# Introduction to Computational Complexity 

## Antonis Antonopoulos

Computation and Reasoning Laboratory National Technical University of Athens


This work is licensed under a Creative
Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

Contents

- Introduction
- Turing Machines
- Complexity Classes
- Oracles \& The Polynomial Hierarchy
- Randomized Computation
- Interactive Proofs

Decision Problems

- Have answers of the form "yes" or "no"
- Encoding: each instance $x$ of the problem is represented as a string of an alphabet $\Sigma(|\Sigma| \geq 2)$.
- Decision problems have the form "Is $x$ in $L$ ?", where $L$ is a language, $L \subseteq \Sigma^{*}$.
- So, for an encoding of the input, using the alphabet $\Sigma$, we associate the following language with the decision problem $\Pi$ :
$L(\Pi)=\left\{x \in \Sigma^{*} \mid x\right.$ is a representation of a "yes" instance of the problem $\left.\Pi\right\}$


## Example

- Given a number $x$, is this number prime? $(x \stackrel{?}{\in}$ PRIMES $)$
- Given graph $G$ and a number $k$, is there a clique with $k$ (or more) nodes in $G$ ?


## Optimization Problems

- For each instance $x$ there is a set of Feasible Solutions $F(x)$.
- To each $s \in F(x)$ we map a positive integer $c(x)$, using the objective function $c(s)$.
- We search for the solution $s \in F(x)$ which minimizes (or maximizes) the objective function $c(s)$.


## Example

- The Traveling Salesperson Problem (TSP): Given a finite set $C=\left\{c_{1}, \ldots, c_{n}\right\}$ of cities and a distance $d\left(c_{i}, c_{j}\right) \in \mathbb{Z}^{+}, \forall\left(c_{i}, c_{j}\right) \in C^{2}$, we ask for a permutation $\pi$ of $C$, that minimizes this quantity:

$$
\sum_{i=1}^{n-1} d\left(c_{\pi(i)}, c_{\pi(i+1)}\right)+d\left(c_{\pi(n)}, c_{\pi(1)}\right)
$$

## A Model Discussion

- There are many computational models (RAM, Turing Machines etc).
- The Church-Turing Thesis states that all computation models are equivalent. That is, every computation model can be simulated by a Turing Machine.
- In Complexity Theory, we consider efficiently computable the problems which are solved (aka the languages that are decided) in polynomial number of steps (Edmonds-Cobham Thesis).


## Efficiently Computable $\equiv$ Polynomial-Time Computable

Contents

- Introduction
- Turing Machines
- Complexity Classes
- Oracles \& The Polynomial Hierarchy
- Randomized Computation
- Interactive Proofs


## Definition

A Turing Machine $M$ is a quintuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ :

- $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, \ldots, q_{n}, q_{\text {halt }}, q_{y e s}, q_{\mathrm{no}}\right\}$ is a finite set of states.
- $\Sigma$ is the alphabet. The tape alphabet is $\Gamma=\Sigma \cup\{\sqcup\}$.
- $q_{0} \in Q$ is the initial state.
- $F \subseteq Q$ is the set of final states.
- $\delta:(Q \backslash F) \times \Gamma \rightarrow Q \times \Gamma \times\{S, L, R\}$ is the transition function.
- A TM is a "programming language" with a single data structure (a tape), and a cursor, which moves left and right on the tape.
- Function $\delta$ is the program of the machine.


## Turing Machines and Languages

Definition
Let $L \subseteq \Sigma^{*}$ be a language and $M$ a TM such that, for every string $x \in \Sigma^{*}$ :

- If $x \in L$, then $M(x)=$ "yes"
- If $x \notin L$, then $M(x)=$ "no"

Then we say that $M$ decides $L$.

- We can alternatively say that $M(x)=\chi_{L}(x)$, where $\chi_{L}(\cdot)$ is the characteristic function of $L$ (if we consider 1 as "yes" and 0 as "no").
- If $L$ is decided by some TM $M$, then $L$ is called a recursive language.


## Bounds on Turing Machines

- We will characterize the "performance" of a Turing Machine by the amount of time and space required on instances of size $n$, when these amounts are expressed as a function of $n$.

Definition
Let $T: \mathbb{N} \rightarrow \mathbb{N}$. We say that machine $M$ operates within time $T(n)$ if, for any input string $x$, the time required by $M$ to reach a final state is at most $T(|x|)$. Function $T$ is a time bound for $M$.

Definition
Let $S: \mathbb{N} \rightarrow \mathbb{N}$. We say that machine $M$ operates within space $S(n)$ if, for any input string $x, M$ visits at most $S(|x|)$ locations on its work tapes (excluding the input tape) during its computation. Function $S$ is a space bound for $M$.

## Nondeterministic Turing Machines

- We will now introduce an unrealistic model of computation:

Definition
A Turing Machine $M$ is a quintuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ :

- $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, \ldots, q_{n}, q_{\text {halt }}, q_{\mathrm{yes}}, q_{\mathrm{no}}\right\}$ is a finite set of states.
- $\Sigma$ is the alphabet. The tape alphabet is $\Gamma=\Sigma \cup\{\sqcup\}$.
- $q_{0} \in Q$ is the initial state.
- $F \subseteq Q$ is the set of final states.
- $\delta:(Q \backslash F) \times \Gamma \rightarrow \operatorname{Pow}(Q \times \Gamma \times\{S, L, R\})$ is the transition relation.


