Verifier
- Also, the class **MA** consists of all languages L, where there's an interactive proof for L in which the prover first sending a message, and then the verifier is "tossing coins" and computing its decision by doing a deterministic polynomial-time computation involving the input, the message and the random output.

Arthur-Merlin Games

Randomized Computation

Interactive Proofs

Public vs. Private Coins

Theorem

$\mathtt{GNI} \in \boldsymbol{\mathsf{AM}}[2]$

Theorem

For every $p \in poly(n)$:

$$\mathsf{IP}(p(n)) = \mathsf{AM}(p(n) + 2)$$

• So,

$$IP[poly] = AM[poly]$$

Arthur-Merlin Games

Randomized Computation

Interactive Proofs

Properties of Arthur-Merlin Games

Arthur-Merlin Games

Randomized Computation

Interactive Proofs

Properties of Arthur-Merlin Games

• Proper formalism (*Zachos et al.*):

Definition (Majority Quantifier)

Let $R : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ be a predicate, and ε a rational number, such that $\varepsilon \in (0,\frac{1}{2})$. We denote by $(\exists^+ y, |y| = k)R(x, y)$ the following predicate:

"There exist at least $(\frac{1}{2} + \varepsilon) \cdot 2^k$ strings y of length m for which R(x, y) holds."

We call \exists^+ the *overwhelming majority* quantifier.

• \exists_r^+ means that the fraction r of the possible certificates of a certain length satisfy the predicate for the certain input.

Obviously,
$$\exists^+ = \exists^+_{1/2+\varepsilon} = \exists^+_{2/3} = \exists^+_{3/4} = \exists^+_{0.99} = \exists^+_{1-2^{-p(|x|)}}$$

Randomized Computation

Interactive Proofs

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Definition

We denote as $C = (Q_1/Q_2)$, where $Q_1, Q_2 \in \{\exists, \forall, \exists^+\}$, the class C of languages L satisfying:

$$\circ x \in L \Rightarrow Q_1 y \ R(x,y)$$

•
$$x \notin L \Rightarrow Q_2 y \neg R(x, y)$$

So:
$$\mathbf{P} = (\forall/\forall)$$
, $\mathbf{NP} = (\exists/\forall)$, $co\mathbf{NP} = (\forall/\exists)$
 $\mathbf{BPP} = (\exists^+/\exists^+)$, $\mathbf{RP} = (\exists^+/\forall)$, $co\mathbf{RP} = (\forall/\exists^+)$

Randomized Computation

Interactive Proofs

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Definition

We denote as $C = (Q_1/Q_2)$, where $Q_1, Q_2 \in \{\exists, \forall, \exists^+\}$, the class C of languages L satisfying:

$$\circ x \in L \Rightarrow Q_1 y \ R(x,y)$$

•
$$x \notin L \Rightarrow Q_2 y \neg R(x, y)$$

• So:
$$\mathbf{P} = (\forall/\forall)$$
, $\mathbf{NP} = (\exists/\forall)$, $co\mathbf{NP} = (\forall/\exists)$
 $\mathbf{BPP} = (\exists^+/\exists^+)$, $\mathbf{RP} = (\exists^+/\forall)$, $co\mathbf{RP} = (\forall/\exists^+)$

Arthur-Merlin Games

$$\mathbf{AM} = \mathcal{BP} \cdot \mathbf{NP} = (\exists^+ \exists / \exists^+ \forall)$$
$$\mathbf{MA} = \mathcal{N} \cdot \mathbf{BPP} = (\exists \exists^+ / \forall \exists^+)$$

• Similarly: **AMA** = $(\exists^+\exists\exists^+/\exists^+\forall\exists^+)$ etc.

Arithmetization

The power of Interactive Proofs

- As we saw, **Interaction** alone does not gives us computational capabilities beyond **NP**.
- Also, **Randomization** alone does not give us significant power (we know that $\mathbf{BPP} \subseteq \Sigma_2^p$, and many researchers believe that $\mathbf{P} = \mathbf{BPP}$, which holds under some plausible assumptions).
- How much power could we get by their *combination*?
- We know that for fixed $k \in \mathbb{N}$, $\mathsf{IP}[k]$ collapses to

$$\mathsf{IP}[k] = \mathsf{AM} = \mathcal{BP} \cdot \mathsf{NP}$$

a class that is "close" to NP (under similar assumptions, the non-deterministic analogue of P vs. BPP is NP vs. AM.)

• If we let k be a polynomial in the size of the input, how much more power could we get?

