Θεωρητική Πληροφορική ΙΙ:
Προχωρημένα Θέματα Λογικής (ΜΠΛΑ, ΑΛΜΑ)
Λογική, Αυτόματα και Παίγνια (ΣΗΜΜΥ)
εαρινό εξάμηνο 2016-2017
Γενικά
Διδάσκων
- Στάθης Ζάχος, Καθηγητής ()
Βοηθός διδασκαλίας
- Αγγελική Χαλκή, Υ.Δ. ()
Έναρξη μαθήματος
Τρίτη, 7 Μαρτίου 2017
Διαλέξεις
Τρίτη 10:00-14:00, αίθουσα 1.1.31 (παλαιό) Κτίριο Ηλεκτρολόγων, Ε.Μ.Π.
Ώρες Γραφείου
- Τρίτη, 14:00-16:00, Εργαστήριο Λογικής και Επιστήμης Υπολογισμών (CoReLab), Αίθουσα 1.1.3, Παλαιά Κτίρια Ηλεκτρολόγων
Προαπαιτούμενα
Μαθήματα σε Θεωρία Υπολογισιμότητας και Μαθηματικής Λογικής.
Ανακοινώσεις
Διαλέξεις - Παρουσιάσεις
Η/Μ | Ομιλητής | Θέμα - Περιεχόμενο |
---|---|---|
7/3/2017 | Θ. Παπαμακάριος |
Εισαγωγή - Διαδικαστικά Proof Complexity |
14/3/2017 | Θ. Παπαμακάριος | Proof Complexity (cont'd) |
21/3/2017 | Α. Χαλκή | Infinite Automata (slides) |
28/3/2017 | A. Χαλκή | Ehrenfeucht-Fraisse Games
Inexpressibility in First Order Logic (slides) |
4/4/2017 | Κώστας Τσαπρούνης | Large Cardinal Axioms (slides) |
25/4/2017 | Κώστας Τσαπρούνης | Large Cardinal Axioms (cont'd) (slides) |
2/5/2017 | Πέτρος Ποτίκας | Introduction to Modal Logic (slides) |
9/5/2017 | Πέτρος Ποτίκας | Decidability of Modal Logic (slides) |
16/5/2017 | Γιώργος Πιτσιλαδής | Introduction to π-calculus (slides) |
23/5/2017 | Θ. Παπαμακάριος | Tableaux approach to Proof Complexity |
30/5/2017 | Ν. Κωτσάνη | Translating Modal Logic into FOL and SOL (slides) |
6/6/2017 | Α. Χαλκή | Linear Temporal Logic (LTL) |
13/6/2017 | Π. Πατσιλινάκος | Infinite Combinatorics (slides) |
20/6/2017 | Σ. Πετσαλάκης | μ-Calculus |
Υλικό - Βιβλιογραφία
Modal Logic
- P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge University Press, 2001.
- R. Goldblatt, Logics of Time and Computation, CSLI Publications, 1992.
- B. F. Chellas, Modal Logic - an introduction, Cambridge University Press, 1980.
- M. Fitting, R. L. Mendelsohn, First Order Modal Logic, Kluwer Academic Publishers, 1998
- M. Vardi. Why is modal logic so robustly decidable? In DIMACS Series in Discrete Mathematics and Theoretical Computer Science 31, pages 149-184. American Math. Society, 1997.
- E. Grädel. Why are modal logics so robustly decidable? Bulletin of the EATCS, vol 68, 90-103, 1999.
Automata, Logics and Infinite Games
- Σ. Ζάχος, Α. Παγουρτζής, Τα Θεμέλια της Πληροφορικής, εκδόσεις Τσότρας, 2014
- Μ. Sipser. Introduction to the Theory of Computation.
- J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Computation.
- H. R. Lewis and C. Papadimitriou. Elements of the Theory of Computation, 2nd edition.
- D. C. Kozen. Automata and Computability (Undergraduate Texts in Computer Science).
- M. Harrison. Introduction to Switching and Automata Theory. McGraw-Hill Book Company, New York (1965).
- L. Libkin. Elements of Finite Model Theory. Springer (2012).
- Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard, Denis Lugiez, Christof Löding, Sophie Tison, Marc Tommasi. Tree Automata Techniques and Applications.
- Editors: Erich Grädel, Wolfgang Thomas, Thomas Wilke. Automata Logics, and Infinite Games. A Guide to Current Research. Springer, Lecture Notes in Computer Science.
Proof Complexity
- Grigori Tseitin. On the complexity of derivation in propositional calculus. Studies in constructive mathematics and mathematical logic, part 2, pages 115–125, 1968.
- Stephen Cook and Robert Reckhow. The relative efficiency of propositional proof systems. Journal of Symbolic Logic, 44(1):36–50, 1979.
- Robert Reckhow. On the lengths of proofs in the propositional calculus. PhD thesis, Department of Computer Science, University of Toronto, 1975.
- Armin Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308, 1985.
- Vaŝek Chvátal and Endre Szemerédi. Many hard examples for resolution. J. ACM,35(4):759–768, 1988.
- Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987.
- Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow — resolution made simple. J. ACM, 48(2):149–169, 2001.
Large Cardinal Axioms
- Γ. Μοσχοβάκης. Σημειώσεις στη Συνολοθεωρία. Νεφέλη, 1993
- W. Just, M. Weese. Discovering Modern Set Theory I: The Basics. Graduate Studies in Mathematics, Vol. 8, American Mathematical Society, 1996.
- K. Kunen. Set Theory: An introduction to independence proofs. Studies In Logic and The Foundations of Mathematics, Vol. 102, North-Holland, 1980.
- A. Kanamori. The Higher Infinite. Springer-Verlag, 1994.
- T. Jech. Set Theory, The Third Millennium Edition. Springer, 2002.
- F. Drake. Set Theory: An Introduction to Large Cardinals. Studies in Logic & the Foundations of Mathematics, Vol 76, North-Holland, 1974.
- W. Just, M. Weese. Discovering Modern Set Theory II: Set-Theoretic Tools for Every Mathematician. Graduate Studies in Mathematics, Vol. 18, American Mathematical Society, 1997.
Linear Temporal Logic
- Val Goranko Temporal Logics of Computations, 12th European Summer School in Logic, Language and Information, 2000.
μ-Calculus
- Val Goranko Temporal Logics of Computations, 12th European Summer School in Logic, Language and Information, 2000.
- Yde Venema Lectures on the modal μ-calculus, 2012.
- Editors: Erich Grädel, Wolfgang Thomas, Thomas Wilke. Automata Logics, and Infinite Games. A Guide to Current Research. Springer, Lecture Notes in Computer Science.