## Nondeterministic Turing Machines

- In this model, an input is accepted if there is some sequence of nondeterministic choices that results in "yes".
- An input is rejected if there is no sequence of choices that lead to acceptance.
- Observe the similarity with recursively enumerable languages.

Definition
We say that $M$ operates within bound $T(n)$, if for every input $x \in \Sigma^{*}$ and every sequence of nondeterministic choices, $M$ reaches a final state within $T(|x|)$ steps.

- The above definition requires that $M$ does not have computation paths longer than $T(n)$, where $n=|x|$ the length of the input.
- The amount of time charged is the depth of the computation tree.

Contents

- Introduction
- Turing Machines
- Complexity Classes
- Oracles \& The Polynomial Hierarchy
- Randomized Computation
- Interactive Proofs


## Parameters used to define complexity classes:

- Model of Computation (Turing Machine, RAM, Circuits)
- Mode of Computation (Deterministic, Nondeterministic, Probabilistic)
- Complexity Measures (Time, Space, Circuit Size-Depth)
- Other Parameters (Randomization, Interaction)


## Our first complexity classes

## Definition

Let $L \subseteq \Sigma^{*}$, and $T, S: \mathbb{N} \rightarrow \mathbb{N}$ :

- We say that $L \in \mathbf{D T I M E}[T(n)]$ if there exists a TM $M$ deciding $L$, which operates within the time bound $\mathcal{O}(T(n))$, where $n=|x|$.
- We say that $L \in \operatorname{DSPACE}[S(n)]$ if there exists a TM $M$ deciding $L$, which operates within space bound $\mathcal{O}(S(n))$, that is, for any input $x$, requires space at most $S(|x|)$.
- We say that $L \in$ NTIME[T(n)] if there exists a nondeterministic TM $M$ deciding $L$, which operates within the time bound $\mathcal{O}(T(n))$.
- We say that $L \in \operatorname{NSPACE}[S(n)]$ if there exists a nondeterministic TM M deciding $L$, which operates within space bound $\mathcal{O}(S(n))$.


## Our first complexity classes

- The above are Complexity Classes, in the sense that they are sets of languages.
- All these classes are parameterized by a function $T$ or $S$, so they are families of classes (for each function we obtain a complexity class).

Definition (Complement of a complexity class)
For any complexity class $\mathcal{C}$, coC denotes the class: $\{\bar{L} \mid L \in \mathcal{C}\}$, where $\bar{L}=\Sigma^{*} \backslash L=\left\{x \in \Sigma^{*} \mid x \notin L\right\}$.

- We want to define "reasonable" complexity classes, in the sense that we want to "compute more problems", given more computational resources.


## Constructible Functions

Definition (Time-Constructible Function)
A nondecreasing function $T: \mathbb{N} \rightarrow \mathbb{N}$ is time constructible if $T(n) \geq n$ and there is a TM $M$ that computes the function $x \mapsto\llcorner T(|x|)\lrcorner$ in time $T(n)$.

Definition (Space-Constructible Function)
A nondecreasing function $S: \mathbb{N} \rightarrow \mathbb{N}$ is space-constructible if $S(n)>\log n$ and there is a TM $M$ that computes $S(|x|)$ using $S(|x|)$ space, given $x$ as input.

- The restriction $T(n) \geq n$ is to allow the machine to read its input.
- The restriction $S(n)>\log n$ is to allow the machine to "remember" the index of the cell of the input tape that it is currently reading.
- Also, if $f_{1}(n), f_{2}(n)$ are time/space-constructible functions, so are $f_{1}+f_{2}, f_{1} \cdot f_{2}$ and $f_{1}^{f_{2}}$.


## Constructible Functions

Theorem (Hierarchy Theorems)
Let $t_{1}, t_{2}$ be time-constructible functions, and $s_{1}, s_{2}$ be space-constructible functions. Then:
(1) If $t_{1}(n) \log t_{1}(n)=o\left(t_{2}(n)\right)$, then $\operatorname{DTIME}\left(t_{1}\right) \subsetneq \mathbf{D T I M E}\left(t_{2}\right)$.

2 If $t_{1}(n+1)=o\left(t_{2}(n)\right)$, then $\operatorname{NTIME}\left(t_{1}\right) \subsetneq \operatorname{NTIME}\left(t_{2}\right)$.
3 If $s_{1}(n)=o\left(s_{2}(n)\right)$, then $\operatorname{DSPACE}\left(s_{1}\right) \subsetneq \operatorname{DSPACE}\left(s_{2}\right)$.
4 If $s_{1}(n)=o\left(s_{2}(n)\right)$, then $\operatorname{NSPACE}\left(s_{1}\right) \subsetneq \operatorname{NSPACE}\left(s_{2}\right)$.