Shamir's Theorem

Randomized Computation

Interactive Proofs

The power of Interactive Proofs

• Surprisingly:

Theorem (L.F.K.N. & Shamir)

$\mathsf{IP}=\mathsf{PSPACE}$

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ うへの

Randomized Computation

Interactive Proofs

Epilogue: Probabilistically Checkable Proofs

• But if we put a **proof** instead of a Prover?

Oracles & Optimization Problems 0000 PCPs

Epilogue: Probabilistically Checkable Proofs

- But if we put a **proof** instead of a Prover?
- The alleged proof is a string, and the (probabilistic) verification procedure is given direct (oracle) access to the proof.
- The verification procedure can access only *few* locations in the proof!
- We parameterize these Interactive Proof Systems by two complexity measures:
 - **Query** Complexity
 - Randomness Complexity
- The effective proof length of a PCP system is upper-bounded by q(n) · 2^{r(n)} (in the non-adaptive case).
 (How long can be in the adaptive case?)

Oracles & Optimization Problems OCPS PCP Definitions

Randomized Computation

Interactive Proofs

Definition

PCP Verifiers Let *L* be a language and $q, r : \mathbb{N} \to \mathbb{N}$. We say that *L* has an (r(n), q(n))-**PCP** verifier if there is a probabilistic polynomial-time algorithm *V* (the verifier) satisfying:

- *Efficiency*: On input $x \in \{0, 1\}^*$ and given random oracle access to a string $\pi \in \{0, 1\}^*$ of length at most $q(n) \cdot 2^{r(n)}$ (which we call the proof), V uses at most r(n) random coins and makes at most q(n)non-adaptive queries to locations of π . Then, it accepts or rejects. Let $V^{\pi}(x)$ denote the random variable representing V's output on input x and with random access to π .
- Completeness: If $x \in L$, then $\exists \pi \in \{0,1\}^*$: $\Pr[V^{\pi}(x) = 1] = 1$
- Soundness: If $x \notin L$, then $\forall \pi \in \{0,1\}^*$: $\Pr\left[V^{\pi}(x) = 1\right] \leq \frac{1}{2}$

We say that a language L is in PCP[r(n), q(n)] if L has a $(\mathcal{O}(r(n)), \mathcal{O}(q(n)))$ -PCP verifier.

Oracles & Optimization Problems 0000 PCPs

Main Results

Randomized Computation

Interactive Proofs

• Obviously:

PCP[0, 0] = ? **PCP**[0, *poly*] = ? **PCP**[*poly*, 0] = ?

Oracles & Optimization Problems 0000 PCPs

Main Results

Randomized Computation

Interactive Proofs

• Obviously:

PCP[0, 0] = **P PCP**[0, *poly*] = ? **PCP**[*poly*, 0] = ?

Oracles & Optimization Problems 0000 PCPs

Main Results

Randomized Computation

Interactive Proofs

• Obviously:

PCP[0, 0] = PPCP[0, poly] = NPPCP[poly, 0] = ?

Oracles & Optimization Problems 0000 PCPs

Main Results

Randomized Computation

Interactive Proofs

• Obviously:

 $\begin{aligned} \mathbf{PCP}[0,0] &= \mathbf{P} \\ \mathbf{PCP}[0, poly] &= \mathbf{NP} \\ \mathbf{PCP}[poly,0] &= co\mathbf{RP} \end{aligned}$

Oracles & Optimization Problems 0000 PCPs

Main Results

Randomized Computation

Interactive Proofs

• Obviously:

 $\begin{aligned} \mathbf{PCP}[0,0] &= \mathbf{P} \\ \mathbf{PCP}[0,poly] &= \mathbf{NP} \\ \mathbf{PCP}[poly,0] &= co\mathbf{RP} \end{aligned}$

• A suprising result from Arora, Lund, Motwani, Safra, Sudan, Szegedy states that:

The PCP Theorem

 $NP = PCP[\log n, 1]$

Oracles & Optimization Problems OCO PCPs Main Results

Randomized Computation

• The restriction that the proof length is at most $q2^r$ is inconsequential, since such a verifier can look on at most this number of locations.

• We have that $PCP[r(n), q(n)] \subseteq NTIME[2^{\mathcal{O}(r(n))}q(n)]$, since a NTM could guess the proof in $2^{\mathcal{O}(r(n))}q(n)$ time, and verify it deterministically by running the verifier for all $2^{\mathcal{O}(r(n))}$ possible choices of its random coin tosses. If the verifier accepts for all these possible tosses, then the NTM accepts.