- So, we have the hierachy:


## DTIME $[n] \subsetneq$ DTIME $\left[n^{2}\right] \subsetneq$ DTIME $\left[n^{3}\right] \subsetneq \cdots$

- We will later see that the class containing the problems we can efficiently solve (recall the Edmonds-Cobham Thesis) is the class $\mathbf{P}=\bigcup_{c \in \mathbb{N}} \mathbf{D T I M E}\left[n^{c}\right]$.
- Hierarchy Theorems tell us how classes of the same kind relate to each other, when we vary the complexity bound.
- The most interesting results concern relationships between classes of different kinds:


## Theorem

Suppose that $T(n), S(n)$ are time-constructible and space-constructible functions, respectively. Then:
(1) DTIME $[T(n)] \subseteq$ NTIME $[T(n)]$

2 $\operatorname{DSPACE}[S(n)] \subseteq \operatorname{NSPACE}[S(n)]$
3 $\operatorname{NTIME}[T(n)] \subseteq \operatorname{DSPACE}[T(n)]$
4 $\operatorname{NSPACE}[S(n)] \subseteq$ DTIME $\left[k^{\log n+S(n)}\right]$
Corollary

$$
\mathbf{N T I M E}[T(n)] \subseteq \bigcup_{c>1} \operatorname{DTIME}\left[c^{T(n)}\right]
$$

## The essential Complexity Hierarchy

Definition

$$
\begin{gathered}
\mathbf{L}=\mathbf{D S P A C E}[\log n] \\
\mathbf{N L}=\mathbf{N S P A C E}[\log n] \\
\mathbf{P}=\bigcup_{c \in \mathbb{N}} \mathbf{D T I M E}\left[n^{c}\right]
\end{gathered}
$$

$\mathbf{N P}=\bigcup_{c \in \mathbb{N}} \operatorname{NTIME}\left[n^{c}\right]$
$\operatorname{PSPACE}=\bigcup_{c \in \mathbb{N}} \operatorname{DSPACE}\left[n^{c}\right]$
NPSPACE $=\bigcup_{c \in \mathbb{N}} \operatorname{NSPACE}\left[n^{c}\right]$

## The essential Complexity Hierarchy

Definition

$$
\begin{aligned}
& \operatorname{EXP}=\bigcup_{c \in \mathbb{N}} \operatorname{DTIME}\left[2^{n^{c}}\right] \\
& \operatorname{NEXP}=\bigcup_{c \in \mathbb{N}} \operatorname{NTIME}\left[2^{n^{c}}\right]
\end{aligned}
$$

EXPSPACE $=\bigcup_{c \in \mathbb{N}}$ DSPACE $\left[2^{n^{c}}\right]$
NEXPSPACE $=\bigcup_{c \in \mathbb{N}} \operatorname{NSPACE}\left[2^{n^{c}}\right]$

## The essential Complexity Hierarchy

Definition

$$
\begin{aligned}
& \operatorname{EXP}=\bigcup_{c \in \mathbb{N}} \operatorname{DTIME}\left[2^{n^{c}}\right] \\
& \operatorname{NEXP}=\bigcup_{c \in \mathbb{N}} \operatorname{NTIME}\left[2^{n^{c}}\right]
\end{aligned}
$$

$\operatorname{EXPSPACE}=\bigcup_{c \in \mathbb{N}} \operatorname{DSPACE}\left[2^{n^{c}}\right]$

## NEXPSPACE $=\bigcup_{c \in \mathbb{N}} \operatorname{NSPACE}\left[2^{n^{c}}\right]$

$\mathbf{L} \subseteq \mathbf{N L} \subseteq \mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{P S P A C E} \subseteq \mathbf{N P S P A C E} \subseteq \mathbf{E X P} \subseteq \mathbf{N E X P}$

## Can creativity be automated?

As we saw:

- Class P: Efficient Computation
- Class NP: Efficient Verification
- So, if we can efficiently verify a mathematical proof, can we create it efficiently?

If $P=N P \ldots$

- For every mathematical statement, and given a page limit, we would (quickly) generate a proof, if one exists.
- Given detailed constraints on an engineering task, we would (quickly) generate a design which meets the given criteria, if one exists.
- Given data on some phenomenon and modeling restrictions, we would (quickly) generate a theory to explain the date, if one exists.


## Complements of complexity classes

- Deterministic complexity classes are in general closed under complement ( $c o \mathbf{L}=\mathbf{L}, c o \mathbf{P}=\mathbf{P}, ~ c o \mathbf{P S P A C E}=\mathbf{P S P A C E}$ ).
- Complements of non-deterministic complexity classes are very interesting:
- The class coNP contains all the languages that have succinct disqualifications (the analogue of succinct certificate for the class NP). The "no" instance of a problem in coNP has a short proof of its being a "no" instance.
- So:

- Note the similarity and the difference with $\mathbf{R}=\mathbf{R E} \cap$ coRE.


## Quantifier Characterization of Complexity Classes

## Definition

We denote as $\mathcal{C}=\left(Q_{1} / Q_{2}\right)$, where $Q_{1}, Q_{2} \in\{\exists, \forall\}$, the class $\mathcal{C}$ of languages $L$ satisfying:

- $x \in L \Rightarrow Q_{1} y R(x, y)$
- $x \notin L \Rightarrow Q_{2} y \neg R(x, y)$
- $\mathbf{P}=(\forall / \forall)$
- $\mathbf{N P}=(\exists / \forall)$
- coNP $=(\forall / \exists)$


## Savitch's Theorem

Theorem (Savitch's Theorem)

## PSPACE = NPSPACE

## The Immerman-Szelepscényi Theorem

Theorem
For every space constructible $S(n)>\log n$ :
$\operatorname{NSPACE}[S(n)]=\operatorname{coNSPACE}[S(n)]$

Corollary
$\mathrm{NL}=c o \mathrm{NL}$

## Our Complexity Hierarchy Landscape



Oracles \& Optimization Problems 0000

Contents

- Introduction
- Turing Machines
- Complexity Classes
- Oracles \& The Polynomial Hierarchy
- Randomized Computation
- Interactive Proofs


## Oracle TMs and Oracle Classes

Definition
A Turing Machine $M$ ? with oracle is a multi-string deterministic TM that has a special string, called query string, and three special states: $q_{\text {? }}$ (query state), and $q_{Y E S}, q_{N O}$ (answer states). Let $A \subseteq \Sigma^{*}$ be an arbitrary language. The computation of oracle machine $M^{A}$ proceeds like an ordinary TM except for transitions from the query state:
From the $q_{\text {? }}$ moves to either $q_{Y E S}, q_{N O}$, depending on whether the current query string is in $A$ or not.

- The answer states allow the machine to use this answer to its further computation.
- The computation of $M^{?}$ with oracle $A$ on iput $x$ is denoted as $M^{A}(x)$.


## Oracle TMs and Oracle Classes

Definition
Let $\mathcal{C}$ be a time complexity class (deterministic or nondeterministic).
Define $\mathcal{C}^{A}$ to be the class of all languages decided by machines of the same sort and time bound as in $\mathcal{C}$, only that the machines have now oracle $A$. Also, we define: $\mathcal{C}_{1}^{\mathcal{C}_{2}}=\bigcup_{L \in \mathcal{C}_{2}} \mathcal{C}_{1}^{L}$.

For example, $\mathbf{P}^{N P}=\bigcup_{L \in \mathbf{N P}} \mathbf{P}^{L}$. Note that $\mathbf{P}^{\text {SAT }}=\mathbf{P}^{N P}$.

## Theorem

There exists an oracle $A$ for which $\mathbf{P}^{A}=\mathbf{N} \mathbf{P}^{A}$
Theorem
There exists an oracle $B$ for which $\mathbf{P}^{B} \neq \mathbf{N P}^{B}$

The Polynomial Hierarchy

## The Polynomial Hierarchy

Polynomial Hierarchy Definition

- $\Delta_{0}^{p}=\Sigma_{0}^{p}=\Pi_{0}^{p}=\mathbf{P}$
- $\Delta_{i+1}^{p}=\mathbf{P}^{\Sigma_{i}^{p}}$
- $\Sigma_{i+1}^{p}=\mathbf{N} \mathbf{P}^{\Sigma_{i}^{p}}$
- $\Pi_{i+1}^{p}=\operatorname{coNP}{ }^{\Sigma_{i}^{p}}$

$$
\mathbf{P H} \equiv \bigcup_{i \geqslant 0} \Sigma_{i}^{p}
$$

- $\Sigma_{0}^{p}=\mathbf{P}$
- $\Delta_{1}^{p}=\mathbf{P}, \Sigma_{1}^{p}=\mathbf{N P}, \Pi_{1}^{p}=\mathbf{c o N P}$
- $\Delta_{2}^{p}=\mathbf{P}^{\mathbf{N P}}, \Sigma_{2}^{p}=\mathbf{N} \mathbf{P}^{N \mathbf{P}}, \Pi_{2}^{p}=\operatorname{coNP} \mathbf{N P}^{\mathbf{N P}}$


Contents

- Introduction
- Turing Machines
- Complexity Classes
- Oracles \& The Polynomial Hierarchy
- Randomized Computation
- Interactive Proofs


## Probabilistic Turing Machines

- A Probabilistic Turing Machine is a TM as we know it, but with access to a "random source", that is an extra (read-only) tape containing random-bits!
- Randomization on:
- Output (one or two-sided)
- Running Time

Definition (Probabilistic Turing Machines)
A Probabilistic Turing Machine is a TM with two transition functions $\delta_{0}, \delta_{1}$. On input $x$, we choose in each step with probability $1 / 2$ to apply the transition function $\delta_{0}$ or $\delta_{1}$, indepedently of all previous choices.

- We denote by $M(x)$ the random variable corresponding to the output of $M$ at the end of the process.
- For a function $T: \mathbb{N} \rightarrow \mathbb{N}$, we say that $M$ runs in $T(|x|)$-time if it halts on $x$ within $T(|x|)$ steps (regardless of the random choices it makes).


## BPP Class

Definition (BPP Class)
For $T: \mathbb{N} \rightarrow \mathbb{N}$, let BPTIME[T(n)] the class of languages $L$ such that there exists a PTM which halts in $\mathcal{O}(T(|x|))$ time on input $x$, and $\operatorname{Pr}[M(x)=L(x)] \geq 2 / 3$.
We define:

$$
\mathbf{B P P}=\bigcup_{c \in \mathbb{N}} \mathrm{BPTIME}\left[n^{c}\right]
$$

- The class BPP represents our notion of efficient (randomized) computation!
- We can also define BPP using certificates:


## BPP Class

Definition (Alternative Definition of BPP)
A language $L \in \mathbf{B P P}$ if there exists a poly-time TM $M$ and a polynomial $p \in \operatorname{poly}(n)$, such that for every $x \in\{0,1\}^{*}$ :

$$
\mathbf{P r}_{r \in\{0,1\}^{p(n)}}[M(x, r)=L(x)] \geq \frac{2}{3}
$$

- $\mathbf{P} \subseteq B P P$
- $\mathbf{B P P} \subseteq E X P$
- The "P vs BPP" question.


## Quantifier Characterizations

- Proper formalism (Zachos et al.):

Definition (Majority Quantifier)
Let $R:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}$ be a predicate, and $\varepsilon$ a rational number, such that $\varepsilon \in\left(0, \frac{1}{2}\right)$. We denote by $\left(\exists^{+} y,|y|=k\right) R(x, y)$ the following predicate:
"There exist at least $\left(\frac{1}{2}+\varepsilon\right) \cdot 2^{k}$ strings $y$ of length $m$ for which $R(x, y)$ holds."

We call $\exists^{+}$the overwhelming majority quantifier.

- $\exists_{r}^{+}$means that the fraction $r$ of the possible certificates of a certain length satisfy the predicate for the certain input.


## Quantifier Characterizations

## Definition

We denote as $\mathcal{C}=\left(Q_{1} / Q_{2}\right)$, where $Q_{1}, Q_{2} \in\left\{\exists, \forall, \exists^{+}\right\}$, the class
$\mathcal{C}$ of languages $L$ satisfying:

- $x \in L \Rightarrow Q_{1} y R(x, y)$
- $x \notin L \Rightarrow Q_{2} y \neg R(x, y)$
- $\mathbf{P}=(\forall / \forall)$
- $\mathbf{N P}=(\exists / \forall)$
- coNP $=(\forall / \exists)$
- $\mathbf{B P P}=\left(\exists^{+} / \exists^{+}\right)=\operatorname{coBPP}$


## RP Class

- In the same way, we can define classes that contain problems with one-sided error:

Definition
The class RTIME[T(n)] contains every language $L$ for which there exists a PTM $M$ running in $\mathcal{O}(T(|x|))$ time such that:

- $x \in L \Rightarrow \operatorname{Pr}[M(x)=1] \geq \frac{2}{3}$
- $x \notin L \Rightarrow \operatorname{Pr}[M(x)=0]=1$

We define

$$
\mathbf{R P}=\bigcup_{c \in \mathbb{N}} \mathbf{R T I M E}\left[n^{c}\right]
$$

- Similarly we define the class coRP.


## Quantifier Characterizations

- $\mathbf{R P} \subseteq \mathbf{N P}$, since every accepting "branch" is a certificate!
- $\mathbf{R P} \subseteq \mathbf{B P P}, c o \mathbf{R P} \subseteq \mathbf{B P P}$
- $\mathbf{R P}=\left(\exists^{+} / \forall\right)$


## Quantifier Characterizations

- $\mathbf{R P} \subseteq \mathbf{N P}$, since every accepting "branch" is a certificate!
- $\mathbf{R P} \subseteq \mathbf{B P P}, c o \mathbf{R P} \subseteq \mathbf{B P P}$
- $\mathbf{R P}=\left(\exists^{+} / \forall\right) \subseteq(\exists / \forall)=\mathbf{N P}$


## Quantifier Characterizations

- $\mathbf{R P} \subseteq \mathbf{N P}$, since every accepting "branch" is a certificate!
- $\mathbf{R P} \subseteq \mathbf{B P P}, c o \mathbf{R P} \subseteq \mathbf{B P P}$
- $\mathbf{R P}=\left(\exists^{+} / \forall\right) \subseteq(\exists / \forall)=\mathbf{N P}$
- coRP $=\left(\forall / \exists^{+}\right) \subseteq(\forall / \exists)=\operatorname{coNP}$


## Quantifier Characterizations

- $\mathbf{R P} \subseteq \mathbf{N P}$, since every accepting "branch" is a certificate!
- $\mathbf{R P} \subseteq \mathbf{B P P}, c o \mathbf{R P} \subseteq \mathbf{B P P}$
- $\mathbf{R P}=\left(\exists^{+} / \forall\right) \subseteq(\exists / \forall)=\mathbf{N P}$
- coRP $=\left(\forall / \exists^{+}\right) \subseteq(\forall / \exists)=\operatorname{coNP}$

Theorem (Decisive Characterization of BPP)

$$
\mathbf{B P P}=\left(\exists^{+} / \exists^{+}\right)=\left(\exists^{+} \forall / \forall \exists^{+}\right)=\left(\forall \exists^{+} / \exists^{+} \forall\right)
$$

## ZPP Class

- And now something completely different:
- What is the random variable was the running time and not the output?


## ZPP Class

- And now something completely different:
- What is the random variable was the running time and not the output?
- We say that $M$ has expected running time $T(n)$ if the expectation $\mathbf{E}\left[T_{M(x)}\right]$ is at most $T(|x|)$ for every $x \in\{0,1\}^{*}$. ( $T_{M(x)}$ is the running time of $M$ on input $x$, and it is a random variable!)


## Definition

The class ZTIME $[T(n)]$ contains all languages $L$ for which there exists a machine $M$ that runs in an expected time $\mathcal{O}(T(|x|))$ such that for every input $x \in\{0,1\}^{*}$, whenever $M$ halts on $x$, the output $M(x)$ it produces is exactly $L(x)$. We define:

$$
\mathbf{Z P P}=\bigcup_{c \in \mathbb{N}} \mathbf{Z T I M E}\left[n^{c}\right]
$$

## ZPP Class

- The output of a ZPP machine is always correct!
- The problem is that we aren't sure about the running time.
- We can easily see that $\mathbf{Z P P}=\mathbf{R P} \cap$ coRP.
- The next Hasse diagram summarizes the previous inclusions: (Recall that $\Delta \Sigma_{2}^{p}=\Sigma_{2}^{p} \cap \Pi_{2}^{p}=\mathbf{N P} \mathbf{N P}^{\mathrm{N}} \cap \operatorname{coNP}{ }^{\mathbf{N P}}$ )


## PSPACE



## PSPACE



## Error Reduction for BPP

Theorem (Error Reduction for BPP)
Let $L \subseteq\{0,1\}^{*}$ be a language and suppose that there exists a poly-time PTM M such that for every $x \in\{0,1\}^{*}$ :

$$
\operatorname{Pr}[M(x)=L(x)] \geq \frac{1}{2}+|x|^{-c}
$$

Then, for every constant $d>0, \exists$ poly-time PTM $M^{\prime}$ such that for every $x \in\{0,1\}^{*}$ :

$$
\operatorname{Pr}\left[M^{\prime}(x)=L(x)\right] \geq 1-2^{-|x|^{d}}
$$

Oracles \& Optimization Problems 0000

Contents

- Introduction
- Turing Machines
- Complexity Classes
- Oracles \& The Polynomial Hierarchy
- Randomized Computation
- Interactive Proofs


## Introduction

"Maybe Fermat had a proof! But an important party was certainly missing to make the proof complete: the verifier. Each time rumor gets around that a student somewhere proved $\mathbf{P}=\mathbf{N P}$, people ask "Has Karp seen the proof?" (they hardly even ask the student's name). Perhaps the verifier is most important that the prover." (from [BM88])

- The notion of a mathematical proof is related to the certificate definition of NP.
- We enrich this scenario by introducing interaction in the basic scheme:
The person (or TM) who verifies the proof asks the person who provides the proof a series of "queries", before he is convinced, and if he is, he provide the certificate.


## Introduction

- The first person will be called Verifier, and the second Prover.
- In our model of computation, Prover and Verifier are interacting Turing Machines.
- We will categorize the various proof systems created by using:
- various TMs (nondeterministic, probabilistic etc)
- the information exchanged (private/public coins etc)
- the number of TMs (IPs, MIPs,...)


## Probabilistic Verifier: The Class IP

- Now, we let the verifier be probabilistic, i.e. the verifier's queries will be computed using a probabilistic TM:

Definition (Goldwasser-Micali-Rackoff)
For an integer $k \geq 1$ (that may depend on the input length), a language $L$ is in IP $k$ ] if there is a probabilistic polynomial-time T.M. $V$ that can have a $k$-round interaction with a T.M. $P$ such that:

- $x \in L \Rightarrow \exists P: \operatorname{Pr}[\langle V, P\rangle(x)=1] \geq \frac{2}{3}$ (Completeness)
- $x \notin L \Rightarrow \forall P: \operatorname{Pr}[\langle V, P\rangle(x)=1] \leq \frac{1}{3}$ (Soundness)


## Probabilistic Verifier: The Class IP

Definition
We also define:

$$
\mathbf{I P}=\bigcup_{c \in \mathbb{N}} \mathbf{I P}\left[n^{c}\right]
$$

- The "output" $\langle V, P\rangle(x)$ is a random variable.
- We'll see that IP is a very large class! $(\supseteq \mathbf{P H})$
- As usual, we can replace the completeness parameter $2 / 3$ with $1-2^{-n^{s}}$ and the soundness parameter $1 / 3$ by $2^{-n^{s}}$, without changing the class for any fixed constant $s>0$.
- We can also replace the completeness constant $2 / 3$ with 1 (perfect completeness), without changing the class, but replacing the soundness constant $1 / 3$ with 0 , is equivalent with a deterministic verifier, so class IP collapses to NP.


## Interactive Proof for Graph Non-Isomorphism

Definition
Two graphs $G_{1}$ and $G_{2}$ are isomorphic, if there exists a permutation $\pi$ of the labels of the nodes of $G_{1}$, such that $\pi\left(G_{1}\right)=G_{2}$. If $G_{1}$ and $G_{2}$ are isomorphic, we write $G_{1} \cong G_{2}$.

- GI: Given two graphs $G_{1}, G_{2}$, decide if they are isomorphic.
- GNI: Given two graphs $G_{1}, G_{2}$, decide if they are not isomorphic.
- Obviously, GI $\in$ NP and GNI $\in$ coNP.
- This proof system relies on the Verifier's access to a private random source which cannot be seen by the Prover, so we confirm the crucial role the private coins play.


## Interactive Proof for Graph Non-Isomorphism

Verifier: Picks $i \in\{1,2\}$ uniformly at random.
Then, it permutes randomly the vertices of $G_{i}$ to get a new graph $H$. Is sends $H$ to the Prover.
Prover: Identifies which of $G_{1}, G_{2}$ was used to produce $H$.
Let $G_{j}$ be the graph. Sends $j$ to $V$.
Verifier: Accept if $i=j$. Reject otherwise.

## Interactive Proof for Graph Non-Isomorphism

Verifier: Picks $i \in\{1,2\}$ uniformly at random.
Then, it permutes randomly the vertices of $G_{i}$ to get a new graph $H$. Is sends $H$ to the Prover.
Prover: Identifies which of $G_{1}, G_{2}$ was used to produce $H$.
Let $G_{j}$ be the graph. Sends $j$ to $V$.
Verifier: Accept if $i=j$. Reject otherwise.

- If $G_{1} \not \not G_{2}$, then the powerfull prover can (nondeterministivally) guess which one of the two graphs is isomprphic to $H$, and so the Verifier accepts with probability 1.
- If $G_{1} \cong G_{2}$, the prover can't distinguish the two graphs, since a random permutation of $G_{1}$ looks exactly like a random permutation of $G_{2}$. So, the best he can do is guess randomly one, and the Verifier accepts with probability (at most) $1 / 2$, which can be reduced by additional repetitions.


## Definitions

- So, with respect to the previous IP definition:


## Definition

For every $k$, the complexity class $\mathbf{A M}[k]$ is defined as a subset to IP [k] obtained when we restrict the verifier's messages to be random bits, and not allowing it to use any other random bits that are not contained in these messages.
We denote $\mathbf{A M} \equiv \mathbf{A M}[2]$.

## Definitions

- So, with respect to the previous IP definition:


## Definition

For every $k$, the complexity class $\mathbf{A M}[k]$ is defined as a subset to IP [ $k$ ] obtained when we restrict the verifier's messages to be random bits, and not allowing it to use any other random bits that are not contained in these messages.
We denote $\mathbf{A M} \equiv \mathbf{A M}[2]$.

- Merlin $\rightarrow$ Prover
- Arthur $\rightarrow$ Verifier


## Definitions

- So, with respect to the previous IP definition:

Definition
For every $k$, the complexity class $\mathbf{A M}[k]$ is defined as a subset to IP [ $k$ ] obtained when we restrict the verifier's messages to be random bits, and not allowing it to use any other random bits that are not contained in these messages.
We denote $\mathbf{A M} \equiv \mathbf{A M}[2]$.

- Merlin $\rightarrow$ Prover
- Arthur $\rightarrow$ Verifier
- Also, the class MA consists of all languages $L$, where there's an interactive proof for $L$ in which the prover first sending a message, and then the verifier is "tossing coins" and computing its decision by doing a deterministic polynomial-time computation involving the input, the message and the random output.


## Public vs. Private Coins

Theorem

## GNI $\in \mathbf{A M}[2]$

Theorem
For every $p \in \operatorname{poly}(n)$ :

$$
\mathbf{I P}(p(n))=\mathbf{A M}(p(n)+2)
$$

- So,

$$
\mathbf{I P}[p o l y]=\mathbf{A M}[p o l y]
$$

## Properties of Arthur-Merlin Games



## Properties of Arthur-Merlin Games

- Proper formalism (Zachos et al.):

Definition (Majority Quantifier)
Let $R:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}$ be a predicate, and $\varepsilon$ a rational number, such that $\varepsilon \in\left(0, \frac{1}{2}\right)$. We denote by $\left(\exists^{+} y,|y|=k\right) R(x, y)$ the following predicate:
"There exist at least $\left(\frac{1}{2}+\varepsilon\right) \cdot 2^{k}$ strings $y$ of length $m$ for which $R(x, y)$ holds."

We call $\exists^{+}$the overwhelming majority quantifier.

- $\exists_{r}^{+}$means that the fraction $r$ of the possible certificates of a certain length satisfy the predicate for the certain input.
- Obviously, $\exists^{+}=\exists_{1 / 2+\varepsilon}^{+}=\exists_{2 / 3}^{+}=\exists_{3 / 4}^{+}=\exists_{0.99}^{+}=\exists_{1-2^{-p(| | x \mid)}}^{+}$


## Properties of Arthur-Merlin Games

Definition
We denote as $\mathcal{C}=\left(Q_{1} / Q_{2}\right)$, where $Q_{1}, Q_{2} \in\left\{\exists, \forall, \exists^{+}\right\}$, the class
$\mathcal{C}$ of languages $L$ satisfying:

- $x \in L \Rightarrow Q_{1} y R(x, y)$
- $x \notin L \Rightarrow Q_{2} y \neg R(x, y)$
- So: $\mathbf{P}=(\forall / \forall), \mathbf{N P}=(\exists / \forall)$, coNP $=(\forall / \exists)$

$$
\mathbf{B P P}=\left(\exists^{+} / \exists^{+}\right), \mathbf{R P}=\left(\exists^{+} / \forall\right), \operatorname{coRP}=\left(\forall / \exists^{+}\right)
$$

## Properties of Arthur-Merlin Games

Definition
We denote as $\mathcal{C}=\left(Q_{1} / Q_{2}\right)$, where $Q_{1}, Q_{2} \in\left\{\exists, \forall, \exists^{+}\right\}$, the class
$\mathcal{C}$ of languages $L$ satisfying:

- $x \in L \Rightarrow Q_{1 y} R(x, y)$
- $x \notin L \Rightarrow Q_{2} y \neg R(x, y)$
- So: $\mathbf{P}=(\forall / \forall), \mathbf{N P}=(\exists / \forall), \operatorname{coNP}=(\forall / \exists)$

$$
\mathbf{B P P}=\left(\exists^{+} / \exists^{+}\right), \mathbf{R P}=\left(\exists^{+} / \forall\right), c o \mathbf{R P}=\left(\forall / \exists^{+}\right)
$$

Arthur-Merlin Games

$$
\begin{aligned}
& \mathbf{A M}=\mathcal{B P} \cdot \mathbf{N P}=\left(\exists^{+} \exists / \exists^{+} \forall\right) \\
& \mathbf{M A}=\mathcal{N} \cdot \mathbf{B P P}=\left(\exists \exists^{+} / \forall \exists^{+}\right)
\end{aligned}
$$

- Similarly: AMA $=\left(\exists^{+} \exists \exists^{+} / \exists^{+} \forall \exists^{+}\right)$etc.


## The power of Interactive Proofs

- As we saw, Interaction alone does not gives us computational capabilities beyond NP.
- Also, Randomization alone does not give us significant power (we know that $\mathbf{B P P} \subseteq \Sigma_{2}^{p}$, and many researchers believe that $\mathbf{P}=\mathbf{B P P}$, which holds under some plausible assumptions).
- How much power could we get by their combination?
- We know that for fixed $k \in \mathbb{N}$, IP $[k]$ collapses to

$$
\mathbf{I P}[k]=\mathbf{A M}=\mathcal{B} \mathcal{P} \cdot \mathbf{N P}
$$

a class that is "close" to NP (under similar assumptions, the non-deterministic analogue of $\mathbf{P}$ vs. BPP is NP vs. AM.)

- If we let $k$ be a polynomial in the size of the input, how much more power could we get?


## The power of Interactive Proofs

- Surprisingly:

Theorem (L.F.K.N. \& Shamir) $I P=P S P A C E$

## Epilogue: Probabilistically Checkable Proofs

- But if we put a proof instead of a Prover?


## Epilogue: Probabilistically Checkable Proofs

- But if we put a proof instead of a Prover?
- The alleged proof is a string, and the (probabilistic) verification procedure is given direct (oracle) access to the proof.
- The verification procedure can access only few locations in the proof!
- We parameterize these Interactive Proof Systems by two complexity measures:
- Query Complexity
- Randomness Complexity
- The effective proof length of a PCP system is upper-bounded by $q(n) \cdot 2^{r(n)}$ (in the non-adaptive case). (How long can be in the adaptive case?)


## PCP Definitions

Definition
PCP Verifiers Let $L$ be a language and $q, r: \mathbb{N} \rightarrow \mathbb{N}$. We say that $L$ has an $(r(n), q(n))-\mathbf{P C P}$ verifier if there is a probabilistic polynomial-time algorithm $V$ (the verifier) satisfying:

- Efficiency: On input $x \in\{0,1\}^{*}$ and given random oracle access to a string $\pi \in\{0,1\}^{*}$ of length at most $q(n) \cdot 2^{r(n)}$ (which we call the proof), $V$ uses at most $r(n)$ random coins and makes at most $q(n)$ non-adaptive queries to locations of $\pi$. Then, it accepts or rejects. Let $V^{\pi}(x)$ denote the random variable representing $V$ 's output on input $x$ and with random access to $\pi$.
- Completeness: If $x \in L$, then $\exists \pi \in\{0,1\}^{*}: \operatorname{Pr}\left[V^{\pi}(x)=1\right]=1$
- Soundness: If $x \notin L$, then $\forall \pi \in\{0,1\}^{*}: \operatorname{Pr}\left[V^{\pi}(x)=1\right] \leq \frac{1}{2}$

We say that a language $L$ is in $\operatorname{PCP}[r(n), q(n)]$ if $L$ has a $(\mathcal{O}(r(n)), \mathcal{O}(q(n)))$-PCP verifier.

## Main Results

- Obviously:
$\operatorname{PCP}[0,0]=?$ $\mathbf{P C P}[0$, poly $]=$ ?
$\mathbf{P C P}[p o l y, 0]=$ ?


## Main Results

- Obviously:
$\mathbf{P C P}[0,0]=\mathbf{P}$ $\mathbf{P C P}[0$, poly $]=$ ?
$\mathbf{P C P}[p o l y, 0]=$ ?


## Main Results

- Obviously:
$\mathbf{P C P}[0,0]=\mathbf{P}$
$\mathbf{P C P}[0, p o l y]=\mathbf{N P}$
$\mathbf{P C P}[p o l y, 0]=$ ?


## Main Results

- Obviously:
$\mathbf{P C P}[0,0]=\mathbf{P}$
$\mathbf{P C P}[0, p o l y]=\mathbf{N P}$
$\mathbf{P C P}[p o l y, 0]=c o \mathbf{R P}$


## Main Results

- Obviously:
$\mathbf{P C P}[0,0]=\mathbf{P}$
$\mathbf{P C P}[0, p o l y]=\mathbf{N P}$
$\mathbf{P C P}[p o l y, 0]=c o \mathbf{R P}$
- A suprising result from Arora, Lund, Motwani, Safra, Sudan, Szegedy states that:

The PCP Theorem
$\mathbf{N P}=\mathbf{P C P}[\log n, 1]$

## Main Results

- The restriction that the proof length is at most $q 2^{r}$ is inconsequential, since such a verifier can look on at most this number of locations.
- We have that $\operatorname{PCP}[r(n), q(n)] \subseteq \operatorname{NTIME}\left[2^{\mathcal{O}(r(n))} q(n)\right]$, since a NTM could guess the proof in $2^{\mathcal{O}(r(n))} q(n)$ time, and verify it deterministically by running the verifier for all $2^{\mathcal{O}(r(n))}$ possible choices of its random coin tosses. If the verifier accepts for all these possible tosses, then the NTM accepts.

